Skip to main content
. 2021 Dec 28;22(1):185. doi: 10.3390/s22010185
Algorithm 2 Pseudocode of One-hot encoding, Min–Max Normalization and Z-score Standardization
Input: dataset features F, class label C
Output: Pre-processed dataset
MinMaxScaler (D, F, i):
Xnormalized = 0
 max maximum value among all values of column iF in D
 min minimum value among all values of column iF in D
XnormalizedXXmin_valueXmax_valueXmin_value // Equation (1)
Return Xnormalized
Standardize(D,F, i):
Xnormalized = 0
μ mean value of column iF in D
σ  standard deviation value of column iF in D
Xnormalized Xμσ// Equation (2)
Return Xnormalized
Begin:
D [ ] // Normalized/ Standardized dataset
F Hot-encoding dataset D
For each item iF in (D) do:
D MinMaxScaler (D, F, i) // both min-max and z-score method is
D Standardize (D, F, i) // executed separately
End For
End