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The pathophysiology of major depressive disorder (MDD) remains obscure. Recently, the microbiota-gut-brain (MGB) axis’s role in
MDD has an increasing attention. However, the specific mechanism of the multi-level effects of gut microbiota on host metabolism,
immunity, and brain structure is unclear. Multi-omics approaches based on the analysis of different body fluids and tissues using a
variety of analytical platforms have the potential to provide a deeper understanding of MGB axis disorders. Therefore, the data of
metagenomics, metabolomic, inflammatory factors, and MRI scanning are collected from the two groups including 24 drug-naive
MDD patients and 26 healthy controls (HCs). Then, the correlation analysis is performed in all omics. The results confirmed that
there are many markedly altered differences, such as elevated Actinobacteria abundance, plasma IL-1f concentration, lipid, vitamin,
and carbohydrate metabolism disorder, and diminished grey matter volume (GMV) of inferior frontal gyrus (IFG) in the MDD
patients. Notably, three kinds of discriminative bacteria, Ruminococcus bromii, Lactococcus chungangensis, and Streptococcus
gallolyticus have an extensive correlation with metabolome, immunology, GMV, and clinical symptoms. All three microbiota are
closely related to IL-1(3 and lipids (as an example, phosphoethanolamine (PEA)). Besides, Lactococcus chungangensis is negatively
related to the GMV of left IFG. Overall, this study demonstrate that the effects of gut microbiome exert in MDD is multifactorial.
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BACKGROUND

Major depressive disorder (MDD) has a high incidence and it's a
severe mental disorder causing suicide attempts [1]. MDD is
ranked as the single largest contributor to health loss by WHO [2].
Though the mechanism of MDD remains unclarified, it is believed
to be a heterogeneous etiology. The current theories have shown
that genetics, neuro-endocrinology, neuro-immunity, structural
and functional abnormalities of brain regions all play an important
role in the pathophysiology of MDD, but the mechanism of MDD is
poorly defined. Thus, it's urgent to more thoroughly understand
the pathogenic mechanism of MDD.

Recently, more and more attention has been paid to the gut
microbiome in the pathogenesis of neuropsychiatric diseases
[3-5]. Growing evidence has shown a strong association between
MDD and microbiota-gut-brain (MGB) axis dysfunction [6-9].
Studies have shown that relative to healthy individuals, MDD
patients showed reduced Bifidobacterium [5, 10], Lactobacillus
[10], Firmicutes [11, 12], and Lachnospiraceae [7] “and increased,
Actinobacteria [11-13], Bacteroidetes [7, 11-14], and Proteobac-
teria [12]. Rats or mice that underwent fecal microbiota
transplantation from MDD patients have shown depression-like
behaviors, which provided further insight into the role of the MGB
axis in depression [3, 15-17]. The MGB axis exerts its effects

through immune system activation (e.g., inflammatory cytokines
and chemokines), neurotransmitters production (e.g., serotonin,
gamma-aminobutyric acid [GABA] and glutamate), and its
metabolites (short-chain fatty acids (SCFA) and key dietary amino
acids, such as tryptophan (TRP)) [18]. In addition, the enteric
nervous hypothesis explains that the gut microbiome through the
autonomic nervous system, especially the vagus nerve achieves
biphasic communication between the gut and the CNS [15, 19].
Some studies suggested that altered gut microbes interact with
changed brain structure. In schizophrenia patients, the regional
homogeneity (ReHo) indexes in the right superior temporal cortex,
the left cuneus, and the right middle temporal cortex were
negatively correlated with the abundance of the genus Roseburia
[20]. Several studies have explored the neuroendocrine hypothesis
of the MGB axis. An animal study revealed that significant
correlations between amino acids, including L-threonine, isoleu-
cine, alanine, serine, tyrosine, and oxidized proline and the altered
fecal microbiota, mainly contain genera Prevotella, Oligella,
Blautia, Phascolarctobacterium, Faecalibacterium, and Desulfovi-
brio [21]. Additionally, increased pro-inflammatory signaling
enhanced the number of pro-inflammatory bacteria (e.g., Proteo-
bacteria, Allistipes, Prevotella, Oscillibacter, Actinobacteria) and
decreased the anti-inflammatory bacteria (e.g., Firmicutes,
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Faecalibacterium, Lachnospiraceae, Bacteroidetes) in MDD [22].
This finding suggests a potential link between immunology and
gut microbiota.

However, several and not yet fully understood mechanisms are
involved in this complex bidirectional network in health and during
diseases, especially in major depressive disorder (MDD). The specific
mechanism of the multi-level effects of gut microbiota on host
metabolism, immunity, and brain structure is unclear. Multi-omics
approaches based on the analysis of different body fluids and tissues
using a variety of analytical platforms have the potential to provide a
deeper understanding of MGB axis disorders [18]. Little previous
research has focused on species level [14]. Besides, the search for
multi-omics integration is the trend of diseases with heterogeneous
etiology, especially neuropsychiatric diseases [15, 23, 24].

Therefore, this study explores the connection between the
microbiome metagenomics, immunology, metabolomics, and brain
structure in MDD. We recruited drug-naive MDD patients and HCs,
and collected their data of metagenomics, metabolomic, inflamma-
tory factors, and MRI scanning. Subsequently, correlation analysis was
performed to explore the relationship with each omics in MDD.

METHODS

Participants

Patients were recruited from the First Affiliated Hospital of Zhejiang
University between 2019 and 2020. The inclusion criteria for patients to
enter this study were as follows: (1) age between 18 to 45 years; (2)
meeting the criteria of the Diagnostic and Statistical Manual of Mental
Disorder5 (DSM-5) for treatment-naive patients with current unipolar MDD;
(3) score of the 17item Hamilton Depression scale (HAMD-17) is greater
than 17 points; (4) of Han ethnicity and righthandedness; (5) junior high
school education or above; (6) voluntary in this study, signed written
informed consent. The exclusion criteria included: (1) the patients with the
treatment in any form prior to the study; (2) any other current or past
psychiatric disorders, except MDD; (3) any secondary mental disorders
caused by drugs or organic psychosis; (4) a history of neurological
disorders (such as cerebral trauma, epilepsy, acute cerebrovascular disease
etc.) or MRI evidence of structural brain abnormalities; (5) a history of
significant medical illness (such as heart disease, hypertension, liver
disease etc.), and a history of endocrine diseases (such as diabetes etc.), or
other physical disease interfering with evaluation.; (6) current or past
alcohol and drug abuse; (7) contraindications for undergoing an MRI scan,
including metallic implants, retractors or braces, and claustrophobia; (8)
not eating any functional food such as prebiotics or probiotics, nor did
they administrate any antibiotics or other drugs influenced microbiota
composition within 1 month prior to sampling; (9) no history of
gastrointestinal disorders during the previous week.

Moreover, HCs without serious physical disorders matched for MDD
group in age, years of education, marriage, and gender, were recruited
from local communities through advertising. HCs were also assessed with
the Mini-International Neuropsychiatric Interview (MINI) to ensure that
they did not meet the criteria for any DSM-5 psychiatric disorder. Other
exclusion criteria were the same with the MDD group.

All participants and their legal guardians voluntarily participated and
signed an informed consent form before the experiment. Ethical approval
was obtained from the local Ethics Committee at the First Affiliated
Hospital, College of Medicine, Zhejiang University, China.

Clinical assessments

Depressive symptoms and anxiety symptoms were assessed with HAMD-
17 and Hamilton Anxiety Scale (HAMA), respectively. What's more, the
30-item Inventory of Depressive Symptoms-Self Report (IDS-SR30) and the
16-item Quick Inventory of Depressive Symptomatology-Self Report (QIDS-
SR16) were two self-report psychometric evaluations in patients with MDD.
The two scales had proven useful as a sensitive way of determining a
patient’s level of depression before treatment.

Fecal samples collection and metagenomics sequencing
analysis

Stool samples were collected on the same day of symptom assessment,
frozen immediately, and stored at —80°C before analyses. The stool
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samples were sent to the Novogene Bioinformatics Technology Co., Ltd.
(Beijing, China) for sequencing. The NEBNext® Ultra™ DNA Library Prep Kit
for lllumina (NEB, USA), the lllumina Novaseq 6000 platform, and Readfq
version 8 (https://github.com/cjfields/readfq) was conducted to acquire
the clean data. Then, the Clean Data is assembled and analyzed [25]
by SOAPdenovo software version 2.04 (http://soap.genomics.org.cn/
soapdenovo.html). After predicting the open reading frame by MetaGene-
Mark (V2.10, http://topaz.gatech.edu/GeneMark/) software, redundant
genes were removed and obtain the unique initial gene catalog using
CD-HIT [26, 27] version 4.5.8 (http://www.bioinformatics.org/cd-hit). Obtain
the gene catalogue (Unigenes) by mapping and filtering genes. DIAMOND
software (V0.9.9, https://github.com/bbuchfink/diamond/) is used to blast
the Unigenes extracted from the NR database (Version: 2018-01-02, https://
www.ncbi.nlm.nih.gov/) of NCBI. Choose the result of which the e value <
the smallest e value * 10 to take the LCA algorithm to make sure the
species annotation information of sequences. The table containing the
number of genes and the abundance information of each sample in
each taxonomy hierarchy (kingdom, phylum, class, order, family, genus,
species) are obtained based on the LCA annotation result and the gene
abundance table.

The exhibition of generation situation of relative abundance, the
exhibition of abundance cluster heat map, and PCA (R ade4 package,
Version 2.15.3) analysis are based on the abundance table of each
taxonomic hierarchy. Meta stats and the linear discriminant analysis effect
size (LEfSe) analyses are used to look for different species between groups.
LEfSe analysis is conducted by LEfSe software (the default LDA score is 2).
Besides, random forest (RandoForest) (R pROC and randomForest
packages, Version 2.15.3) was used to construct a random forest model.
Screen out important species by Mean Decrease Accuracy, then cross-
validate each model (default 10 times) and plot the ROC curve. Finally,
predicted unigenes were used by DIAMOND Version 0.9.9 to assign to the
KEGG. See supplementary 1.1 for detailed steps.

Blood samples collection and metabolomic analysis

Blood was drawn immediately after symptom assessment and stored at
—80°C until assay. Blood samples were also sent to the Novogene
Bioinformatics Technology Co., Ltd. (Beijing, China) for analysis. After
pretreatment, they were injected into the HPLC-MS/MS system [28, 29]
(SCIEX QTRAP’® 6500 + ) for subsequent analysis. LC-MS/MS analyses were
performed using an ExionLC™ AD system (SCIEX) coupled with a QTRAP®
6500+ mass spectrometer (SCIEX). The processing parameters are in
supplementary material 1.2. The detection of the experimental samples
using MRM (Multiple Reaction Monitoring) was based on the Novogene
Bioinformatics Technology Co., Ltd. (Beijing, China) in-house database. And
the data files generated by HPLC-MS/MS were processed using the SCIEX
OS Version 1.4 to integrate and correct the peak.

These metabolites were annotated using the KEGG database [30] (http://
www.genome.jp/kegg/) and the HMDB database (http://www.hmdb.ca/).
Partial least squares discriminant analysis (PLS-DA) [31] was used to
evaluate the difference in metabolic profiles between MDD and HC
subjects that were performed at meta X version 1.4.16 [32]. Volcano plots
were used to filter metabolites of interest. The metabolic pathway
enrichment of differential metabolites was performed based on the KEGG
database. See supplementary 1.2 for details.

ELISA analysis

As stated above, blood samples were collected. Plasma samples were
separated and stored at —80 °C for analysis after centrifuged at 3000 rpm for
20 min. Duoset human ELISA Kits (IL-13: HSLBOOD, R&D Systems; IL-6:
HS60DC, R&D Systems; TNF: HSTAOOE, R&D Systems) were used to
respectively measure the plasma levels of the inflammatory factors, including
IL-1B, IL-6, and tumor necrosis factor (TNF). According to the manufacturers’
instructions, the concentration of factors in each blood sample was
quantitatively determined. All results were presented in pg/mL.

MRI analysis

MRI images were scanned on a Philips Achieva3.0 T TX MRI system (Philips
Healthcare, Netherlands). Resting-state-fMRI (rs-fMRI) data were acquired
along the axial direction in a sequential mode using a fast field echo-echo-
planar imaging (FFE-EPI) sequence: 24 slices, TR/ TE = 2000/35 ms, flip angle
(FA) = 80°, slice thickness/gap = 5.0/1.0 mm, voxel size =24 x 2.4 x 5.0 mm3,
matrix = 100 x 100, field of view (FOV) = 240 x;240 mmZ2.Meanwhile, the rs-
fMRI scan lasted 6 min and 48s. During the scanning, all participants were
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Table 1. Detailed clinical characteristics of the participants.
Variables MDD (n = 24)
Course, (month) 7.50+ 545

Age, (year) 29.96 + 8.554

Sex (male/female) 717

Education years 14.25 +2.382
HAMD-17 2483+3.116

HAMA 19.33+4.622
IDS-SR30 21.79 +8.885
QIDS-SR;¢ 18.54 + 6.057

“Two-tailed student’s t-test for continuous variables;
bChi-square analyses for categorical variables (sex); *P < 0.05.

instructed to keep relaxed (eyes closed but awake) with the head placed in a
head coil with foam to strengthening fixation.

The grey matter volume (GMV) was analyzed with Voxel-Based
Morphometry (VBM) implemented in SPM8 software. T1-weighted images
were processed by the Montreal Neurological Institute (MNI) template.
First, the images were segmented into white matter, gray matter, and
cerebrospinal fluid and bias correction was applied to remove image
intensity non-uniformities. Then spatial registration was adopted for voxel-
wise comparisons of GMV. During VBM analysis, the tissue volumes were
reflected by the modulated images of the gray matter after bias correction.
Finally, gray matter images were smoothed via a Gaussian filter with a full
width at half maximum (FWHM) of 8 mm. Data of MRI were examined with
twosample t-tests, and the total intracranial volume, age, sex, and
education years were set as a covariate.

Statistics

SPSS (v. 25.0 Chicago, lllinois) software was used for statistical analysis of
demographic, clinical, and immunologic information. All demographic and
clinical variables were examined with twosample t-tests, except sex. The
sex data were analyzed with a x* test. Data of metagenomics,
metabolomics, and MRI were analyzed as above. All data were presented
as mean = standard deviation for normally distributed continuous variables
or median t interquartile range for non-normal distributed continuous
variables. Besides, all statistical tests were twotailed.

To determine the association in gut microbiota, metabolites, inflamma-
tory cytokines, and grey matter volume in MDD patients, we constructed a
heatmap about correlation analysis using Pearson’s correlations in R
version 3.4.3 (Psych package). The Pearson correlation index was calculated
and tested for significance by the Corr. test function. Then the Pheatmap
function in the Pheatmap package is used for visualization. Taking the
absolute value of r> 0.3, which is considered to be correlated. For all the
data, a P-value < 0.05 was considered to be statistically significant.

RESULT

Clinical characteristics of the participants

A total of 30 MDD subjects and 30 HCs were recruited. Three MDD
patients and three HCs were excluded due to excessive motion
when MRI Scanning. There were also four subjects removed. One
healthy subject was due to the low fecal volume, and three
patients were because the blood samples did not pass quality
detection. Therefore, our samples ultimately consisted of 24 MDD
patients and 26 controls.

The detailed information including demographic and clinical
characteristics of participants was presented in Table 1. The
HAMD-17, HAMA, IDS-SR30, and QIDS-SR16 scores showed a
significant difference between the MDD and HCs (all p <0.001).
There was no significant difference between the two groups in
age, gender, or years of education.

Alterations of gut microbiota in MDD patients

The principal component analysis (PCA) revealed striking differ-
ences in microbial composition between the MDD and HC groups
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at the species level (Fig. 1(d)). A characteristic alteration of the
microbiota was predicted by the linear discriminant analysis (LDA),
which removed the species belonging to the virus Kingdom. LDA
showed that Ruminococcaceae, Parachlamydiaceae, and Corio-
bacteriaceae families had a higher level in MDD patients
compared with HCs, while the families Lachnospiraceae, Clostri-
diaceae, Prevotellaceae, and Bacteroidaceae were more abundant
in HCs (LAD score = 2; Fig. 2(a)).

Subsequently, 94 differential gut microbiotas were identified by
meta stat analysis, which represented the bacterial profile
difference between the MDD and HC groups (Fig. 1(a)). Consistent
with the LDA results, Ruminococcaceae was increased in the MDD
group, while Clostridiaceae, Bacteroidaceae, and Prevotellaceae
were decreased. More precisely, relative to HCs, the 40 species that
were decreased in MDD groups mainly belonged to the bacterial
taxonomic families Clostridiaceae (9 species), Bacillaceae (6 species),
Ruminococcaceae (4 species), Bacteroidaceae (4 species), and
Prevotellaceae (4 species) (Fig. 1(c)). What's more, the MDD groups
were characterized by 54 increased species (Fig. 1(b)), which
mainly belonged to the bacterial families Bacillaceae (11 species),
Bifidobacteriaceae (10 species), Prevotellaceae (7 species), Strepto-
coccaceae (6 species), Lactobacillaceae (5 species), Ruminococca-
ceae (4 species), and Clostridiaceae (4 species). Overall, the 94
discriminative species primarily belonged to the phyla Firmicutes
(65/94, 69.15%), Bacteroidetes (17/94, 18.09%), and Actinobacteria
(11/94, 11.70%). Furthermore, Firmicutes and Bacteroidetes (both
p>0.05) had no statistically significant difference in the MDD
group, while Actinobacteria (p < 0.05) were higher in the MDD
group than in the HC group at the phylum level (Fig. 2(c)).

To predict biomarkers of MDD, random forest classification
models were constructed with ten-fold cross-validation at the
species level (Fig. 2(d)). It was assessed using a receiver
operating characteristic (ROC) curve. According to the number
of biomarkers and the area under the ROC curve (AUC), we chose
the best model which contained six species: Ruminococcus sp
CAG: 9 related 41 34, Leptotrichia sp oral taxon 498, Veillonella
sp CAG: 933, Sutterella wadsworthensis CAG: 135, Butyrivibrio sp
INlla14, Arcobacter lekithochrous. The AUC was 0.98 (95% Cl:
0.961-1) (Fig. 2(e)).

Additionally, metagenomic sequencing allows for the analysis of
gut microbial functions. PCA based on KEGG level 3 revealed
differences in microbial functions between the MDD and HCs (Fig.
1(e)). Here, we identified a total of 293 differential Kyoto
Encyclopedia of Genes and Genomes (KEGG) orthology genes
(KO genes) between the two groups, which were mainly involved
in seven biological processes (especially four metabolic pathways)
(Fig. 2(b)). The abundance of KO gene copies associated with
galactose metabolism, starch and sucrose metabolism, seleno-
compound metabolism, and flavone and flavonol biosynthesis
were increased in the MDD patients relative to HCs.
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Alterations of gut microbiota in MDD patients. a—c Using meta-stat analysis, 94 differential species responsible for discriminating the

gut microbiota in MDD and HCs subjects were identified. a Heatmap of the 94 differential species abundances between MDD subjects and

HCs. b 54 upregulated species in MDD are arranged on the left, whi

le 40 decreased species are arranged on the right. ¢ Most of the

upregulated species belong to Firmicutes (57.10%), Actinobacteria (28.84%), and Bacteroidetes (14.03%), while downregulated species mainly
belong to Firmicutes (85.13%) and Bacteroidetes (14.80%). d Principal component analysis (PCA) showed that gut microbial composition of

MDD patients was significantly different from that in HCs at the species

level. (n =24, MDD group; n = 26, HC group). e Principal component

analysis (PCA) revealed the differences in microbial functions between the MDD patients and HCs on KEGG level 3.

Metabolites showing a significant difference between MDD
and HCs

Metabolites from MDD and HCs were used for partial least
squares discriminant analysis (PLS-DA), which showed distinct
separation between two groups (Fig. 3(a)). It suggests that MDD
patients have a dissimilar metabolic mode relative to HCs.
Compared to the HC group, a total of 34 significantly different
metabolites were identified, with 29 increased and 5 decreased in

SPRINGER NATURE

the MDD group (Fig. 3(b)). The top six metabolites by P-value are
taurine, nicotinamide (NAM), 3"-aenylic acid, phosphoethanolamine
(PEA), adenosine 5'-monophosphate, and dl-dihydrosphingosine.
According to HMDB classification, 29 increased metabolites mainly
belong to lipids and lipid-like molecules (7/29, 24.14%), nucleotide
and its derivates (5/29, 17.24%), vitamins (3/29, 10.34%), organic
acids and derivatives (3/29, 10.34%) (Fig. 3(d)). In addition, amino
acid and its derivatives (3/5, 60.00%), lipids and lipid-like molecules

Translational Psychiatry (2022)12:8
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(1/5, 20.00%) and organic acids and derivatives (1/5, 20.00%) were
the metabolites decreased in the MDD group (Fig. 3(e)).

We identified forty discernible KEGG pathways between the two
groups. The result excluding the pathway which annotates only one
metabolite was shown in Fig. 3(c). The top four pathways based on
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P-value were the primary bile acid biosynthesis, glyceropho-
spholipid metabolism, vitamin digestion and absorption, and
galactose metabolism. They are mainly involved in lipid, vitamin,
and carbohydrate metabolism. The differential metabolites partici-
pating in the four pathways have been labeled in Fig. 3 (b) and (e),
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Fig. 4 Differences of plasma levels of inflammatory factor and Grey matter volume between MDD and HCs. a The data indicate that
patients with MDD have significantly higher IL-1f levels (858.30 + 432.70 pg/ml) than HCs (359.52 + 160.63 pg/ml). However, the MDD patients
showed no significant change in IL-6 and TNF compared with HCs (901.03 £ 617.92 pg/ml vs. 707.31 £+ 584.07 pg/ml, 514.12 £ 194.41 pg/ml vs.
414.87 + 288.36 pg/ml, respectively). ns: p > 0.05, **p < 0.001. b The cold color indicates decreased volume, and the warm color represents the
increased volume in MDD compared with HCs. IFG Inferior frontal gyrus, IPL Inferior parietal lobe, CG Cingulate gyrus.

namely taurine, NAM, PEA, galactinol, dihydroxyacetone phosphate,
glycocholic acid, vitamin A, and cholic acid. Meanwhile, analysis of
gut microbial functions showed that patients with MDD were
mainly characterized by disturbances of carbohydrates. Integration
of these findings showed that disturbance of carbohydrates
metabolism, especially galactose metabolism, may be particularly
relevant to the gut ecosystem of MDD.

Plasma inflammatory factors level in MDD patients versus HCs
Increased IL-1B plasma level was observed in MDD patients
(858.30 £432.70 pg/ml vs 359.52 + 160.63 pg/ml, P < 0.001, Fig. 4
(a)). Nevertheless, the MDD patients showed no statistically
significant difference in IL-6 and TNF concentration compared
with HCs (901.03 £617.92 pg/ml vs 707.31 + 584.07 pg/ml, P=
0.265; 514.12 £ 194.41 pg/ml vs. 414.87 + 288.36 pg/ml, P = 0.166,
respectively, Fig. 4).

GMV results

Compare to HC subjects, MDD patients showed significantly
decreased GMV in the left inferior frontal gyrus (IFG), and
increased GMV in the left pallidum, left cuneus, left inferior
parietal lobe (IPL), and right cingulate gyrus (CG) (Fig. 4(b)).

Correlations between gut microbiome and metabolites, IL-18,
GMV, clinical characteristics of MDD

To further explore the relationships between disturbances of the
gut microbiome, metabolome, immunology, brain structure, and
MDD clinical characteristics, a correlation heat map was generated
using Pearson correlation (Fig. 5). The X-axis was 6 clinical indexes,
IL-1B, 34 metabolites, and GMV of 5 brain regions, in order. Y-axis
was the 94 species of the gut microbiome.

To our delight, half of the gut microbiomes (Ruminococcus being
the most important) were highly linked with clinical parameters,
such as HAMD-17, HAMA, IDS-SR3(, and QIDS-SR,6. Additionally, the
matrix mainly showed a strong positive association between up-
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regulated microbiota in the MDD group and IL-1f3, which include
Ruminococcus, Bifidobacterium, Enterococcus, Proteus. Our results
proved that differential gut microbiota was generally relevant to
differential metabolites [4, 33]. We also found the high abundance
of bacteria (mainly containing Ruminococcus and Bifidobacterium)
in MDD showed significant positive correlations with the up-
regulated metabolites except for organic oxygen compounds,
carbohydrates, and bile acids. In the low abundance of bacteria in
MDD, Clostridium, Streptococcus, and Bacteroides were negatively
associated with organic acids and derivatives, vitamins, nucleotide
and its derivates, and Lipids and lipid-like molecules, which
increased in the MDD group, while Bacillus and Filifactor had a
positive connection with decreased metabolites (amino acid and its
derivatives) in MDD group. Besides, the organic oxygen compounds
which were involved in galactose metabolism were positively
associated with the abundance of some Bifidobacterium, Strepto-
coccus, Lactococcus, and Prevotella.

Although the correlation between the gut microbiome and
GMV was relatively weak, it can be seen that the rising microbiota
(Bacteroides and Prevotella) and the descending microbiota
Streptococcus were positively or negatively related to left
pallidum, left cuneus, left IPL, and right CG, respectively. These
brain regions’ GMV was increased in MDD patients. What's more,
rising Lactococcus, Streptococcus, and Bacillus were negatively
associated with left IFG, while declining microbiota Eubacterium
showed positive relation.

Most notably, Ruminococcus bromii, Lactococcus chungan-
gensis, and Streptococcus gallolyticus were associated with
metabolome, immunology, brain structure, and clinical scales. All
three microbiota were linked to IL-1P. In addition, Ruminococcus
bromii had a positive correlation with the concentration of PEA,
NAM, all-trans-13,14-dihydroretinol, vitamin A, 10E,12Z-octade-
cadienoic acid, linolelaidic acid (C18:2N6T), lysopel18:02N
Isomer), lysope18:0, glycerophosphorylcholine, dl-dihydrosphin-
gosine, d-mannose 6-phosphate, malate, D-malic acid and the
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Fig. 5 Correlations between gut microbiome and metabolites, IL-1B, GMV, clinical characteristics of MDD. Heat map of the Pearson
correlation coefficient of 94 species of the gut microbiome, IL-1p, 34 metabolites, and 5 brain regions as well as 6 clinical indexes. The X-axis is
clinical indexes (including age, gender, and clinical scales), IL-1f, metabolites (consisted mainly of organic acids and derivatives, vitamins,
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GMV of left pallidum. Lactococcus chungangensis was positively
related to phosphopyruvicacid, 10E,12Z-octadecadienoic acid,
linolelaidic acid (C18:2N6T), and 2,6-Dihydroxypurine, while was
negatively related to the GMV of left IFG. Streptococcus
gallolyticus was negatively connected with glycerophosphoryl-
choline, the GMV of left cuneus, left pallidum, and left IPL.

DISCUSSION

This is the first time that the multi-level effects of gut microbiota
have been studied in MDD patients. We supposed that the gut
microbiome exerts its effects in MDD is multifactorial, such as lipid
and vitamin metabolism disorder, proinflammatory effect and
modulate structure, and function of the brain. A preclinical study
confirmed that the gut microbiome of CUMS rats leads to the
disorder of liver metabolism and inflammation in the brain by
disrupting the intestinal barrier. [34] In our result, it is noteworthy
that Ruminococcus bromii, Lactococcus chungangensis, and
Streptococcus gallolyticus were widely related to metabolic
disorders, IL-13, GMV, and clinical scales, which provide clues for
us to find the interaction of each omics.

More and more evidence has shown a strong association
between MDD and the gut microbiome. In our study, gut
microbiota compositions in drug-naive MDD patients were
dominantly characterized by Actinobacteria, which was consistent
with most previous studies [11-13]. Besides, consistent with P
Zheng et al. [11] and Kelly JR et al. [17], we observed that
Firmicutes and Bacteroidetes had no statistically significant
difference between MDD patients and HCs. At the family level,
we found Ruminococcaceae, Streptococcaceae, Lactobacillaceae,
Clostridiales, and Bifidobacteriaceae were increased, while Bacter-
oidaceae, Lachnospiraceae, and Prevotellaceae were decreased in
MDD groups compared with HCs. P Zheng et al. [11] also showed
that Ruminococcaceae, Streptococcaceae, Lactobacillaceae, and
Clostridiales were overrepresented in MDD subjects, while
Bacteroidaceae and Lachnospiraceae were overrepresented in
HCs. The study of Yu-Chu Ella Chung et al. [13] reported that
Streptococcaceae and Bifidobacteriaceae increased, while Pre-
votellaceae decreased in MDD groups. Studies of metagenomics
often show some inconsistencies with previous reports [14].
Overall, however, the microbial signatures of MDD patients in the
present study are consistent with previous studies.

All three species of gut microbiota mentioned above were
linked to IL-1B3 and lipids. Increased IL-1B plasma level was
observed in MDD patients, which has been widely confirmed
[35-40]. Our results also demonstrated that lipids (phosphati-
dylethanolamine (PE) [41], polyunsaturated fatty acids [42, 43]),
as well as organic acids, which was involved in lipid metabolism
(taurine [44], PEA [45]) are the key to distinguish MDD from HCs.
PEA and taurine were involved in important cellular functions,
including neuromodulation and membrane stabilization [46]. As
a precursor for PE, PEA has been considered to play a crucial role
in myelination [47]. Recent research reported that the elevated
PEA level could reflect cerebral phospholipid turnover, which is
an indicator of neural membrane synthesis and signal transduc-
tion [48]. It was reported that socially withdrawn mice had
impaired myelination in the prefrontal cortex (PFC). [49] Taurine
also has membrane-stabilizing effects on the CNS. Moreover,
there is an interrelationship between extracellular taurine and
PEA [50]. Therefore, we speculated that PEA and taurine might
involve in MDD by affecting nerve myelination. Interestingly, PE
has been identified as an inflammatory modulator [51]. Li B et al.
[52] suggested that liver glycerophospholipid metabolism
disorder indicated oxidative stress, inflammatory cell membrane
damage, and even apoptosis in mice transplanted feces from
MDD patients.

Previous studies have explored the mechanism of the MGB
axis about immunology and metabolomics respectively.
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However, few studies have explored the correlation between
gut microbiota, metabolomics, immunology, and brain regions.
By combining the four omics data, our research found that
Ruminococcus bromii and Lactococcus chungangensis had a
positive correlation with the concentration of IL-1f3, 10E,12Z-
octadecadienoic acid, and linolelaidic acid (C18:2N6T). Rumino-
coccus bromii and Streptococcus gallolyticus were positively or
negatively connected with glycerophosphorylcholine, respec-
tively. Research shows NOD-like receptor family pyrin domain
containing 3(NLRP3) inflammasome has been considered
as a link between lipid metabolism and inflammation [53].
10E,12Z-octadecadienoic acid and linolelaidic acid (C18:2N6T)
are polyunsaturated fatty acids (PUFAs). A review concludes that
PUFAs have recently been shown to impede NLRP3 activity [54].
Glycerophosphorylcholine is a component of phosphatidylcho-
line (PC). A study made by Yeon SH et al. [55] demonstrated that
lipids such as oxidized PC induce the activation of the NLRP3
inflammasome, leading to the production of IL-1B. A study in
gouty nephropathy patients shows that increased lipids, in
particular the lysophosphatidylethanolamine (LPE) and PC, could
activate the NLRP3 inflammasome [56]. In addition, LPE is the
product of hydrolyzed PE, whose precursor is PEA. Ruminococcus
bromii had a positive correlation with the concentration of PEA.
previous studies suggested that NLRP3 inflammasome mediates
the level of IL1B in the PFC that results in depressive-like
behavior after stress. [57-59] Specifically, psychosocial stress-
induced damage-associated molecular patterns (DAMPs), such as
bacteria and bacterial products, which leaked from the gut into
the periphery. These DAMPs subsequently activated inflamma-
tory signaling pathways, especially NLRP3 inflammasome.
Stimulation of NLRP3, in turn, activates caspase 1, leading to
the production of mature IL-1B and IL-18, which enter the brain
through humoral and neural routes, causing central inflamma-
tory [60]. Furthermore, previous studies show that pro-
inflammatory cytokines in peripheral blood are associated with
the reduction of gray matter volumes, such as hippocamp and
CG [61, 62]. In the present study, Lactococcus chungangensis
was negatively correlated with the GMV of IFG. We further
investigated the relationship between depressive severity and
gut microbiota. Consistent with previous studies [12, 63], our
results showed that the abundance of Ruminococcaceae,
Faecalibacterium, Clostridium, and Streptococcus were nega-
tively related to total scores of HAMA, HAMD-17, IDS-SRs,, and
QIDS-SRq6. Therefore, we came up with the hypothesis that
Ruminococcus bromii may involve in the pathogenesis of MDD
by causing the lipid disturbance (especially PEA and glyceropho-
sphorylcholine), and activating the NLRP3 inflammasome in IFG.
These results are preliminary and require further validation.
Besides, Streptococcus gallolyticus was negatively connected
with IL-1B and glycerophosphorylcholine, so it may play a
probiotic role to impede NLRP3 activity in MDD.

However, to our confusion, previous studies showed that
Ruminococcus bromii [64] and Lactococcus chungangensis [65]
have a probiotics-like effect, while they have a positive correlation
with IL-18 in MDD patients in the present study. Furthermore,
Lactococcus chungangensis was positively connected with PUFAs
(10E,12Z-octadecadienoic acid and linolelaidic acid (C18:2N6T)),
that has been shown to impede NLRP3 activity. On the premise of
ensuring our experimental procedures are rigorous, we specu-
lated the reasons for this phenomenon. The MDD subjects we
recruited were drug-naive patients whose homeostasis may be
maintained through a compensatory mechanism. We thought the
depressed individuals might alter metabolism and immune
activity, which in turn was antagonized by gut microbiota. [6]
But our study can't clarify whether the gut microbiota is the cause
or consequence of depression.

Besides, we agree with the results of Chen JJ et al. [66, 67],
which suggests that vitamins, especially NAM, were involved in
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the development of MDD as well. Combining gut microbial
functions and metabolomics analysis, showed that disturbance of
galactose metabolism was relevant to the MDD. P Zheng et al. [11]
also reported that the abundance of gene copies associated with
carbohydrate metabolism was increased in MDD patients.
A detailed discussion can be seen in supplement 2.

The present study may be limited by a relatively small sample
size, because it is difficult to collect MRI data and fecal and blood
samples for each MDD patient. This may limit not only the
statistical validity assessment but also the subcategories analysis
of depression, which restricts the generalization and precision of
our findings. Second, effects of diet [68] and regional [69]
variation in the composition of gut microbiota were inevitable.
In our study, using antibiotics, probiotics, and prebiotics was not
allowed. The participants’ diets were similar since they are of
Han ethnicity. But we did not record the information about
detailed diets, such as food type, caloricity and cooking style,
etc. Similarly, diet also has an impact on the plasma levels of
metabolites. [70] Third, we did not collect the data after
treatment. Dynamically comparing changes in data before and
after treatment may be more helpful in the future. Fourth, we
did not verify our hypothesis in the animal experiment.
Therefore, a larger sample size and multiregional cooperation
study are required in future studies, which can contribute to a
better understanding of the mechanism of gut microbiota in
MDD. Meanwhile, carrying out researches between the sub-
categories of depression and gut microbiota would be of more
clinical significance.

Overall, based on multi-omics data, we demonstrated that the
effects of gut microbiome exert in MDD is multifactorial. The
alteration of gut microbiota was associated with metabolism
disorder, immune activation, and changed GMV in the brain. It is
speculated that the NLRP3 inflammasome plays an important role
in the MGB axis, as a link between lipid metabolism and
inflammation. These findings provided a novel insight into the
pathologic mechanisms underlying depression. This pilot analysis
of multi-omics was helpful for future investigations to develop
diagnostic or therapeutic tools of MDD.
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