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hile large-scale human mobility data contain crucial

insights to understand human behavior, they are also

highly sensitive. Google shared with Bassolas et al.
anonymous aggregated data from 300M Google Maps users and
stated that sharing this dataset raises no privacy concern as this
data would “at best improve the level of certainty [of an attacker
to infer if a user is in the dataset] over a random guess by
approximately 16%”. We believe these guarantees rely on
assumptions that are not met in practice. Using their attack
model on a real-world mobility dataset, we instead argue that the
level of certainty of their attacker is likely higher than 90% for a
typical user (e.g., 95.4% for one of the authors who made 32
unique trips in a week). Weak anonymization methods and
unrealistic privacy guarantees have eroded public trust in the past.
As new anonymization methods are being deployed, we ought to
ensure that the risks and the guarantees they give are correctly
communicated to data subjects.

The dataset used by Bassolas et al.! consists of aggregated end-to-
end trips, count matrices where each entry is the number of people
who traveled from one location to another at least once during a
given week (unique trips for a user). Laplace noise with zero mean
and scale 1/¢ is added to the counts with an & parameter of 0.66.
Origin-destination cells with user count lower than 100 people (after
noise addition) are removed. In their article, the authors state that
this “yields (e, §)-differential privacy guarantee of ¢=0.66 and
§=21x10"2", and conclude that sharing the dataset does not
improve the level of certainty of a strong attacker by more than 16%.

To draw this conclusion, Bassolas et al. use the standard dif-
ferential privacy membership attack model: a strong attacker
having access to all the records in the dataset, except the victim’s,
and auxiliary information about him or her. The 16% certainty
bound they report, however, relies on the assumption that any
one user does not contribute more than one trip to the dataset.
While Bassolas et al. do not report the total number of trips, the
analyses performed in the paper strongly suggest that users
contribute substantially more than one trip to the dataset.

Results

Using Bassolas et al’s attack model on a real-world mobility
dataset, we show the empirical risk to be higher than the 16%
bound as soon as the victim took more than three unique trips
over any week (p3(u) =70.5%). Figure 1 reports the accuracy of
the membership attack, pi(u), the likelihood that an attacker can
test if u is in the aggregated data knowing k trips from their
trajectory. The average number of trips per user in Bassolas et al.’s
dataset is not reported but, looking at the Google Maps Timeline?
of one of us, the 39 trips taken over a typical week with 32 of
them being unique would give an attacker a 95.4% certainty that
he is in the dataset.

From a differential privacy standpoint, the guarantees given by
the authors (¢ =0.66) protect single trips taken by a victim. A
conservative estimate of the total privacy loss for any user in the
dataset for 1 week, obtained through a straightforward applica-
tion of the composition theorem, would be ¢=46.2 and
8=2.1x10727 (see “Methods”). Standard values of ¢ range from
“as little as 0.01 to as much as 7" in the literature?, with higher
values providing exponentially weaker guarantees. This privacy
loss would furthermore grow linearly with the number of weeks
of data released; for the 1 year of data released here, the ¢ budget
could be as much as 52 times higher.

We believe that behavioral data have a great potential for good,
especially in research, and that data should be used a lot more
than they are currently. However, in the pursuit of this laudable
goal, we have allowed weak de-identification methods relying on
unrealistic assumptions to be used to anonymize data behind
closed doors. The guarantees given by these methods were
incorrect in practice, leading numerous datasets to be re-
identified and eroding public trust*-6.

The standard attack model considered by the authors is very
strong and probably not realistic in a setup where aggregated data
is shared with trusted researchers. However, as we are moving
away from de-identification and towards modern privacy engi-
neering solutions such as Differential Privacy, it is crucial for us
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Fig. 1 The accuracy of the attack increases steeply with attacker knowledge
and is higher than the reported upper bound. Empirical accuracy of a
membership attack (dots) and theoretical upper bound (solid line) as a
function of the number of unique trips taken by a user. Reported upper
bound (dashed line) and empirical accuracy of the attack on one of the
authors' data (triangle).

as a community to learn from previous mistakes. The inherent
risks and limitations of data sharing have to be clearly commu-
nicated and the guarantees we give data subjects correct and
transparent. The future and broad availability of data for research
are at stake.

Methods

Contribution of each user to the dataset. The guarantees given by Bassolas et al.
rely on the assumption that each user does not contribute more than one trip to the
dataset. The analyses performed in the paper strongly suggest that users contribute
more than one trip to the dataset.

Indeed, the final dataset used by Bassolas et al. contains connections, origin-
destination trip counts, with at least 100 trips each. The dataset contains for
instance 46,333 connections for Atlanta (population 5 M). Assuming that each user
reports exactly one trip, at least 4.6 M people from Atlanta should contribute to the
dataset to get the number of connections reported in the dataset. Given that only
67% of US mobile phone users use Google Maps as their main navigation app’, we
find this unlikely, thereby strongly suggesting that some users contributed more
than one trip to the dataset.

Regarding unique trips, the authors later confirmed that each user contributes a
list of their unique weekly trips to the weekly aggregate. If the same trip (A — B) is
made several times in a week, it is only counted once. In the case of one of the
authors having made 39 trips in a given week, this results in him contributing 32
unique trips to the weekly aggregate while 7 of them would be discarded. Note that
here unique refers to trips that are unique for a given user during a given week.

Generating trips from empirical data. We use a longitudinal mobility dataset
extracted from CDR data. Each individual trajectory contains points with time and
approximate location (antennas). We segment trajectories using a winner-takes-all
approach, selecting the most used location for every hour, and define a trip as a
movement from one location to a distinct one in the consecutive hour.

Performing the attack. We follow the procedure described by Bassolas et al. to
aggregate anonymized trips: computing the origin-destination count matrix for
unique trips, add zero mean Laplacian noise with scale 1/¢ to each entry, and
discard all (noisy) counts lower than 100.

We then use the attack model the authors rely on to compute the 16% increase
over a random guess: the standard membership inference attack with perfect
knowledge. In this model, the strong attacker has access to all the records in the
dataset, except the victim’s, and auxiliary information about the victim.

More specifically, for k between 0 and 70, we select one user u with exactly k
trips. The attacker performs a membership attack to test whether the anonymized
data D’ they received is DT (the anonymized trajectories with u included) or D~
(without u included). We compute the local origin-destination matrix A(u) for
the user u and, by linearity of the noise addition, compute the normalized matrix
A(D') - A(D™) generated from either no user or u. We perform a likelihood-ratio
test to distinguish whether the normalized matrix was sampled from a Laplacian
distribution L(0, 1/¢) or L(A(u), 1/¢).

We repeat this procedure 10,000 times for all values of k between 0 and 70 and
report the mean in Fig. 1.

Theoretical bounds. The theoretical bound reported by Bassolas et al. is obtained

by bounding the posterior probability of an attacker trying to infer whether a user

is in the dataset, 7(y). Formally, let D* be the tested dataset, D the dataset with the

user u, and D~ the data without u. If the attacker’s prior holds no information (e.g.,

when P[D* = Dt] = 0.5), we then have for all y (and for M an e-DP mechanism?):
ny) _ PID =D'IM(D) =y] _PIM(D*) =y] _ .

1=7()  PD =D M) =y] PMD )=yl *

which then implies 71(y) < e?/(1 + ¢f).

Conservative estimate of the privacy loss. To estimate the privacy loss for any
user in 1 week of data, we assume conservative bounds: each user contributes only
once to each count and makes no more than 70 unique trips per week (10 per day).
Let #1yips be the maximum number of unique trips that any user could contribute to
the data, then the L, sensitivity of the count matrix is #;,,. Adding Lap(1/e) noise
and low-count filtering implies (gips X & 2.1 x 1072%)-differential privacy by a
straightforward application of simple composition bounds’.

Similarly, the privacy loss for a year of data can be estimated as the sum of the
privacy losses for every week. A reasonable estimate of the total loss of the data
release would thus be 52 times the privacy loss for a week,

Etotal = 52 X Nyrips X € = 2402.4.

Note that, while better bounds can be obtained, they require larger values of
8%9. In this specific case, acceptable values of ¢ would require prohibitively large
values of § rendering the guarantees meaningless in practice.

Data availability

Although the raw data used in our experiments cannot be shared for confidentiality
reasons, a synthetic mobility dataset that closely replicates the findings is available on
request from the authors. Similarly, the source data for Fig. 1 is available on request from
the authors.

Code availability
The code to perform our attack is available from the corresponding author upon
reasonable request for academic purposes.
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