Skip to main content
. 2022 Jan 5;22(1):388. doi: 10.3390/s22010388
Algorithm 1 Construction of the prior distribution of DDP-STP
(i) Available parameters at time step (k1)
 – Object state parameter x,k1,  = 1,,Nk1, set XNk1,k1
 – Cluster parameter θ,k1,  = 1,,Nk1, for th object, set ΘNk1,k1
 – Parameter of unique cluster θl,k1🟉, l = 1,,Dk1, set ΘDk1,k1🟉
 – Cluster label indicator cl,k1, l = 1,,Dk1 and set CDk1,k1
 – Cardinality of lth unique cluster ql,k1🟉, l = 1,,Dk1
(ii) Transitioning from time step (k1) to k
 – Draw object survival indicator s,kk1Bernoulli(P,kk1),  = 1,,Nk1
 – If s,kk1 = 1, the th object survives; if s,kk1 = 0, it leaves the scene
 – Compute number of transitioned objects Nkk1 = =1Nk1s,kk1
 – Denote cardinality of lth cluster, l = 1,,Dk1, after transitioning by ql,kk1
 – If ql,kk1≥ 1, cluster survival indicator λl,kk1 = 1; if ql,kk1 = 0, λl,kk1 = 0
 – Compute number of unique clusters to Dkk1 = l=1Dk1λl,kk1
 – Denote cardinality of lth transitioned cluster by ql,kk1🟉, l = 1,,Dkk1
 – Denote parameter of transitioned cluster by θl,kk1🟉, l = 1,,Dkk1
(iii) Current time step k
  for  = 1 to Dkk1 do
   if Case 1 (on page 6) then
    Draw x,k from the prior PDF in (6) with probability Pk(1) in (5)
   else if Case 2 (on page 6) then
    Draw θ,k from p(θ,kθ,k1🟉)
    Draw x,k from the prior PDF in (8) with probability Pk(2) in (7)
   else if Case 3 (on page 7) then
    Draw θ,kG0 following DP(α,G0)
    Draw x,k from the PDF in (10) with probability Pk(3) in (9)
   end if
  end for
  Update number of objects Nk using Nkk1 and number of new objects under Case 3
  Update lth unique cluster cardinality ql,k🟉 and parameter θl,k🟉
  return XNk,k, ΘNk,k