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Abstract: In recent years, Human Activity Recognition (HAR) has become one of the most important
research topics in the domains of health and human-machine interaction. Many Artificial intelligence-
based models are developed for activity recognition; however, these algorithms fail to extract spatial
and temporal features due to which they show poor performance on real-world long-term HAR.
Furthermore, in literature, a limited number of datasets are publicly available for physical activities
recognition that contains less number of activities. Considering these limitations, we develop a
hybrid model by incorporating Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM) for activity recognition where CNN is used for spatial features extraction and LSTM network
is utilized for learning temporal information. Additionally, a new challenging dataset is generated
that is collected from 20 participants using the Kinect V2 sensor and contains 12 different classes
of human physical activities. An extensive ablation study is performed over different traditional
machine learning and deep learning models to obtain the optimum solution for HAR. The accuracy
of 90.89% is achieved via the CNN-LSTM technique, which shows that the proposed model is suitable
for HAR applications.

Keywords: human activity recognition; convolutional neural network; deep learning; long short-term
memory; machine learning; skeleton data

1. Introduction

HAR gained more attention from researchers in video analysis and its different applica-
tions in various domains such as indoor gym physical activities [1], surveillance systems [2],
and health care systems [3]. In the light of literature, activity recognition is performed based
on wearable sensors and vision sensors. In wearable sensors based HAR, many sensors are
attached to a subject’s body for a prolonged period, which is cumbersome for the subject’s
body and the subject can’t move comfortably because of many wire connections, as well
as it is expensive in terms of energy consumption and device configuration. Instead of
focusing on wearable sensor based HAR, numerous studies incorporated video sensor
technologies like RGB cameras to monitor and recognize human activity. The current litera-
ture studies focus to recognize activities using video sequences collected by standard RGB
cameras and surveillance cameras [4,5]. Recognition of activity through common cameras
may be a problem of difficulty in recognition due to low light environment or darkness. To
avoid the problem of light variation, a low-cost RGB-D camera, such as Microsoft Kinect,
has been made possible the recent advancement in activity recognition. Kinect-based action
recognition tackles the light-environment problem and accurately tracks the skeleton joints
during activity, and it also offers a variety of information, such as depth and skeleton
information, that a standard video camera failed to provide. In addition, RGBD data from
the Kinect sensor may be utilized to create a human skeleton model with body joints.
However, human actions are the collection of various joints that move over time and these
joint data can be used for the recognition of activity.

Numerous studies demonstrated the positive influence of physical activities on peo-
ple’s quality of life, especially for elderly people. The involvement of the elder people in
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particular physical activities has positive effects on mental state, satisfaction, quality of life,
and physical well-being [6]. Due to the current situation of COVID-19, the government of
many countries-imposed lockdowns and home confinement which constrained the people
to stay at home and avoid physical activities in public places. The outbreak of Coronavirus
has begun in December 2019, and it spread out by human-to-human interaction which
results in huge loss of human life. According to the recent report of the World Health Orga-
nization (WHO), there are almost 270 million positive cases and 5.3 million deaths occurs
till now due to COVID-19 disease [7]. To prevent the spread of Coronavirus infection, many
safeties measure has been taken worldwide such as home confinement, banning gatherings
and visiting crowded public places, and avoiding outdoor activities. Many countries enforced
lockdown in the country to control the spread of COVID disease which limits the participation
of people in healthy activities. People are recommended to stay at home and avoid going
outside for exercises or other physical activities in these situations. Therefore, in this paper,
we developed an indoor monitoring system for physical activity recognition.

HAR is not a novel concept and several studies have been conducted in this domain.
However, the current literature is mainly focusing on traditional machine learning algo-
rithms which required handcrafted features engineering with lower accuracy. Furthermore,
some authors proposed deep learning based HAR systems by directly migrating these
methods from other domains to the HAR domain without in-depth analysis. The current
deep learning-based approaches are mainly focusing on CNN and RNN variant archi-
tectures. CNN-based architectures are designed for spatial information extraction while
RNN-based architectures are specially designed for temporal features extraction. The
HAR data is time-series data including spatial and temporal information which requires
a robust model with the potential to extract both information at a time. Therefore, in this
work, we developed a hybrid model combining CNN with LSTM with the potential to
extract both features at a time and to recognize several physical activities. Furthermore, we
also contribute a new dataset collected from many participants who perform 12 types of
different physical activities which helps in maintaining the strength, balance, and flexibility
of the human body. The techniques used in the research mainly use the skeleton joints data
which is extracted through the Kinect V2. The process is mainly divided into many steps.
The initial step is the collection and pre-processing of 2D joint data through the Kinect
which are fed forwarded to 1D CNN layers for spatial features extraction. The output of
CNN is then inputted to LSTM network LSTM for temporal features learning followed
by the fully connected layer for final recognition. The main contributions of the proposed
work are given below:

1. We proposed an indoor activity recognition system to efficiently recognize different
types of activities to improve the physical and mental health of an individual.

2. We developed a hybrid approach for the recognition of physical activity which in-
tegrates CNN and LSTM, where CNN layers are utilized to extract spatial features
followed by the LSTM network for learning temporal information.

3. We performed a detailed comparative analysis of various machine learning and deep
learning models to select the best optimal modal for activity recognition.

4. No publicly available dataset provides home base physical activities; therefore, we
contribute a new dataset comprising 12 different physical activities performed by
20 participants.

The remainder paper is arranged as; literature study of HARis discussed in Section 2,
proposed methodology, and dataset description are explained in Section 3. Experimental
results and evaluations of the proposed model are described in Section 4, and Section 5
concluded the paper.

2. Literature Review

HAR is not a novel concept and numerous studies have been conducted in this area,
however, in this section, we are focusing on the recent literature developed for HAR. The
current literature of HAR is based on machine learning and deep learning. In machine
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learning Sumaira et al. [8] performed a comparative analysis of several models for HAR
using 2D-skeletal data. The authors used the OpenPose library to extract appearance and
motion characteristics from 2D landmarks of human skeletal joints and compared the result
of five supervised machine learning approaches such as support vector machine (SVM),
Naive Bayes (NB), linear discriminant (LD), K-nearest neighbors (KNNs) and feed-forward
backpropagation neural network to recognize four different activity classes such as sit,
stand, walk, and fall, while the best performance was achieved through KNNs technique.
Guangming et al. [9] conducted research based on an online Continuous Human Action
Recognition (CHAR) algorithm which relies on skeletal data extracted through Kinect
depth sensor. An online classification technique using a variable-length maximum entropy
Markov model (MEMM) based on likelihood probabilities is utilized for continuous activity
recognition. In contrast to previously reported CHAR approaches, the suggested algorithm
does not require prior detection of the start and finish points of each human activity.
According to experimental findings on the MSR Daily Activity 3D dataset and Cornell
CAD-60 dataset, their proposed method is very efficient for continuous human activities
recognition. Another technique [10] uses skeletal data from a depth camera and developed
a machine-learning algorithm to recognize the human activity. In comparison to previous
techniques, each activity is represented using a distinct number of clusters that are retrieved
independently from activity instances. These models are created using a multiclass SVM
that has been trained on two publicly available datasets, the CAD-60 and the TST using
the SOM optimization. These numbers can change depending on the input sequence and
activity, resulting in clusters that are dynamically generated. Youssef et al. [11] developed a
skeleton-based technique to characterize the spatial-temporal features of a human activity
sequence utilizing Minkowski and cosine distances between joint data extracted through
Microsoft Kinect. The model is trained and evaluated on two publicly available datasets
such as MSR Daily Activity 3D and Microsoft MSR 3D Action datasets using the Extremely
Randomized Tree technique. The results are highly encouraging, indicating that utilizing
open-source libraries and a low-cost depth sensor, the trained model was utilized to
construct a monitoring system for the elderly.

Another group of researchers [12] proposed a pose descriptor for differential quantities
encoders as well as for taking the information of human joint’s posture in a frame sequence
efficiently. They utilized the k-nearest neighbor method to join the descriptor, but their
results are non-parametric and low-latency recognition. In [13], the authors presented the
sequence of most informative joints features, and represent the information of skeletal
joints for each action. They choose the joints based on the mean and variance of the
angular-joint trajectories for a given action sequence. The authors of [14] presented the
Eigen Joints features which comprise 3D position contrasts in joints to describe activity data.
The components were designed as a blend of three-element channels: the posture-feature
channel and the movement include a channel for encoding the spatial part of the grouping
and the offset feature for addressing the posture contrast amongst frames. The principal
component analysis (PCA) was applied to these three channels to figure the Eigen Joints
features. They utilized the Naïve Bayes classifier for activity recognition. In [15], the authors
combined 3D joint position differences inside a casing with the joint differences from the
initial frame of an action to produce outline features. The features of these frames are
concatenated to make a frames sequence. In [16], every appendage of the human skeleton is
encoded into a state through a Markov random field by considering the spatial information
and the fleeting setting data from the past outline. The encoded elements of individual
appendages are then averaged for representing the skeleton information. A covariance
grid for skeletal joint areas over the long haul has been utilized in [17] as a discriminative
descriptor for a sequence. Various covariance frameworks over aftereffects were sent to
encode the connection amongst joint development and time. L. Arthi et al. [18] proposed
a sample of fusion network (SFN). They employed an adaptive weighting approach to
enhance the complementation amongst samples and new samples generated by utilizing a
sample fusion network. SFN enhances the performance of the HAR network while training
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the network. For their findings, they attained 90.75% accuracy on the NTU data samples by
utilizing cross-view protocol. However, these algorithms are based on machine learning
which required hand-crafted features extraction with limited generalization abilities which
causes parameters non-convergence and network instability. Hence, these challenges
encourage the researchers and domain experts to reconsider HAR based on deep learning.

Deep learning based HAR is already developed in the recent literature. For instance,
Julieta et al. [19] focus on human motion by utilizing the recurrent neural network, the
goal is time-dependent representations to perform tasks including short-term prediction
as well as long-term human motion synthesis. For their finding, they also utilize other
state-of-the-art approaches to compare the results of these approaches with the enhanced
recurrent neural network approach. Chao li et al. [20] proposed a framework that is an
end-to-end CNN features learning framework. They utilized a hierarchical approach to
learned co-occurrence features having distinct contextual information. Initially, they encode
point-level information independently and then present the semantic representation in
spatial as well as temporal. In their findings, they proposed a global-spatial approach that
can learn superior joint information. Maosen Li et al. [21] proposed two graphs scale to
capture the relationships amongst body joints and parts. They presented a symbiotic neural
network with a backbone, action recognition head, and motion prediction head. These two
heads are connected and improve the joint recognitions. To extract the temporal as well as
spatial features, they utilize multiscale CNN. The joint scale graphs and structural graphs
capture the actions and physical constraints respectively. Comparatively the performance of
the deep learning-based model is better than machine learning-based algorithms however
HAR data is time-series data that includes spatial and temporal information which required
a robust model with the ability to learn both information of human activity. Therefore, in
this work, we developed a hybrid model for HAR with the potential of spatiotemporal
feature extraction for effective HAR.

3. Proposed Method

In this work, we conduct a detailed ablation study, developed a new dataset, and a
novel deep learning-based hybrid model to monitor and recognize human physical activity
in an indoor environment. This section briefly describes the internal architecture of the
proposed work, proposed dataset, and comparative study.

3.1. Dataset Collection & Preparation

This section provides a detailed analysis of the collection and refinement of data. In
this paper, we have generated our dataset. The proposed dataset includes 12 different
activities taken from 20 individuals aged between 25–35 years. For the collection of this
data, we used Microsoft’s motion Kinect sensor V2 which can extract 25 different joints
from the human body as shown in Figure 1.
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Table 1. Shows the dataset collection and activities details. 

Labels Activity Name Participa
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Time/Activi
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Samples/A
ctivity 

Frame/Per 
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1 Overhead Arm Raise 20 10 s 200 30 
2 Front Arm Raise 20 10 s 200 30 
3 Arm Curl 20 10 s 200 30 
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Figure 1. The extracted skeleton of the human body while performing different activities.
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We extract the x-axis and y-axis values from all the joints of the human body and
save them in CSV files. We collected a dataset from 20 different participants and every
participant perform an activity for 10 s. There are 200 samples of each activity where every
participant performs each activity for 10 times (120 samples per participant). The human
skeleton joints are extracted and stored in the following order shown in Figure 2. Each
activities files are combined and labeled with their class as shown in Table 1. After labeling
all activities data, all these files are further combined in a single training file. Table 1 shows
the detailed description of the individuals and activities during data collection.
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Figure 2. Different skeleton joints of the human body are extracted through sensors.

Table 1. Shows the dataset collection and activities details.

Labels Activity Name Participants Time/Activity Samples/Activity Frame/Per Sec

1 Overhead Arm Raise 20 10 s 200 30

2 Front Arm Raise 20 10 s 200 30

3 Arm Curl 20 10 s 200 30

4 Chair Stand 20 10 s 200 30

5 Balance Walk 20 10 s 200 30

6 Side Leg Raise (Right, Left) 20 10 s 200 30

7 Shoulder 20 10 s 200 30

8 Chest 20 10 s 200 30

9 Leg Raise (Forward, Backward) 20 10 s 200 30

10 Arm Circle 20 10 s 200 30

11 Side Twist (Right, Left) 20 10 s 200 30

12 Squats 20 10 s 200 30

3.2. Skeleton Joints Position

Human skeleton joints are extracted using Kinect V2 sensor. We extracted the human
joints by using Discrete Gestures Basics WPF SDK. We capture the joint data through the
Kinect Body View script and save it in CSV files. The Kinect V2 can detects 25 joints of the
body and it is stored in following order such as Head, Neck, Spine Shoulder, Spine Mid,
Spine Base, Shoulder Right, Shoulder Left, Hip Right, Hip Left, Elbow Right, Wrist Right,
Hand Right, Hand Tip Right, Thumb Right, Elbow Left, Wrist Left, Hand Left, Hand Tip
Left, Thumb Left, Knee Right, Ankle Right, Foot Right, Knee Left, Ankle Left, and Foot Left.
The joints are labeled as 1, 2, 3, 4 . . . , 25 as given in Figure 2.
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3.3. Machine Learning Techniques

We use many traditional machine learning classifiers for the experimental evaluation of
our dataset. The data is divided into five different types of sequences such as 30 frames (1 s),
60 frames (2 s), 90 frames (3 s), 120 frames (4 s), and 150 frames (5 s) frames sequence. To
capture the unique features of action or activity, complex machine learning-based mod-
els such as various flavors of SVM [22] (Linear SVM (LSVM), Quadratic SVM (QSVM),
Cubic SVM (CSVM), Fine Gaussian SVM (FGSVM), Medium Gaussian SVM (MGSVM),
Coarse Gaussian SVM (CGSVM)), KNN [23] (Fine KNN (FKNN), Medium KNN (MKNN),
Coarse KNN (CRSKNN), Cosine KNN (CSNKNN), Cubic KNN (CBCKNN), Weighted
KNN (WKNN)), Decision Tree [24] (Fine Tree (FT), Medium Tree (MT), Coarse Tree (CT)),
Linear Discriminant (LD) [25], Naïve Bayes [26] (Gaussian Naïve Bayes (GNB), Kernel
Naïve Bayes (KNB)), Ensemble classifiers [27] (Ensemble Boosted Trees (EBST), Ensemble
Bagged Trees (EBGT), Ensemble Subspace Discriminant (ESD), Ensemble Subspace KNN
(ESKNN), RUSBoosted Trees (ERUSBT)), and Neural Networks (NN) [28] (Narrow Neural
Network(NNN), Medium Neural Network(MNN), Wide Neural Network(WNN), Bilay-
ered Neural Network (BNN), Trilayered Neural Network(TNN)). The performance of these
modes is evaluated on the proposed dataset to choose the best optimal model for HAR.
The overall workflow of machine learning classifiers is shown in Figure 3.
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SVM is a supervised learning model that strives for maximal margin separation
with a little amount of training data. The training set is used to generate a plane and
hyperplane for both the linear classification and for nonlinear classification respectively,
that distinguishes data from various classes. The plane or hyperplane can clearly classify
the data into their actual classes. The KNNs method is a supervised learning technique
that classifies the outcome of a new sample query based on the majority of K-Nearest
Neighbor categories. It is one of the most widely used pattern recognition algorithms
and its goal is to categorize a new item based on its characteristics and training data. The
neighborhood classification was utilized as the prediction value of the new query sample
using the K-Nearest Neighbor method (classification approach that uses the feature space’s
closest training samples). A Decision Tree is a supervised machine learning technique that
can be utilized for both regression and classification problems and the main objective of
decision trees is to construct a training model which is used to identify the testing variable’s
class or value by learning basic decision trees gained from training data. The samples are
categorized using decision trees by organizing them along the tree from the root to the
leaf node, which classifies the samples. Each node in the tree represents a test case for a
certain feature, and every descending edge from the node represents the test case’s possible
prediction. This is a cyclical process that happens for each subtree rooted at the new node.

Another type of machine learning classifier is Linear Discriminant, which is developed
based on finding a linear combination of variables (predictors) that best differentiates two
target classes. In this algorithm, the mean vector, covariance matrices, and probability
of classes are calculated in the initial step while pooled covariance matrices and linear
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model coefficients are calculated in the second step thatcomputes the Mahalanobis distance.
This distance shows the overlapping between classes which means the variation between
classes via linear model. The Naïve Bayes algorithm is used for prediction where each
class is independent of one another, however, it performs well in real even when this
statement is imprecise. It divides data into two categories, first is the training step in which
it calculates the parameters of a probability distribution using the training data, assuming
that predictors are mutually independent of the class. In the second step, it calculates the
posterior probability of a sample related to each class for any unknown test data. The test
data is then classified using the highest posterior probability. Moreover, we use ensembles
classifiers that integrate several models and improve the robustness and generalization
ability of a classifier. In comparison to a single model, this method provides a higher
predictive performance. The technique used by ensemble classifiers is mainly comprised of
the majority voting method and finding the average of different predictors outputs.

The Neural Network simulates a large number of interconnected processing units that
look like complex structures of neurons. The processing units are arranged layers wise such
as an input layer with units representing the input fields, single or multi hidden layers,
and an output layer with a unit or units representing the final output. The components are
connected using a variety of weighted connections (or weights). The first layer receives
input data, and values are transmitted from each neuron to the neurons in other layers and
the last output layer will eventually give a result.

Artificial Neural Network (ANN) is an advanced type of machine learning inspired
by the human nervous system. Multilayer perceptron (MLP) is a type of neural network
which consists of input layers, hidden layers, and output layers. Every neuron of each layer
is connected to each neuron in the previous layer and next layer. The value obtained from
the earlier layers is added with weights for every neuron individually and an extra bias
term is added. These values are summed up and multiplied with the activation function for
the final output. Different types of activation functions are used in ANN such as “sigmoid”,
“softmax”, Rectified Linear Unit “ReLU” and “Tanh”. Various types of optimizers can be
used in ANN adaptive moment estimation (Adam), “Adagrad” and RmsProp, etc., in our
case we use Adam optimizer.

3.4. Convolutional Neural Network (CNN)

Over the last two decades, CNNs have been actively used and achieved astonishing
performance for various computer vision-related real-world problems that include activity
recognition [29], object detection [30], speech recognition [31,32], and image enhance-
ment [33]. The key factor behind the betterment of CNNs for computer vision problems
is their architectural design including convolutional, pooling, normalization, and fully
connected layers that extract progressive yet semantically rich features from the input
data [34]. Generally, a convolutional layer processes the input image and produces a batch
of 2D feature maps containing spatial features, where the pooling layer simply scales
down the extracted feature maps by applying down-sampling operations (i.e., max pooling,
min pooling, or average pooling operations). Where the mathematical representation of a
convolutional layer is given below.

Cl
i,j,k = f ((wl

k)
T xl

i,j ) + bl
k (1)

where bl
k is a bias term of a kth CNN filter in the 1st layer, xl

i,j represents the input region in
the 1st layer. The normalization layer is usually used before the activation function that
normalizes the input values and leads to more accurate activation. The fully connected layer
parses the extracted feature maps from 2D to 1D feature vectors, which are then forwarded
to the classification layer or output layer (i.e., softmax) and results from the computed list
probabilities. Inspired by the work presented in [35,36], we propose a One-Dimensional
(1D) CNN architecture for the problem under the observation test with different settings
for efficient classification of predefined indoor activities.
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3.5. Long-Short Term Memory (LSTM)

Despite the robustness and efficiency, CNN-based approaches can only be used for
fixed and short sequence classification problems and are not recommended to use for
long and complex time series data problems. Mostly a problem having sequential anal-
ysis over time such as anomaly recognition [37,38] speech recognition [39,40], person
re-identification [41], Energy forecasting [42–45], machine translation [46], and activity
recognition from sensor data [47] used a special kind of neural network called Recurrent
Neural Network (RNN) specifically designed for sequential data analysis having the ability
to extract the hidden pattern from sequential data. Generally, the RNN network analyzes
the input hidden sequential pattern by concatenating the previous information with cur-
rent information from both spatial and temporal dimensions and predicting the future
sequence [48]. Although RNN can extract the hidden time-series patterns in sequential
data (i.e., sensor, audio, or video data), it is unable to remember/hold long information for
a long time and usually fails to deal with the problems having long-term sequences [49,50].
Such a type of problem is referred to as gradient exploding or vanishing gradients, which
can be overcome with a special kind of RNN named Long Short-Term Memory (LSTM)
having the capability to remember the information for a long period [51]. The internal
architecture of LSTM includes several gates (including input, forget, and output gate),
where each gate processes the input from the previous gate and forward it to the next
gate thereby controlling the flow of information towards the final output [52] Figure 4
demonstrates the standard unit of the (a) RNN and (b) LSTM. All gates are usually con-
trolled by a sigmoid or tanh activation function, for instance, the input gate it is responsible
to update the information. The forget gate process the input information from the input
gate it and the state of previous cell Ct−1, it also removes the information from the current
state Ct when needed. Whereas the output gate ot forwards the final output to the next
LSTM unit and holds the output value for the next sequence prediction. On the other hand,
recurrent unit Ct estimates the state of pervious cell Ct−1 and current input value xt using tanh
activation function. Whereas the value of ht can be computed by the scalar product of ot and
tanh of Ct. Finally, the ultimate output can be obtained by passing ht to the softmax classifier.
Mathematically, the operations of the above-mentioned gates can be expressed as follows:

ft = Φ
(

Ŵ f · [ht−1, xt] + B f

)
(2)

it = Φ
(

Ŵi · [ht−1, xt] + Bi

)
(3)

Ct = tanh
(

ŴC · [ht−1, xt] + BC

)
(4)

Ct = ft x Ct−1 + it x Ct (5)

ot = Φ
(

Ŵo · [ht−1, xt] + Bo

)
(6)

ht = ot xtanh(Φ(Ct) (7)

Output = so f tmax(ht) (8)

3.6. Proposed CNN-LSTM Model

We propose the hybrid approach in which features are extracted from the layers of the
first model and then forward to another model for learning and modeling. As 1D CNN
acquired consideration of researchers due to its performance by extracting the spatial and
discriminative feature from data. However, LSTM has been used by many researchers
which shows its efficiency in sequential and time-series data. By combing these two models,
we extract features through 1D CNN and then forwarded these features to LSTM for
learning and modeling. The first two layers of 1D CNN has different filter size such as in
the first layer, the filter size is 64, while in the second layer the filter size is 128. Other than
filter size, the kernel size of both layers is 3 and the activation function used in both layers is
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the ReLU activation function. These two layers are followed by the Max pooling layer with
a pool size of 2. These features form the CNN layers are passed through two LSTM layers
with the same cell size of 64 in each layer. The LSTM layer is followed by the flatten layer
and dense layer with a softmax activation function. The optimizer used in this approach is
Adam with a learning rate of 0.0001. Themain framework of the proposed model is shown
in Figure 5. The parameter setting of the proposed model is given in Table 2.
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Table 2. Parameters setting of our proposed model.

Layer (Type) Kernel Size Filter Size No. of Param.

1D CNN Layer 1 3 64 9664

1D CNN Layer 2 3 128 24,704

MaxPooling 1D - - -

LSTM(64) - - 46,408

LSTM(64) - - 33,024

Flatten - - -

Dense(12) - - 780

Total parameters - - 117,580
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4. Experimental Results

In this section, we perform several experiments to evaluate the performance of a
machine learning classifiers and deep learning models on a different sequence of data.
All the machine learning classifiers are analyzed in MATLAB 2021a, while deep learning
experiments are performed in python, using Keras framework with backend TensorFlow
and Scikit-learn in this research implementation. Five different types of experiments are
performed on the various frames sequence of data such as 30 frames sequence, 60 frames
sequence, 120 frames sequence, and 150 frames sequence using both machine learning
classifiers and deep learning models.

4.1. Dataset Descriptions

To evaluate the performance of our technique, we create our dataset which consists
of 12 activities collected from 20 different participants. Every participant is directed to
perform 12 different physical activities which include different exercises related to strength
exercises, balance exercises, and flexibility exercises that can be also helpful in maintaining
the mental health of an individual. More specifically these physical activities include
Overhead Arm Raise, Front Arm Raise, Arm Curl, Chair Stand, Balance Walk, Side Leg Raise
(Right, Left), Shoulder, Chest, Leg Raise (Forward, Backward), Arm Circle, Side Twist (Right, Left),
Squats. Every individual performs an activity for 10 s with a 30-frame rate and the Kinect V2
extracts the joint data from the human skeleton and saves it in CSV files. After completing
the data collection, the data is arranged in such a format where all the individual’s data
of the same activity is appended in one file. Moreover, the data is divided into different
sequences such as 1 s (30 frames), 2 s (60 frames), 3 s (60 frames), 4 s (120 frames), and
5 s (150 frames), and all the activities data are then labeled according to their classes.

4.2. Evaluation Metrics

In this work, we used three types of evaluation matrics such as Accuracy, Precision,
and Recall to evaluate the performance of each model. Activity can be classified as True
Positive (TP) and True Negative (TN) in case of correctly recognized while in case of incor-
rect classification, it can be False Positive (FP) or False Negative (FN). Other performance
matrices are derived from TP or TN. Given TP = ∑n

k=1 TPk represents the addition of
all true positive samples, TN = ∑n

k=1 TNk represents the addition of all true negative
samples, FP = ∑n

k=1 FPk denotes the addition of false positive, FN = ∑n
k=1 FNk represents

the addition of False Negative.

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Accuracy shows the performance of the model by calculating the sum of true positive
and true negative samples and then dividing it by the sum of all samples i.e., TP, FP, TN,
and FN as given in Equation (9).

Precisionk =
TPk

TPk + FPk
(10)

Precisiont =
1
N

(
n

∑
k=1

TPk
TPk + FPk

)
(11)

Precisionk is a ratio that measures the accurateness of the model based on a negative
instance fraction while Precisiont calculates the total precision, which is the average of the
Precisionk for each class. The precision score can be obtained by the calculation of true
positive samples divided by a true positive and false positive. Equation (10) shows the
precision of each class while Equation (11) represents the average precision of total classes.

Recallk =
TPk

TPk + FNk
(12)
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Recallt =
1
N

(
n

∑
k=1

TPk
TPk + FNk

)
(13)

Recallk is the percentage of positive samples that are correctly identified out of all
positive samples while Recallt represents the total recalls score which can be obtained from
the average of Recallk for each class. Equation (12) shows the recallof each class while
Equation (13) represents the average recall score of total classes.

4.3. Detailed Ablation Study

We perform extensive experiments on different machine learning models to choose
the most accurate model for HAR. We evaluate the performance of different models such
as FT, MT, CT, LD, GNB, KNB, LSVM, QSVM, CSVM, FGSVMMGSVM, CGSVM, FKNN,
MKNN, CRSKNN, CSNKNN, CBCKNN, WKNN, EBST, EBGT, ESD, ESKNN ERUSBT,
NNN, MNN, WNN, BNN, TNN, whereas the detailed performance of each model is given
in Table 3 and graphical representation is demonstrated in Figure 6.
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Table 3. Shows the accuracy of different machine learning classifiers on different sequences.

No. Classifiers
Frames Sequence

30 60 90 120 150

1 FT 45.2 60.3 47.0 69.0 46.8

2 MT 32.3 41.0 31.4 48.1 32.7

3 CT 20.8 27.7 21.4 27.2 19.5

4 LD 38.9 45.0 23.4 17.9 18.7

5 GNB 44.7 45.2 47.7 58.3 46.9

6 KNB 62.3 67.0 62.0 76.6 59.3

7 LSVM 53.5 73.6 53.5 78.0 48.9

8 QSVM 79.4 81.2 78.4 80.9 70.5

9 CSVM 81.3 82.0 78.3 82.4 71.9

10 FGSVM 82.4 81.1 79.5 80.8 72.9

11 MGSVM 80.0 82.2 76.1 82.2 70.1

12 CGSVM 51.1 63.9 43.4 77.9 41.8

13 FKNN 79.8 80.8 79.5 81.0 70.0

14 MKNN 79.2 80.3 77.6 81.8 69.1
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Table 4. Cont.

No. Classifiers
Frames Sequence

30 60 90 120 150

15 CRSKNN 65.9 66.4 50.5 70.5 43.4

16 CSNKNN 81.6 82.1 75.1 79.4 69.8

17 CBCKNN 78.6 81.6 68.2 80.6 65.3

18 WKNN 79.0 81.1 72.3 80.9 65.6

19 EBST 45.0 57.3 46.3 64.4 48.8

20 EBGT 80.8 82.3 76.2 82.4 70.4

21 ESD 41.1 54.2 37.8 66.5 25.2

22 ESKNN 80.7 82.1 76.6 82.2 67.8

23 ERUSBT 42.5 46.1 47.1 57.4 43.2

24 NNN 70.9 76.1 70.8 81.4 63.4

25 MNN 76.3 81.6 77.9 82.8 70.9

26 WNN 80.6 82.2 79.2 81.8 75.1

27 BNN 73.9 79.0 71.3 80.0 62.2

28 TNN 70.6 81.3 72.3 82.2 58.6

4.4. Deep Learning Techniques

In this section, we performed different experiments using deep learning approaches.
We evaluate the performance of these models on our proposed dataset with different
frames sequences. Our proposed CNN- LSTM model achieved the highest accuracy for
all sequences of frames compared to other models. The experimental results of different
deep learning models are shown in Table 5. For instance, the average accuracy of MLP
for all types of sequences is 82.224, CNN is 84.78, LSTM is 77.53, BiLSTM is 82.624, and
proposed CNNLSTM achieved 86.95 average accuracy. The proposed model achieved the
highest accuracy as compared to solo deep learning-based models and traditional machine
learning models as given in Table 3. The main reason behind the highest performance of
the proposed model is learning spatial and temporal information from the input data while
other models only extract one type of feature at a time.

Table 5. Shows the accuracy of our hybrid approach as compared to other deep learning models.

No. Model Name
Frames Sequence

30 60 90 120 150

1 MLP 85.45 83.64 83.47 87.05 71.51

2 CNN 88.82 88.22 87.65 83.74 75.47

3 LSTM 83.31 80.64 74.69 82.92 66.09

4 BiLSTM 90.15 85.39 89.30 82.02 66.26

5 CNN-LSTM 90.89 88.98 90.44 87.94 76.50

From the results shown in Table 5, we can declare that the hybrid approach shows
the best accuracy compared to other deep learning models. Tables 6 and 7 show the other
popular evaluation metrics i.e., precision score and recall score of our proposed techniques
on different frame sequences. Figure 7 demonstrates the confusion metrics of CNN-LSTM
on all five types of frames sequences and shows the TP, TN, FN and FP values of each
activity. The frames sequence also depends on the accuracy of the model, if we select a
very large frames sequence then it can decrease the model accuracy and performances as
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shown in Figure 8, for example, the performance of all models on the 150 frames sequence
in Table 5 is lower than other. We used different optimizers and after investigating all
optimizers we select the “Adam” Optimizer for our experiments. All the experiments are
performed using the same hyperparameters such as batch size = 32, learning rate = 0.0001,
and epoch = 50. These optimal parameters are selected after performing a large number of
experiments on different parameters. Our model gave an excellent performance on these
parameters, so we choose these parameters. The highest accuracy of 90.89% is achieved
by the CNN-LSTM hybrid model on 30 frames sequence. The second highest accuracy is
achieved on the 90 frames sequence.

Table 6. The precision score of proposed techniques and other DL models on different sequences.

No. Model Name
Frames Sequence

30 60 90 120 150

1 MLP 86.18 84.37 85.12 88.54 74.97

2 CNN 89.20 88.48 88.37 83.93 78.04

3 LSTM 83.94 82.51 74.95 84.04 64.01

4 BiLSTM 90.74 85.90 89.62 82.52 70.35

5 CNN-LSTM 91.11 89.31 91.13 88.82 76.13

Table 7. Recall Score of the proposed method and other DL models on different sequences.

No. Model Name
Frames Sequence

30 60 90 120 150

1 MLP 85.39 83.43 83.58 86.86 71.92

2 CNN 88.86 88.07 87.77 83.50 75.36

3 LSTM 83.24 81.23 74.15 82.84 65.89

4 BiLSTM 90.05 85.24 89.41 82.11 67.16

5 CNN-LSTM 90.84 88.79 90.56 88.10 75.82
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5. Conclusions

Human activity recognition through visual sensor data is a very challenging area of
research from the past decades. In this paper, we propose a hybrid approach that combines
CNN and LSTM to effectively recognize human activity with higher accuracy. The main
purpose of using this hybrid approach in activity recognition is that human activity is
actually the sequence of action that contains temporal information. CNN architecture
has the advantage of extracting the discriminative features while LSTM can extracts the
temporal information in time-series data. We used our own dataset which is collected from
20 participants where each participant performs 12 physical activities. This dataset contains
different physical activities which can improve the individual’s health. We conducted
extensive experiments on both machine learning classifier and deep learning models.
We performed experiments on various machine learning classifiers such as SVM, KNN,
Decision Tree, Naïve Bayes, Linear Discriminant, Ensemble classifiers (Boosted Trees,
Bagged Trees, Subspace Discriminant, Subspace KNN, RUSBoosted Trees) and Neural
Network (Narrow, Medium, Wide, Bi-layered, Tri-layered) on five different type of frames
sequences (30 frames, 60 frames, 90 frames, 120 frames, 150 frames). We also conducted
experiments on various deep learning models such as CNN, LSTM, Bidirectional LSTM,
and CNN-LSTM on five different frames sequences discussed above.

In machine learning classifiers, the high accuracy is 82.4% which is achieved by
three classifiers i.e., FGSVM, CSVM, and EBGT. In deep learning models, our hybrid
CNN-LSTM method achieved high accuracy of 90.89% on 30 frames as compared to other
deep learning approaches. The proposed hybrid model shows excellent performance
on activity recognition of one-person activity, and it may not be able to perform better
in the case of multiple people. In the future, we aim to increase the number of more
complex physical activities and improve our model which can recognize the activity of
more than one person at a time. Furthermore, we will explore advanced deep learning-
based techniques such as reinforcement learning, lifelong learning, incremental and active
learning for activity recognition. Additionally, we are planning to develop a huge HAR
dataset that will include several daily life and physical activities.
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