Skip to main content
. 2022 Jan 1;22(1):323. doi: 10.3390/s22010323

Table 3.

Shows the accuracy of different machine learning classifiers on different sequences.

No. Classifiers Frames Sequence
30 60 90 120 150
1 FT 45.2 60.3 47.0 69.0 46.8
2 MT 32.3 41.0 31.4 48.1 32.7
3 CT 20.8 27.7 21.4 27.2 19.5
4 LD 38.9 45.0 23.4 17.9 18.7
5 GNB 44.7 45.2 47.7 58.3 46.9
6 KNB 62.3 67.0 62.0 76.6 59.3
7 LSVM 53.5 73.6 53.5 78.0 48.9
8 QSVM 79.4 81.2 78.4 80.9 70.5
9 CSVM 81.3 82.0 78.3 82.4 71.9
10 FGSVM 82.4 81.1 79.5 80.8 72.9
11 MGSVM 80.0 82.2 76.1 82.2 70.1
12 CGSVM 51.1 63.9 43.4 77.9 41.8
13 FKNN 79.8 80.8 79.5 81.0 70.0
14 MKNN 79.2 80.3 77.6 81.8 69.1
15 CRSKNN 65.9 66.4 50.5 70.5 43.4
16 CSNKNN 81.6 82.1 75.1 79.4 69.8
17 CBCKNN 78.6 81.6 68.2 80.6 65.3
18 WKNN 79.0 81.1 72.3 80.9 65.6
19 EBST 45.0 57.3 46.3 64.4 48.8
20 EBGT 80.8 82.3 76.2 82.4 70.4
21 ESD 41.1 54.2 37.8 66.5 25.2
22 ESKNN 80.7 82.1 76.6 82.2 67.8
23 ERUSBT 42.5 46.1 47.1 57.4 43.2
24 NNN 70.9 76.1 70.8 81.4 63.4
25 MNN 76.3 81.6 77.9 82.8 70.9
26 WNN 80.6 82.2 79.2 81.8 75.1
27 BNN 73.9 79.0 71.3 80.0 62.2
28 TNN 70.6 81.3 72.3 82.2 58.6