Skip to main content
. 2022 Jan 5;22(1):403. doi: 10.3390/s22010403

Table 7.

Performance comparison of the recent methods with the proposed bi-modular sequential neural network.

Performance Comparison Experiments
Method Class AP (angry) Class AP (happy) Class AP (sad) Class AP (neutral) Macro-mAP Micro-mAP
STEP (2020) [36] 0.22 0.52 0.30 0.12 0.29 0.27
ADF (2019) [38] 0.22 0.59 0.30 0.12 0.31 0.27
STGCN (2018) [35] 0.06 0.97 0.20 0.01 0.34 0.41
HAPAM (2020) [37] 0.97 0.66 0.40 0.18 0.60 0.88
Proposed LSTM
and MLP (RGS)
0.98 0.74 0.58 0.33 0.66 0.92
Proposed LSTM
and MLP (RGS + JRA + JRD)
0.99 0.90 0.84 0.46 0.80 0.96
Proposed LSTM and MLP with
batch normalization
(RGS + JRA + JRD)
0.99 0.91 0.90 0.65 0.86 0.97

The proposed bi-modular networks outperform the previous state-of-the-art methods in mean average precision scores.