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Abstract: Infrared thermographs (IRTs) implemented according to standardized best practices have
shown strong potential for detecting elevated body temperatures (EBT), which may be useful in
clinical settings and during infectious disease epidemics. However, optimal IRT calibration meth-
ods have not been established and the clinical performance of these devices relative to the more
common non-contact infrared thermometers (NCITs) remains unclear. In addition to confirming the
findings of our preliminary analysis of clinical study results, the primary intent of this study was
to compare methods for IRT calibration and identify best practices for assessing the performance of
IRTs intended to detect EBT. A key secondary aim was to compare IRT clinical accuracy to that of
NCITs. We performed a clinical thermographic imaging study of more than 1000 subjects, acquiring
temperature data from several facial locations that, along with reference oral temperatures, were
used to calibrate two IRT systems based on seven different regression methods. Oral temperatures
imputed from facial data were used to evaluate IRT clinical accuracy based on metrics such as clinical
bias (∆cb), repeatability, root-mean-square difference, and sensitivity/specificity. We proposed several
calibration approaches designed to account for the non-uniform data density across the temperature
range and a constant offset approach tended to show better ability to detect EBT. As in our prior study,
inner canthi or full-face maximum temperatures provided the highest clinical accuracy. With an opti-
mal calibration approach, these methods achieved a ∆cb between ±0.03 ◦C with standard deviation
(σ∆cb) less than 0.3 ◦C, and sensitivity/specificity between 84% and 94%. Results of forehead-center
measurements with NCITs or IRTs indicated reduced performance. An analysis of the complete
clinical data set confirms the essential findings of our preliminary evaluation, with minor differences.
Our findings provide novel insights into methods and metrics for the clinical accuracy assessment
of IRTs. Furthermore, our results indicate that calibration approaches providing the highest clinical
accuracy in the 37–38.5 ◦C range may be most effective for measuring EBT. While device performance
depends on many factors, IRTs can provide superior performance to NCITs.

Keywords: infrared thermography; elevated body temperature; fever screening; clinical accuracy

1. Introduction

Fever is a key symptom of many infectious diseases that have produced epidemics,
including Severe Acute Respiratory Syndrome (SARS) in 2003, Influenza A (H1N1) in 2009,
Ebola Virus Disease (EVD) in 2014, and Coronavirus (COVID-19) in 2019–present [1–6].
While fever screening alone is not an effective method to stop an epidemic, it is likely that for
many infectious diseases it can be part of a larger approach to risk management. In several
recent epidemics, fever screening has been used in high-traffic areas and at the entrances of
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high-risk sites, such as public transportation hubs, hospitals, and assisted living facilities,
yet there is little evidence that this approach has made a significant impact [7]. This may be
due in part to the implementation of ineffective instrumentation and calibration algorithms,
as well as a lack of viable, consistently applied standard procedures for deployment
and screening.

Body temperature can be measured at different body sites. These measurements can
be used to impute temperatures at other body sites that are more meaningful, but less con-
venient to access. The site where the temperature is acquired is called the measurement site,
whereas the site to which the device output temperature refers is called the reference site.
For example, a non-contact infrared thermometer (NCIT) might measure skin temperature
on the forehead and convert this value to an imputed oral temperature for display. In this
case, the forehead-center is the measurement site and the oral cavity (e.g., sublingual) is the
reference site. The process of imputing reference site temperature from measurement site
temperature is called site conversion. The measurement and reference sites can be the same
(same-site measurement) or different (cross-site measurement).

Through autonomic physiological mechanisms, humans can maintain internal tem-
perature (also known as core body temperature) within very narrow limits despite wide
fluctuations in ambient air temperature, so as to ensure proper physiological function [8].
Human thermoregulation processes include chemical reactions, perfusion inside the body,
and heat transfer with the environment through radiation, conduction, convection, and
evaporation. Temperatures at different peripheral body sites can be quite different and have
more fluctuation due to factors such as ambient temperature [9,10], exercise [11], metabolic
rate [12], circadian rhythm [13,14], age [15], and menstrual cycle [16]. Therefore, it is dif-
ficult to accurately define the relation between temperatures at two different body sites
with a mathematical model due to the complexity of human thermoregulation mechanisms.
Thus, the accuracy of output temperature from a cross-site measurement is often lower
than that from a same-site measurement, since imputing the reference site temperature
from the measurement site temperature will increase cumulative error.

NCITs [17,18] and infrared thermographs (IRTs, also known as thermal cameras) [19]
represent the primary device types currently used in practice for fever screening during
epidemics. IRTs and NCITs use similar principles for temperature measurement. Although
NCITs are highly portable, inexpensive, and have been widely used for fever screening
during epidemics [20], their accuracy has been called into question, particularly relative
to IRTs [21,22]. This may be due to a range of factors including the common use of
forehead measurement locations, which tend to be more susceptible to fluctuations due
to environmental factors like ambient temperature and airflow [23]. The effectiveness of
prior IRT-based approaches to reduce the spread of disease has also been mixed. While
some human subject studies demonstrated that IRTs can estimate body temperature with
moderately high accuracy [21,24–26], others indicated that IRTs are not effective for fever
screening [27–29]. In many situations, it may not be practical to implement all of the
required controls necessary to ensure a high degree of thermal screening performance.
Low IRT effectiveness may also be attributable in part to the use of IRTs with insufficient
performance specifications, improper deployment practices [30,31], and/or a lack of febrile
subjects in clinical studies.

Laboratory accuracy [32] is a key performance characteristic of IRTs. International stan-
dard IEC 80601-2-59:2017 provides recommendations for laboratory accuracy evaluation of
fever-screening IRTs [30]. However, clinical accuracy determined from a clinical study is
much more relevant since it incorporates real-world variability due to the device, subjects
and environment, as well as the temperature conversion step between measurement and
reference sites. Currently, there are no consensus methods to evaluate the clinical accuracy
of IRTs. A technical report, ISO/TR 13154:2017 [31], describes best practices for IRT deploy-
ment, implementation and operation, yet evaluation of IRT clinical accuracy is not covered.
Two international standards which address methods to evaluate the clinical accuracy of
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thermometers, namely ASTM E1965-98:2016 [33] and ISO 80601-2-56:2017 [34], provide
relevant insights, yet they have not been adapted for use in IRT performance testing.

During clinical studies, temperatures should be measured both with the IRT on the face
and a clinical thermometer with established clinical accuracy at the reference site. While
the literature indicates that a number of internal tissue sites, including the pulmonary
artery [35], esophagus, urinary bladder, and rectum [36], are suitable for estimating core
temperature, they are impractical for large-scale clinical fever screening studies. Tympanic
membrane and oral cavity thermometry are often used, however, the former approach has
shown poor performance in some studies because of dirt/cerumen, inaccurate placement
and lack of skill of the measurer [36–38]. Oral thermometry provides a well-correlated
surrogate location for core temperature and is not very susceptible to confounding fac-
tors [36,39,40].

In our recent prior article [41], we provided an initial analysis of our clinical study
data, focusing on the 596 subjects measured within the room temperature range of 20–24 ◦C.
In the current work, we have analyzed the entire dataset of more than 1000 subjects mea-
sured within the room temperature range of 20–29 ◦C. Our primary intent of this study was
to compare methods for IRT calibration based on clinical data and identify best practices
for assessing the clinical performance of IRTs intended to detect elevated body tempera-
tures (EBT). A key secondary aim was to compare IRT clinical accuracy to that of NCITs.
Specifically, we (a) acquired IRT and reference temperature data in febrile and non-febrile
subjects using methods that closely adhered to international standards, (b) analyzed the
relationship between reference temperature and facial temperatures at different locations,
(c) evaluated the impact of different training/calibration techniques on clinical accuracy,
(d) compared different metrics as clinical accuracy indicators, and (e) compared results to
similar data from NCITs.

2. Methods

Over the course of 18 months, from November 2016 to May 2018, we conducted a
clinical study at the Health Center of the University of Maryland (UMD) at College Park
according to the guidelines of the Declaration of Helsinki. The study was approved by both
FDA and UMD Institutional Review Boards under FDA IRB study #16-011R and written
informed consent was obtained from all subjects.

2.1. Experimental Setup and Temperature Measurement Procedure

The primary devices used included an oral thermometer (SureTemp Plus 690, Welch
Allyn, San Diego, CA, USA) with established clinical accuracy, a webcam (C920, Logitech,
Lausanne, Switzerland), two IRTs (IRT-1: 320 × 240 pixels, A325sc, FLIR Systems Inc.,
Nashua, NH, USA; IRT-2: 640 × 512 pixels, 8640 P-series, Infrared Cameras Inc., Beaumont,
TX, USA), a blackbody (SR-33, CI Systems Inc., Carrollton, TX, USA) as the external
temperature reference source (ETRS) for temperature drift compensation, and six models
of NCITs. The laboratory accuracy of both IRT systems satisfied the IEC 80601-2-59:2017
standard requirements [30] in terms of stability, drift, minimum resolvable temperature
difference, and radiometric temperature laboratory accuracy, as shown in our previous
study [32]. An IRT system (also known as a screening thermograph) is composed of an IRT
and an ETRS. [30,32]. For brevity, we call an IRT system an IRT in this paper.

The study lasted for 18 months covering all four seasons, which can explain why we
had a wide ambient temperature range of 20–29 ◦C due to inefficient air conditioning in
summer. To minimize the influence of outside temperature, each subject was precondi-
tioned by waiting for at least 15 min in the draft free study area inside the building before
starting the measurements. For each subject, four rounds of measurements were performed
within ~15 min. During each round, temperatures were measured with two different IRTs,
six models of NCITs and a contact oral thermometer.

The IRTs used skin emissivity and ambient temperature as input parameters to cal-
culate skin temperature automatically. Publications have suggested that the emissivity
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values of the anterior surface of the eyeball and skin are 0.975 [42] and 0.98 [43,44], respec-
tively. Therefore, skin emissivity of 0.98 was used as an IRT input parameter, which is
also recommended by the IEC 80601-2-59:2017 standard [30]. The ambient temperature
was also measured with a weather tracker prior to each measurement as an IRT input
parameter. We did not perform any other laboratory calibration/correction except for the
temperature compensation with an ETRS (see Section 2.3.1 in our previous publication [41]
for details; the ETRS emissivity value of 0.98 was used in our algorithm as suggested by
the manufacturer).

Temperature measured with the contact oral thermometer was used as the refer-
ence (Tre f ). NCIT measurements performed in this study are addressed in greater depth
elsewhere [45]. Additional information about the study methods (e.g., device setup, en-
vironmental control, measurement procedure) can be found in our published paper [41].
Ideally, the ambient temperature should be 20–24 ◦C and relative humidity 10–50%, based
on the ISO/TR 13154 document [31]. In our study, however, ambient temperature was
between 20 and 29 ◦C, and relative humidity was between 10% and 62% (Figure 1). While
beyond the recommended ranges, these conditions more realistically emulate real-world
fever screening settings.
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Figure 1. Ambient temperature and relative humidity histogram during the clinical study. (The range
between the two vertical lines indicate ideal ambient temperature/humidity based on ISO/TR
13154:2017).

2.2. Subject Demographics

Data were acquired and analyzed from a total of 1020 subjects for IRT-1 and 1010
subjects for IRT-2. Demographic information for study subjects is summarized in Table 1.
Overall, about 11% of these subjects exhibited reference temperature above 37.5 ◦C.

Table 1. Demographics of study subjects.

IRT-1 IRT-2

Subjects % Subjects %

Female 606 59.41 601 59.50

Male 414 40.59 409 40.50

Age

18–20 534 52.35 527 52.18

21–30 432 42.35 429 42.48

31–40 31 3.04 31 3.07

41–50 9 0.88 9 0.89

51–60 11 1.08 11 1.09

>60 3 0.29 3 0.30
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Table 1. Cont.

IRT-1 IRT-2

Subjects % Subjects %

Ethnicity

White 506 49.61 500 49.50

Black/African-American 143 14.02 143 14.16

Hispanic/Latino 57 5.59 55 5.45

Asian 260 25.49 258 25.54

Multiracial 50 4.90 50 4.95

American Indian 4 0.39 4 0.40

Tre f > 37.5 ◦C 111 10.88 111 10.99

2.3. Facial Region Delineation and Temperature Measurement

We identified facial key-points in IRT images by matching landmarks on visible light
images to thermal images with an image registration approach [46] as well as manual
labeling. Based on the identified facial key-points, different regions/points on thermal
images were defined and the temperatures at these regions were obtained from thermal
images (Figure 2). Since IRTs exhibit varying degrees of instability and drift [32], all IRT-
measured temperatures were compensated with a blackbody (ETRS) in the system. Details
about the definitions of these temperatures and temperature compensation with an ETRS
can be found in Section 2.2 and Section 2.3.1, respectively, in our previous publication [41].
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For brevity, we restricted our analysis to four main facial temperatures (Tskin): TFC,
TFCmax, TCEmax, and Tmax. Inner canthi are considered to be optimal locations for non-
contact temperature measurement [30]. Perfused by the internal carotid artery, they are
typically the warmest regions on the face and have high stability and strong correlation with
internal body temperatures [19,47,48]. However, there is no consensus about how canthi
temperature should be read (e.g., how to identify location, size of region to use, number
of pixels, averaging vs. maximum value, etc.). Among all the temperatures obtained
from the inner canthi region, our initial study demonstrated that TCEmax, the maximum
temperature of the extended canthus region (see Figure 2), has the best correlation with the
reference oral temperature Tre f and the highest sensitivity (Se) and specificity (Sp) values
for fever screening [41]. Therefore, we chose TCEmax for further study in this paper. Our
previous work also demonstrated that the whole face maximum temperature (Tmax) is easy
to localize/calculate and has comparable performance to TCEmax, especially considering
that for 59.5% of subjects, Tmax and TCEmax have the same location. Please see reference [41]
for the distribution of thermal maxima in full-face images. Since many NCITs measure
temperature from the forehead-center location with a small sensor, TFC measured with
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an IRT was used as a surrogate for NCITs. Other NCITs use a sensor array to detect
temperature in a larger forehead region; TFCmax was used as a surrogate for such devices
since a similar region is detected.

2.4. Clinical Data

Data from 1115 subjects were originally collected. Of these, 6 subjects had incomplete
records. The data for 56 subjects were also removed because the difference between the two
oral temperature readings was greater than 0.5 ◦C, or only one oral temperature reading was
recorded. The large difference might come from an operation error (e.g., oral thermometer
moved) or the subjects have recently smoked or ingested cold or hot food or drink [49].
Of the remaining subjects, we further excluded 33 subjects for IRT-1 and 43 subjects for
IRT-2 whose images had degraded quality due to motion artifacts. Finally, we had data
from 1020 subjects measured with IRT-1 and 1010 subjects measured with IRT-2.

The data for each IRT were separated into two groups—Group 1 with ambient temper-
ature ranged from 20 to 24 ◦C and Group 2 from 24 to 29 ◦C (Table 2). The temperature
ranges are different because the clinical study lasted a long time at two different locations
(a small room and hallway), resulting in large ambient temperature variation. Group 1 data
were first analyzed in our prior work [41], since ISO/TR 13154:2017 [31] recommends ambi-
ent temperature range of 20–24 ◦C. We analyzed Group 2 data with the same methodology
as Group 1 data analysis in terms of the correlation coefficients and the area under the
curve (AUC) values for different receiver operator characteristic (ROC, described further in
Section 2.6.2) curves. The results show that both groups have similar performance in terms
of correlation coefficients (Table 3) and AUC values (Table 4). In this study, we evaluate IRT
clinical accuracy with more metrics than our previous analysis, which needs larger amount
of data for calibration and testing. Therefore, both Group 1 and Group 2 data were used in
the current paper.

Table 2. Study subject grouping by ambient temperature.

Ambient
Temperature (◦C) Relative Humidity Subject # for

IRT-1
Subject # for

IRT-2

Group 1 [41] 20–24
10–62%

(7.5% subject data in the
50–62% range)

544 540

Group 2 24–29
10–62%

(9.9% subject data in the
50–62% range)

476 470

Table 3. Pearson correlation coefficients (r values) between facial temperatures and Tre f .

Forehead Inner Canthi Mouth Face

TFC TFT TFB TFL TFR TFCmax TFEmax
¯
TCL

¯
TCR

¯
TC TCmax1 TCLmax TCRmax TCmax2 TCEmax TMmax Tmax

Group 1
[41]

IRT-1 0.46 0.41 0.49 0.47 0.43 0.55 0.63 0.60 0.58 0.63 0.65 0.70 0.71 0.73 0.75 0.60 0.78

IRT-2 0.46 0.39 0.49 0.46 0.41 0.54 0.62 0.53 0.51 0.56 0.59 0.70 0.69 0.73 0.76 0.60 0.79

Group 2
IRT-1 0.50 0.37 0.52 0.46 0.43 0.56 0.60 0.62 0.61 0.65 0.66 0.74 0.75 0.77 0.79 0.69 0.81

IRT-2 0.50 0.37 0.53 0.46 0.42 0.57 0.61 0.63 0.56 0.62 0.65 0.73 0.72 0.76 0.80 0.69 0.82

Note: Definitions of these facial temperatures can be found in Figure 2 and our previous paper [41]. The bold font
shows the best results (the highest r).
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Table 4. AUC values for ROC curves based on different facial temperatures.

Forehead Inner Canthi Mouth Face

TFC TFT TFB TFL TFR TFCmax TFEmax
¯
TCL

¯
TCR

¯
TC TCmax1 TCLmax TCRmax TCmax2 TCEmax TMmax Tmax

Group 1
[41]

IRT-1 0.82 0.79 0.82 0.80 0.81 0.84 0.86 0.88 0.87 0.88 0.88 0.94 0.93 0.94 0.95 0.89 0.95

IRT-2 0.82 0.79 0.82 0.79 0.79 0.84 0.87 0.91 0.87 0.90 0.92 0.95 0.93 0.94 0.95 0.88 0.97

Group 2
IRT-1 0.82 0.76 0.82 0.80 0.78 0.85 0.87 0.93 0.91 0.93 0.93 0.97 0.96 0.97 0.97 0.91 0.97

IRT-2 0.82 0.76 0.82 0.78 0.79 0.84 0.85 0.94 0.88 0.92 0.94 0.96 0.94 0.97 0.97 0.90 0.97

2.5. Regression Methods for Imputing Oral Temperature

Many IRTs convert measured skin temperature (Tskin) to an imputed corresponding
temperature at a reference body site [34], often sublingual oral temperature (Toral), which
is called cross-site measurement in this paper. In this study, we evaluated the clinical
accuracy of two IRTs based on a cross-site measurement approach. Data acquired for each
subject include thermal images, NCIT readings (analyzed in [45]) and reference sublingual
temperature (Tre f ). Thermal images were used to extract Tskin at different regions of interest
(TFC, TFCmax, TCEmax and Tmax). The conversion from Tskin to Toral required the use of a
calibration curve, so subjects for each IRT were randomly separated into training and testing
sets. The training set (60% of the subjects, 612 and 606 for IRT-1 and IRT-2 respectively) was
used to establish the relationship between different Tskin and Tre f . The testing set (remaining
40% of subjects, 408 and 404 for IRT-1 and IRT-2 respectively) was converted to Toral values
based on the calibration curve, then compared with Tre f to evaluate clinical accuracy.

The relationship between Tskin and Tre f can be determined with different regression
methods. In our previous study [41], we observed that Tskin and Tre f appear to be related
by a constant offset or a linear relation. Therefore, constant offset and ordinary linear
regression methods are applied here. Quadratic or higher order polynomial regressions are
also considered. Since Tre f values likely contain significant error, Deming regression may
also be appropriate [50].

Since the distribution of Tre f values is not uniform across the temperature range
(See the Kernel density curves in Section 3.1), with significantly less data at low and high
temperatures, three regression approaches were considered. Weighted linear regression
is a technique that adjusts the influence of individual data points based on a predefined
criterion [50]. Common weighting methods are often based on variance or coefficient of
variation (CV). For example, a constant CV least-squares regression gives each point a
weight inversely proportional to the square of the values on the x-axis [50]. We implemented
a weighted regression method with the weight being inversely related to the kernel density
of the independent variable, i.e., greater weight was applied to a temperature range with
fewer data points. A second approach implemented, called a binning method here, involved
dividing the training data into small intervals (“bins”) and the data in each interval are
averaged as one value for regression. A third approach used to mitigate the uneven
data distribution was segmented linear regression, also known as piecewise regression.
In this method, training data were separated into several segments and linear regression
is applied to each. The equations for each segment were forced to agree at the edges to
ensure continuity.

2.6. Clinical Accuracy Assessment

The clinical accuracy of IRTs can be evaluated in two ways. One way is to see whether
IRTs can accurately measure body temperature in a specific temperature range, called
temperature measurement accuracy in this paper. The other way is to see whether IRTs
can screen out subjects with EBT from those without EBT, called diagnostic performance in
this paper.
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2.6.1. Metrics for Temperature Measurement Accuracy

We evaluated the temperature measurement accuracy of IRTs using several different
approaches. Since there is no standard that covers clinical study data analysis for IRTs,
standards for thermometers were used to inform our methodology. The standards ISO
86601-2-56:2017 [34] and ASTM E1965-98:2016 [33] implement three key metrics: clinical
bias (∆cb), standard deviation (SD) of ∆cb (σ∆cb), and clinical repeatability (σr). ∆cb is the
mean difference between Toral and Tre f values for all subjects in the testing set. It shows
systematic error of the devices under test. Measurement precision was evaluated using
σ∆cb, which is based on the SD of differences between Toral and Tre f . A value equal to
2 × σ∆cb is often called the limit of agreement (LA), as it shows the magnitude of potential
disagreement between outputs of two devices when used on the same human subject.
Difference plots are used to illustrate ∆cb and σ∆cb.

Root-mean-square (RMS) difference (Arms =

√
1
n

n
∑

i=1

(
Toral − Tre f

)2
, where n is the

number of subjects) between Toral and Tre f , is another metric used to assess clinical measure-
ment accuracy in medical devices [51]. While Arms will not indicate the direction of error
(e.g., overestimate or underestimate) and error distribution, it does quantify the cumulative
magnitude of error. We implement it here to provide a single accuracy metric that combines
the impact of bias and precision, as well as to ensure that positive and negative local bias
values do not cancel out to give an erroneous impression of strong performance, as can
occur with ∆cb.

Regression analysis [50] can also provide useful insight into the quality of temperature
measurements. We generated scatter plots of Toral against Tre f and fit linear trendlines to the
data; these curves were then compared with the ideal (i.e., Toral = Tre f ). Pearson correlation
coefficients (r values) were also obtained to quantify the degree of linear correlation between
Toral and Tre f .

2.6.2. Metrics for Diagnostic Performance

In addition to methods focused on temperature measurement accuracy, we also im-
plemented diagnostic performance assessment techniques to evaluate fever screening
effectiveness for each IRT. These analyses involved calculation of sensitivity (true positive
rate, Se = TP/P, where TP and P represent true positive and condition positive respectively)
and specificity (true negative rate, Sp = TN/N, where TN and N represent true negative
and condition negative respectively). The focus of this approach is to determine whether
febrile subjects can be detected given specific reference temperature thresholds (Tthresh).
The value for Tthresh was set to 37.5 ◦C to define P (Tre f > Tthresh) and N (Tre f < Tthresh) for
fever screening [2,27]. We also defined a cutoff temperature (Tcut) to determine positive or
negative results based on Toral . Based on the P, N, predicted P (Toral > Tcut) and predicted
N (Toral < Tcut) for all subjects, TP (Toral > Tcut and Tre f > Tthresh) and TN (Toral < Tcut
and Tre f < Tthresh) were obtained to calculate Se and Sp. At each Tcut, a pair of Se/Sp values
were determined. An ROC curve for each facial temperature location was generated from
1000 Tcut values equally spaced between 30 ◦C and 40 ◦C. The area under the ROC curve
(AUC), an effective and combined measure of Se and Sp, was calculated to provide an
aggregate measure of performance, where a maximum AUC of 1 indicates perfect diagnos-
tic performance in differentiating diseased with non-diseased subjects [52,53]. The value

of
√
(1 − Se)2 + (1 − Sp)2, notated as dSeSp, indicates the distance between the coordinate

points of (1 − Sp, Se) and (0, 1), the perfect 1 − Sp and Se values [52]. The smaller the dSeSp
value, the better the performance. The value of dSeSp at Tcut = Tthresh = 37.5 ◦C was used to
evaluate the fever screening performance.
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3. Results
3.1. Regression Methods for Calibration

As mentioned in Section 2.5, the training data (for 612 and 606 subjects with IRT-1 and
IRT-2 respectively) were used to determine the relationship between different Tskin (TFC,
TFCmax, TCEmax or Tmax) and Tre f with different regression methods (constant offset, ordi-
nary linear, quadratic, and Deming). We also implemented weighted linear, binning, and
segmented linear regression methods due to the nonuniform distribution of temperatures.
While the quadratic method usually showed nearly identical regression curves (Figure 3)
with the segmented linear regression method, it led to nonmonotonic regression curves
for some cases. Therefore, only the segmented linear regression method is discussed in
this paper.
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Figure 3. Examples of quadratic and segmented regression methods with Tmax and Tre f as indepen-
dent and dependent variables respectively for IRT-1 and IRT-2.

Figure 4 shows regression curves based on the training data. The segmented lin-
ear regression curve is omitted for simplification in this figure. We used different Tskin
as independent variables (x-axis) and Tre f as the dependent variable (y-axis) in all the
regression methods. In Section 4.1, we will briefly discuss the methods of using Tre f as
independent variable.
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The results in Figure 4 indicate that lines for constant offset, ordinary linear, and
Deming regression methods exhibit a common point of concurrency in each graph, near
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Tre f ≈ 37 ◦C, TFC ≈ 34.5 ◦C, TFCmax ≈ 35 ◦C, TCEmax ≈ 35.5 ◦C, and Tmax ≈ 35.7 ◦C for
both IRT-1 and IRT-2. That these lines intersect near a single point is likely because the least
squares approach minimizes the sum of squared residuals, which means each data point
contributes equally to the sum. Therefore, a temperature interval with more data will have
larger impact on the fitting equation. The location of each point of concurrency is related to
the mean temperature offset between the reference value and facial measurements, which
was discussed previously [41]. Figure 5 shows the kernel density curves of Tre f , TFC, TFCmax,
TCEmax, and Tmax for IRT-1 and IRT-2. The curves for both IRTs are very similar, with the
peak density for each site matching the corresponding points of concurrency. The Pearson
correlation coefficients between Tre f and TFC/TFCmax/TCEmax/Tmax for IRT-1 are 0.53, 0.60,
0.79 and 0.82 respectively. These numbers for IRT-2 are 0.52, 0.57, 0.80, and 0.82.
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3.2. Temperature Measurement Accuracy—Quantitative Analysis

The testing data (for 408 and 404 subjects with IRT-1 and IRT-2, respectively) were used
to evaluate temperature measurement accuracy. The calibration curves based on different
regression methods were applied to impute Toral from different Tskin values (TFC, TFCmax,
TCEmax or Tmax). By comparing final imputed Toral with Tre f , temperature measurement
accuracy could be evaluated in different ways, as described in Section 2.6.

To calculate clinical bias (∆cb), clinical bias SD (σ∆cb), and root-mean-square difference
(Arms), we separated the testing data into three intervals based on Tre f : Tre f < 37 ◦C,
37 ◦C ≤ Tre f ≤ 38.5 ◦C, and Tre f > 38.5 ◦C. Since the diagnostic threshold (Tthresh, the Tre f
to define condition positive/negative) for fever screening is usually between 37.5 and
38 ◦C [41], the interval of 37.0–38.5 ◦C is particularly important. Results for ∆cb, σ∆cb, and
Arms were calculated for the entire testing set and each of the three intervals. As described
in our previous study (Figure 2 in [41]), we acquired thermal images of each subject in
four rounds. During each round of imaging, each IRT acquired three consecutive frames
(acquisition time ~0.1 s) that were averaged to reduce noise and form a single thermal
image. All analysis in this article was based on the averaged thermal images from the first
round of measurements, except for the clinical repeatability (σr) analysis. To calculate σr,
the SD of three Toral temperatures based on the averaged thermal images from each of the
first three rounds of measurements was calculated for each subject and then pooled based
on the ISO 80601-2-56 standard [34].

Tables 5 and 6 display key metrics (∆cb, σ∆cb, Arms, and σr) for TCEmax- and Tmax-based
Toral for IRT-1 and IRT-2 respectively. In these results, the minimum ∆cb, σ∆cb and Arms
values for all subjects and subjects with Tre f < 37 ◦C generally come from the segmented
linear regression method for both IRTs. The smallest ∆cb values over the range 37 ◦C ≤ Tre f
≤ 38.5 ◦C are between ±0.1 ◦C for both IRTs, coming from the constant offset, weighted
linear, and binning methods. The related σ∆cb and Arms values over this range are less
than 0.4 ◦C. The average σr for both IRTs and all regression methods is 0.14 ◦C, with the
minimum and maximum values of 0.07 ◦C and 0.23 ◦C. There is no one regression method
that can achieve the best values for all the metrics and both IRTs. Later, we will demonstrate
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that temperature measurement accuracy over the range 37 ◦C ≤ Tre f ≤ 38.5 ◦C is more
related to diagnostic performance.

Table 5. Clinical accuracy of Toral measurements for IRT-1 based on TCEmax and Tmax: ∆cb, σ∆cb, Arms,
and σr (unit: ◦C).

Toral Based on TCEmax Toral Based on Tmax

Offset Ordinary Deming Weighted Binning Segmented Offset Ordinary Deming Weighted Binning Segmented

All ∆cb −0.03 −0.03 −0.03 0.21 −0.13 −0.03 −0.02 −0.02 −0.02 0.22 −0.09 −0.03

Tref σ∆cb 0.40 0.35 0.37 0.35 0.47 0.30 0.35 0.33 0.34 0.33 0.41 0.29

Arms 0.40 0.35 0.37 0.41 0.49 0.30 0.35 0.33 0.34 0.39 0.42 0.29

Tref< ∆cb 0.05 0.11 0.07 0.34 −0.10 0.10 0.05 0.10 0.07 0.34 −0.06 0.10

37 ◦C σ∆cb 0.37 0.29 0.34 0.29 0.45 0.22 0.33 0.27 0.32 0.27 0.40 0.21

Arms 0.38 0.30 0.35 0.45 0.46 0.24 0.34 0.29 0.32 0.44 0.41 0.23

37◦C≤ ∆cb −0.14 −0.19 −0.16 0.05 −0.19 −0.21 −0.12 −0.17 −0.13 0.08 −0.14 −0.20

Tref σ∆cb 0.40 0.30 0.36 0.30 0.50 0.30 0.35 0.28 0.33 0.29 0.43 0.28

≤38.5 ◦C Arms 0.42 0.35 0.39 0.31 0.53 0.37 0.37 0.33 0.35 0.30 0.45 0.35

Tref> ∆cb −0.42 −0.91 −0.58 −0.62 −0.12 −0.39 −0.49 −0.87 −0.58 −0.61 −0.18 −0.39

38.5 ◦C σ∆cb 0.26 0.24 0.24 0.23 0.36 0.35 0.23 0.22 0.22 0.22 0.31 0.36

Arms 0.48 0.93 0.62 0.65 0.36 0.51 0.53 0.90 0.62 0.65 0.34 0.52

σr 0.11 0.08 0.10 0.09 0.14 0.07 0.18 0.14 0.17 0.14 0.22 0.13

Note: The bold font shows the best results (i.e., minimum values of ∆cb, σ∆cb, Arms, and σr).

Table 6. Clinical accuracy of Toral measurement for IRT-2 based on TCEmax and Tmax: ∆cb, σ∆cb, Arms,
and σr (unit: ◦C).

Toral Based on TCEmax Toral Based on Tmax

Offset Ordinary Deming Weighted Binning Segmented Offset Ordinary Deming Weighted Binning Segmented

All ∆cb 0.02 0.03 0.03 0.25 −0.03 0.02 0.01 0.02 0.02 0.19 −0.04 0.01

Tref σ∆cb 0.42 0.32 0.35 0.33 0.42 0.29 0.38 0.31 0.32 0.32 0.39 0.27

Arms 0.42 0.32 0.35 0.41 0.42 0.29 0.38 0.31 0.32 0.37 0.39 0.27

Tref< ∆cb 0.06 0.15 0.11 0.35 0.00 0.15 0.05 0.14 0.10 0.27 −0.01 0.14

37 ◦C σ∆cb 0.44 0.29 0.35 0.32 0.44 0.23 0.39 0.27 0.32 0.32 0.40 0.22

Arms 0.44 0.33 0.37 0.47 0.44 0.27 0.40 0.30 0.34 0.42 0.40 0.26

37 ◦C≤ ∆cb −0.05 −0.14 −0.10 0.10 −0.10 −0.20 −0.05 −0.14 −0.10 0.06 −0.10 −0.19

Tref σ∆cb 0.38 0.26 0.30 0.28 0.38 0.23 0.35 0.25 0.28 0.28 0.35 0.22

≤38.5 ◦C Arms 0.38 0.29 0.31 0.29 0.40 0.30 0.35 0.28 0.30 0.28 0.37 0.29

Tref> ∆cb 0.25 −0.58 −0.25 −0.17 0.21 −0.09 0.14 −0.57 −0.28 −0.13 0.11 −0.19

38.5 ◦C σ∆cb 0.39 0.22 0.28 0.25 0.39 0.47 0.36 0.21 0.27 0.26 0.37 0.38

Arms 0.44 0.62 0.36 0.29 0.42 0.45 0.36 0.61 0.38 0.28 0.36 0.41

σr 0.15 0.09 0.11 0.10 0.15 0.07 0.22 0.15 0.18 0.18 0.23 0.12

Note: The bold font shows the best results (i.e., minimum values of ∆cb, σ∆cb, Arms, and σr).

3.3. Temperature Measurement Accuracy—Graphical Analysis

Results that characterize variations in IRT temperature measurement accuracy are
displayed graphically to elucidate variations across the covered temperature range and the



Sensors 2022, 22, 215 12 of 25

presence of exceptional values or outliers. Scatter and difference plots provide useful tools
for these types of analyses.

3.3.1. Scatter Plots

A scatter plot provides a direct qualitative illustration of the clinical accuracy and the
underlying variability of the relationship between Toral and Tre f . In the plots, we used Tre f
as the x-axis and Toral imputed from different Tskin values as the y-axis. Figure 6 shows
example scatter plots of Toral imputed from Tmax based on the constant offset, weighted
linear, binning, and segmented linear regression methods versus Tre f for IRT-1, since these
methods show at least one of the best performance metrics in Tables 5 and 6. Plots for
Toral imputed from other Tskin, based on other regression methods, and for IRT-2 are not
presented here due to space limitations.

Results in Figure 6 indicate that the segmented method produced the best fit (largest
R2 value), whereas the binning method produced the trend line that was closest to the ideal
Toral = Tre f line. Given the highly non-uniform distribution of data, small differences in the
slopes of the trend lines do not reflect overall accuracy differences. Two vertical lines at Tre f
= 37 ◦C and 38.5 ◦C separate the data into three temperature intervals for comparison with
Table 5. Data above the ideal trend line cause a positive ∆cb and vice versa. A wide data
distribution in the vertical direction correlated with a large σ∆cb. For example, the points in
Figure 6c are the most dispersed in the vertical direction although the trend line is close to
the ideal line, and the points in Figure 6d are the least dispersed. This indicates that σ∆cb for
the binning method is the largest and σ∆cb for the segmented linear method is the smallest
among the four regression methods, as have been shown in Table 5. Therefore, the trend
line slope and intercept, the data point variability, and the coefficient of determination
should be considered all together when reading a scatter plot. A direct qualitative view of
the clinical accuracy through a scatter plot should be supported by quantitative values of
other metrics, such as ∆cb, σ∆cb, Arms, σr, and Se/Sp/dSeSp.
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3.3.2. Difference Plots

A difference plot directly shows the distribution of all the data that are used to calculate
∆cb and σ∆cb. It can also be used to identify proportional bias. The vertical axis of the plot
is the difference between Toral and Tre f . The horizontal axis is the average of Toral and
Tre f . About 95% of the difference values will fall in the range of ∆cb ± 2σ∆cb if the values
are normally distributed [34]. The difference plots for Toral calculated from Tmax based on
the constant offset, weighted linear, binning, and segmented linear regression methods
for IRT-1 are displayed in Figure 7 as examples. The first impression from Figure 7 is
that some plots have an apparent trend (proportional bias), which is also seen in the
corresponding scatter plots in Section 3.3.1 and Appendix A. For example, Toral and Tre f
show strong correlation in Figure 6d, yet more Toral values tend to be higher than Tre f at
lower temperatures and lower than Tre f at higher temperatures. A corresponding trend of
proportional bias is seen in Figure 7d. On the other hand, a slight trend might still exist
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even if two sets of data have a high degree of agreement [54]. For the Tmax-based Toral ,
the segmented linear regression method provides the smallest ∆cb and σ∆cb that agrees
with Table 5.
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3.4. Diagnostic Performance

Variations in the ability of IRT systems to detect febrile subjects were analyzed using
the Se/Sp approach based on clinically relevant thresholds. The ROC curves based on Toral
imputed from each Tskin under different regression methods were generated (not shown
in this paper to reduce space), from which the Se/Sp values for Tcut = Tthresh = 37.5 ◦C
were derived and the dSeSp values were calculated. Table 7 shows the Se/Sp and dSeSp
values for TCEmax- and Tmax-based Toral with different regression methods. Compared
with Tables 5 and 6, we can see a strong relationship between ∆cb/σ∆cb/Arms values in
the range of 37 ◦C ≤ Tre f ≤ 38.5 ◦C and Se/Sp—the minimum values of ∆cb/σ∆cb/Arms
are correlated to the minimum values of dSeSp (i.e., the largest Se/Sp combination). The
smallest ∆cb/σ∆cb/Arms values over the range 37 ◦C ≤ Tre f ≤ 38.5 ◦C (Tables 5 and 6),
as well as optimum Se/Sp combinations for Toral (Table 7) come from the constant offset,
weighted linear, and binning methods. On the other hand, the temperature measurement
metrics over the full temperature range are not related to the dSeSp values. Therefore, if
an IRT is designed for fever screening, the clinical accuracy in the range of 37–38.5 ◦C
(oral cavity as the reference site) is more important than in other ranges. An IRT with the
smallest ∆cb/σ∆cb/Arms values within the whole temperature range does not necessarily
mean it has the best Se/Sp for fever screening. For example, the Se/Sp values based on the
segmented regression method are the worst for TCEmax- and Tmax-based Toral due to the
large ∆cb values in the range of 37.0 ◦C ≤ Tre f ≤ 38.5 ◦C, although the values of ∆cb, σ∆cb
and Arms based on this method across the full temperature range are the best.

Table 7. Diagnostic accuracy of IRT-1 and IRT-2 based on Toral imputed from TCEmax and Tmax: Se/Sp
and dSeSp.

Toral Based on TCEmax Toral Based on Tmax

Offset Ordinary Deming Weighted Binning Segmented Offset Ordinary Deming Weighted Binning Segmented

Se 0.73 0.61 0.73 0.89 0.73 0.61 0.74 0.60 0.71 0.88 0.76 0.55

IRT-1 Sp 0.94 0.97 0.95 0.87 0.94 0.97 0.94 0.98 0.95 0.89 0.93 0.99

dSeSp 0.28 0.39 0.28 0.18 0.28 0.39 0.27 0.41 0.29 0.17 0.25 0.45

Se 0.84 0.68 0.75 0.86 0.84 0.66 0.81 0.67 0.77 0.84 0.79 0.58

IRT-2 Sp 0.91 0.98 0.96 0.85 0.94 0.99 0.94 0.99 0.97 0.89 0.95 0.99
dSeSp 0.18 0.32 0.25 0.20 0.17 0.34 0.20 0.33 0.23 0.20 0.22 0.42

Note: The bold font shows the best results (dSeSp ≤ 0.20).
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To further analyze this issue, we defined the optimal cutoff temperature (Top.cut)
as the Tcut that minimizes dSeSp (lengths of green line segments in Figure 8) [52], as ob-
tained from the ROC curve. We also define predicted optimal cutoff temperature (Tp.op.cut)
as the Tcut imputed based on Tthresh and ∆cb in the temperature range of 37.0–38.5 ◦C,
Tp.op.cut = Tthresh + ∆cb. For brevity, we only show the ROC curves based on Toral imputed
from Tmax and regression methods of constant offset, weighted linear, and segmented linear
for IRT-1 in Figure 8. The Se/Sp values for Tcut equals Top.cut, Tp.op.cut, and Tthresh are labeled
together in each graph. From Figure 8, the Top.cut and Tp.op.cut values are rather close with a
difference of less than 0.1 ◦C, except for the segmented linear graph with a difference of
0.16 ◦C. The average difference between Top.cut and Tp.op.cut is as small as 0.08 ◦C. The re-
sults indicate that the fever screening performance of an IRT can be optimized by adjusting
the Tcut value based on ∆cb in the range of 37 ◦C ≤ Tre f ≤ 38.5 ◦C. Figure 8c also illustrates
the poor Se values based on the segmented linear regression method in Table 5 because of
large ∆cb in the range of 37 ◦C ≤ Tre f ≤ 38.5 ◦C.
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3.5. Clinical Accuracy—IRTs Versus NCITs

There have been inconsistent conclusions regarding the clinical accuracy of IRTs versus
NCITs. A document from the Centers for Disease Control and Prevention indicates that
IRTs are not as accurate as NCITs and may be more difficult to use effectively [55]. However,
several scientific studies have shown different opinions [21,22]. Further discussion of this
topic is needed. As described in our previous article [41], the temperature of each subject
was measured with two IRTs and six NCITs. A full analysis of the NCIT data is presented
elsewhere [45]. Therefore, it is potentially useful to directly compare the clinical data
collected by these two different IRTs and six models of NCITs. On the other hand, IRTs can
measure temperature from different facial locations. The measurements from the forehead
can be a surrogate for NCIT measurements and thus be used to indirectly compare NCIT
and IRT performance.

3.5.1. Direct Performance Comparison

During our clinical study, two different IRTs and six models of NCITs were used
to collect temperature data from each subject. The laboratory and clinical accuracy of
these six models of NCITs has been analyzed in references [56] and [45] respectively.
Laboratory results indicate that five of the six NCIT models did not meet the laboratory
acceptance criterion of ±0.3 ◦C recommended by the ASTM E1965-98:2016 standard [33].
The algorithms used by these NCITs to convert temperature from the measurement site to
the reference site (i.e., regression methods for imputing Toral from Tskin) are unknown.

Clinical NCIT results (Table 2 in [45]) show that mean ∆cb ± σ∆cb values for the six mod-
els (A, B, C, D, E, F) over the full temperature range were −0.26 ± 0.46 ◦C, −0.23 ± 0.42 ◦C,
0.15 ± 0.41 ◦C, −0.32 ± 0.58 ◦C, −0.88 ± 0.54 ◦C, and 0.22 ± 0.46 ◦C. Depending upon
the NCIT model, 48–88% of the temperature measurements were beyond the labeled ac-
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curacy, which aligns well with the results from another study [57]. On the other hand,
the worst/best ∆cb ± σ∆cb values for Tmax-based Toral across the full temperature range
were −0.09 ± 0.41 ◦C/−0.03 ± 0.29 ◦C for IRT-1 and 0.19 ± 0.32 ◦C/0.01 ± 0.27 ◦C for
IRT-2 (Tables 5 and 6). These results indicate that the two IRTs have similar accuracy, and
both have better bias and precision than the six models of NCITs, even with the worst
regression method.

NCIT results (Figure 4 in [45]) also showed that for a Tthresh of 37.5 ◦C, the Se/Sp
values for the six models were 0.11/1.00, 0.35/0.99, 0.58/0.97, 0.40/0.98, 0.03/1.00, and
0.70/0.85 respectively, with the dSeSp values being 0.89, 0.65, 0.42, 0.60, 0.97, and 0.34,
respectively. On the other hand, the Se/Sp values were 0.89/0.87 and 0.88/0.88 for TCEmax-
and Tmax-based Toral measurements by IRT-1 calibrated with the weighted linear regression
method, with the related dSeSp values being 0.18 and 0.17, respectively (Tables 5 and 6).
A comparison of these data indicates that IRTs can be more effective to screen subjects with
EBT than NCITs.

3.5.2. Indirect Comparison Based on Imaging Results

Given the similarities in physical working mechanism and facial location, IRT data
for Toral calculated from TFC and TFCmax (Tables A1 and A2 for IRT-1 and IRT-2, provided
in Appendix A for brevity) may provide a useful surrogate for NCIT measurements.
These results were compared with IRT data for Toral calculated from TCEmax and Tmax
(Tables 5 and 6 for IRT-1 and IRT-2). From Tables 5 and A1, the optimal ∆cb and σ∆cb values
across the full Tre f range for TCEmax- and Tmax-based Toral have minimal differences from
the values for TFC- and TFCmax-based Toral . However, these values in the Tre f range of
37–38.5 ◦C are 0.22 ± 0.35 ◦C and 0.18 ± 0.34 ◦C for TFC- and TFCmax-based Toral versus
0.05 ± 0.30 ◦C and 0.08 ± 0.29 ◦C for TCEmax- and Tmax-based Toral respectively. Multiple
comparisons were performed between the four sets of ∆cb values (noted as A, B, C and D)
for TFC-, TFCmax-, TCEmax- and Tmax-based Toral data using the Tukey Honest Significant
Difference method. The results indicate that the forehead measurement site typically used
by NCITs tends to provide poorer accuracy than a full-face approach or one that targets
the inner canthus (p-values < 0.05 between A/B and C/D). On the other hand, there is no
significant difference between A and B or C and D (p-values > 0.05), indicating the full-face
and inner cantus approaches have similar optimal ∆cb and σ∆cb values.

Comparisons of diagnostic performance for EBT detection between these measurement
approaches can also be made from data in Tables 7, A1 and A2. The optimal Se/Sp values
identified for IRT-1 are 0.67/0.82 or 0.74/0.72 for TFC-based Toral , 0.67/0.87 or 0.72/0.78
for TFCmax-based Toral (Table A1), versus 0.89/0.87 for TCEmax-based Toral , and 0.88/0.89 for
Tmax-based Toral (Table 7). The results for IRT-2 in Tables 7 and A2 are similar. The optimal
dSeSp values identified for both IRTs are between 0.31 and 0.38 for TFC- and TFCmax-based
Toral , which are close to the best dSeSp value for the six models of NCITs.

Corresponding scatter plots, difference plots, and ROC curves based on Toral calculated
from TFC are provided (Figures 1–3 in Appendix A) for IRT-1 to mirror the results in
Figures 6–8, for Toral calculated from Tmax. The ROC curves for TFC are significantly lower
than the curves for Tmax, which agree with the Se/Sp values in Tables 7 and A1 and indicate
the potential low Se/Sp values of NCITs. The scatter plots of TFC-based Toral versus Tre f
(Figure A1) are more dispersed and their trend lines are further from the ideal line than
the graphs for Tmax, indicating larger ∆cb and σ∆cb for TFC-based Toral . Comparisons of
difference plots for TFC- and Tmax-based Toral show the same conclusion.

4. Discussion

Through an extensive clinical study of over 1000 subjects, we have evaluated the
clinical accuracy of two IRTs under controlled conditions for temperature measurement.
The clinical accuracy of the IRTs has been quantitatively evaluated with different metrics
including ∆cb, σ∆cb, Arms, σr, and Se/Sp/dSeSp. Dividing the data into training and testing
sets, we have studied the impact of calibration approaches and methods for establishing
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diagnostic cutoff temperatures, and elucidated differences in performance between IRTs
and NCITs. The results are displayed with scatter plots, difference plots and ROC curves.
Overall, these findings provide unique and valuable insights into both the optimization
and assessment of IRT-based devices for temperature estimation and fever detection.

4.1. Effects of Regression Methods on the Clinical Accuracy

Our analysis of regression approaches indicated no clear optimal method that can
improve all clinical accuracy metrics. A specific regression method tended to provide the
best clinical accuracy in terms of a specific metric. When the full range of temperatures
were considered in our data, the segmented linear regression provided the smallest Arms
values, the least scatter (and the highest R2 value) in Figure 6, and the narrowest difference
distribution range in Figure 7. However, when we restricted the temperature range to the
diagnostic zone (37 ◦C ≤ Tre f ≤ 38.5 ◦C), the constant offset, weighted linear, and binning
methods provided the highest Se/Sp and the smallest bias.

To apply different regression methods to find the relation between Tskin and Tre f ,
we used Tskin and Tre f as independent and dependent variables, respectively. In theory,
the independent variable should be the one that is more accurate, in our case, Tre f . If we
used Tre f and Tskin as independent and dependent variables respectively, the function
we obtained will be Tskin = f (Tre f ). During the evaluation, this function should be used
inversely (Toral = f −1(Tskin)) to convert Tskin to Toral . The inverse operation might cause
extra errors. We applied the inverse equations of these regression equations to the testing
data and calculated the same clinical accuracy metrics (For brevity, not included in this
paper) as shown in Tables 5–7. We did not find clinical accuracy improvement in terms of
these metrics.

4.2. Metrics and Requirements for Evaluating Clinical Accuracy

Tables 5–7 show different clinical accuracy metrics for IRT-1 and IRT-2 respectively,
including ∆cb, σ∆cb, Arms, σr, and Se/Sp/dSeSp. While ∆cb and σ∆cb are recommended in
international thermometer standards, they do not necessary represent the optimal metrics
for all applications. One limitation of ∆cb as a performance metric is that it is mean value
only reflecting the systematic bias and that large positive and negative local biases may
cancel out, thus producing a small ∆cb value, as if the local biases were small. Therefore,
∆cb and σ∆cb should always be evaluated together. The metric Arms is the root-mean-square
difference between measured values (Toral) and reference values (Tre f ) [51]. Being a single
accuracy metric that combines the impact of ∆cb and σ∆cb, it helps ensure that positive
and negative local bias values do not cancel out to give an erroneous impression of strong
performance, as can occur with ∆cb. However, Arms does not indicate whether errors
are mainly positive or negative and does not distinguish systematic and random errors.
Another metric that was not discussed in this article, mean absolute error (MAE), is similar
to Arms and might also be considered.

The values of ∆cb, σ∆cb and Arms for different temperature ranges might have different
significance. If an IRT is designed for fever screening, then values of these metrics within
the reference temperature range of 37–38.5 ◦C are more important than those based on
the full temperature range, since they most directly impact diagnostic ability. For such a
device, Se/Sp values for common Tthresh values (e.g., 37.5 ◦C or 38 ◦C) might be stronger
performance metrics than ∆cb and σ∆cb. The AUC value is commonly quoted for ROC
curves [41], which may be a better metric for overall performance since it is an aggregate
measure of diagnostic capability. The higher the AUC, the greater the potential of an IRT
to distinguish subjects with and without EBT. To achieve the full potential of the IRT, the
optimal cutoff temperature to obtain the least dSeSp can be predicted based on Tthresh and
∆cb in the temperature range of 37.0–38.5 ◦C, Tp.op.cut = Tthresh + ∆cb. In reality, users can
also increase or decrease Tcut to increase Sp or Se at the cost of decreasing Se or Sp at the
same time.
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Relatively little consensus has been achieved in the establishment of minimum perfor-
mance requirements for IRTs. Currently, we are only aware of one consensus requirement
for IRT laboratory accuracy. The IEC 80601-2-59: 2017 standard [30] requires that laboratory
error of IRTs be below 0.5 ◦C in the Tskin range of 34–39 ◦C [32]. Performance requirements
in thermometer standards may also be adapted for use with IRTs: ISO 80601-2-56:2017
for clinical thermometers [34], ASTM E1112-00:2011 for electronic thermometers [58], and
ASTM E1965-98:2016 for infrared thermometers [33]. The maximum permissible errors
defined in these standards are listed in Table 8.

Table 8. Maximum permissible errors defined in different standards.

Standards
Devices

(Required Minimum
Display Range)

Maximum Permissible Errors,
in Specific Temperature Ranges

Accuracy Type
(Laboratory/Clinical) Note

IEC
80601-2-59:
2017 [30]

IRTs
(None) ±0.5 ◦C, 34.0–39.0 ◦C. Laboratory

Errors from all the
test devices are

combined.

ISO
80601-2-56:
2017 [34]

clinical thermometers
(34.0–43.0 ◦C)

±0.3 ◦C, withing the rated
output range;

±0.4 ◦C, withing the rated
extended output range.

Laboratory
This standard is

under revision for
improvement.

ASTM
E1112-00:
2011 [58]

electronic thermometers
(35.5–41.0 ◦C)

±0.3 ◦C, < 35.8 ◦C;
±0.2 ◦C, 35.8–37.0 ◦C;
±0.1 ◦C, 37.0–39.0 ◦C;
±0.2 ◦C, 39.0–41.0 ◦C;
±0.3 ◦C, > 41.0 ◦C.

Not clear

ASTM
E1965-98:
2016 [33]

IR thermometers
(Ear canal: 34.4–42.2 ◦C;

Skin: 22.0–40.0 ◦C)

For ear canal IR thermometers:
±0.3 ◦C, < 36.0 ◦C;

±0.2 ◦C, 36.0–39.0 ◦C;
±0.3 ◦C, > 39.0 ◦C.

For skin IR thermometers:
±0.3 ◦C, over the display range.

Laboratory

None of the aforementioned standards includes clinical accuracy requirements for
IRTs or thermometers. The ISO 80601-2-56:2017 standard provides a clinical example
where ∆cb ± σ∆cb is 0.07 ± 0.22 ◦C. The text indicates that the ∆cb value is acceptable
and the σ∆cb value could be considered by some to be clinically acceptable, although
it is relatively high. The ASTM E1965-98:2016 standard also provides an example of
clinical accuracy evaluation results for an infrared thermometer, with ∆cb ± σ∆cb values of
−0.25 ± 0.35 ◦C, −0.16 ± 0.18 ◦C, and 0.11 ± 0.21 ◦C for age groups of infants, children,
and adults, respectively. The standard indicates that the thermometer under test may
not be sufficiently accurate for use on infants since errors in temperature measurements
may be clinically significant. Nevertheless, these examples do not define clinical accuracy
requirements. Based on our study, an IRT can provide a good fever screening performance
(dSeSp ≤ 0.2) if σr ≤ 0.2 ◦C and its temperature measurement accuracy satisfies these
requirements within the temperature range of 37.0–38.5 ◦C with oral cavity as the reference
body site: −0.1 ◦C ≤ ∆cb ≤ 0.1 ◦C, σ∆cb ≤ 0.4 ◦C, Arms ≤ 0.4 ◦C. For our IRTs, these
requirements are met for the TCEmax- and Tmax-based Toral data imputed with the weighted
linear (for IRT-1 and IRT-2) and constant offset (for IRT-2 only) methods.

4.3. Difference Plot Methods

In Section 3.3.2, we used the mean of Toral and Tre f as the horizontal axis of the
difference plots, based on the Bland–Altman approach. In theory, the horizontal axis of
the plot is determined based on the best estimate of the true values [50]. While we believe
Tre f is more accurate than Toral , Tre f also presents error with the SD of two measurements
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being ~0.1 ◦C. Moreover, there is no consensus in the literature as to the optimal approach
for thermographic data analysis. Bland and Altman argued that the difference against
the reference measurements will show a relationship between them when none exists [54].
Therefore, they recommended that the mean value be used on the horizontal axis. However,
researchers still often use reference values alone as the horizontal axis [50,59,60], believing
reference values are the best estimate of the true values. We redrew the difference plots of
Figure 7 with Tre f as the horizontal axis, as shown in Figure 9. From the figure, we can see
that the trends in Figure 9 are different from the trends in Figure 7. Negative correlation can
be seen in Figure 9 as Bland and Altman predicted [54]. However, a significant advantage
of one approach over the other is not clearly apparent.
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4.4. Performance Comparison of IRTs and NCITs

IRTs and NCITs represent the primary device types currently used in practice for
real-time measurement of EBT during epidemics [17–19,29]. They both use passive re-
mote sensing technologies that detect mid- and/or long-wave IR radiation and convert
measurements to temperature based on the Stefan–Boltzmann law [61]. NCITs estimate
temperature at a reference body site (usually oral) based on radiation from a small region
of skin (e.g., forehead) [33], whereas IRTs provide a 2D temperature distribution of the
face and may target a specific region (e.g., inner canthi) [30]. FDA has cleared NCITs to
independently measure human body temperature, yet no IRT has been cleared for a similar
purpose. Current IRTs on US market are only authorized for emergency use [62]. In several
scientific studies, the accuracy of NCITs has been called into question, particularly relative
to IRTs [21,22]. Our study provides another angle to compare IRTs with NCITs.

Both indirect and direct comparisons of IRTs with NCITs indicate that when designed
for optimal performance, the clinical accuracy of IRTs will likely be greater than that of
NCITs. The two IRTs have similar accuracy, and both have better bias and precision than
the six models of NCITs, even with the worst regression method. One reason for this may
be the use of the forehead as the NCIT measurement location. The skin temperature at
this location tends to be sensitive to environmental factors such as ambient temperature
and airflow, which may degrade correlation with core/oral temperature [23]. The IRTs
implemented in the current study also use higher performance electronic components than
the typical portable NCIT, and thus are much more expensive. Of course, in order for an
IRT to achieve a high degree of clinical accuracy it will need to meet laboratory accuracy
requirements [32], have an effective algorithm to convert the measured skin temperature to
the temperature at a reference body site (e.g., oral cavity), and be deployed and operated
according to established best practices.

In summary, from both temperature measurement accuracy and diagnostic perfor-
mance standpoints, approaches based on forehead measurements, as with most NCITs,
are likely to be inferior to those involving the full face or inner canthus measurements
recommended for IRTs.
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4.5. Study Challenges and Limitations

While our clinical study provided important insights, it is worth noting some of the
key challenges we faced and the limitations to our findings. For example, the distribution of
reference temperatures acquired is clearly uneven. Most subjects had oral temperatures of
37.0 ± 0.5 ◦C and the number of subjects with an EBT was limited. While the temperature
distribution across a typical population would likely be somewhat Gaussian, an optimal
data set would provide a more uniform distribution of temperatures across the normal
through febrile range. However, it was difficult to recruit febrile subjects, which is a
common problem for clinical fever screening studies [25]. Our study was initially designed
to have a large population (~1000 subjects) in order to accrue a statistically significant
sample of febrile subjects, despite a relatively low prevalence. As a result, we were able to
obtain a greater number of data sets from febrile subjects than most clinical studies.

Perhaps the most significant caveat to our results is the limited age range of the study
population. Overall, 95% of subjects were under 30 years of age. Research on the effect
of age on IRT accuracy is limited, yet one paper has shown that the best correlation of
IRT temperatures with core temperature is seen in children (aged 3–18 years) [63]. While
our study did not include subjects below 18 years old, about half were in the 18–21 range.
Therefore, the results in this paper might not represent the accuracy for all age groups.
A clinical study for system validation should cover all age groups, dependent on the device
application. Since the two sets of data for training and testing were based on the same
pool of data and random selection was used to determine the two sets, the performance
estimates may be biased (upwards) and not generalizable in the target population [64].
As such, it is likely that our study may represent a best-case scenario.

The subject circadian rhythm might also affect fever screening performance. For
example, different studies have shown that core body temperature in the morning maybe
0.3–0.9 ◦C lower than in the afternoon [13,14,65]. We did not consider circadian rhythm in
our analysis, yet additional study of this variable and the need for methods to mitigate its
impact in infectious disease screening is warranted [66]. In the future, we intend to provide
additional retrospective analysis of our data to assess this potential confounding factor.

To minimize the influence of outside temperature, a 15-min acclimation period was
implemented prior to the start of measurements. However, oral temperature might still be
affected by smoking or ingestion of cold or hot food or beverage during this time [67]. To
mitigate this potential confounder, we extracted data sets for which the difference between
the two oral temperature readings was greater than 0.5 ◦C as well as those where only one
oral temperature reading was recorded. These exclusions amounted to 56 subjects. Such
checks on data quality are useful for ensuring the validity of clinical IRT data [49].

5. Conclusions

Overall, our large-scale clinical study has generated unique and highly valuable quan-
titative information on fever-screening IRT performance and helped to identify potential
best practices for the calibration and evaluation of IRT clinical accuracy. Current findings
on IRT diagnostic performance were generally consistent with our prior analysis of results
from 500 subjects, indicating IRTs have a strong potential for achieving high sensitivity
and specificity in the detection of EBT. Algorithms used to impute oral cavity temperature
based on skin temperature are critical for accurate clinical measurement. A simple offset
approach may be effective in many situations, but when calibration data sets involve a
high proportion of normal-range temperatures, then methods that account for this uneven
distribution have key advantages. While metrics recommended in standards provide useful
insights into IRT performance, implementing additional approaches like Arms to assess
temperature measurement accuracy and Se/Sp for clinical diagnostic accuracy may be ben-
eficial. Moreover, temperature measurement accuracy within a temperature window near
the diagnostic threshold for fever may be more important for evaluating fever screening
IRTs than accuracy within a full temperature range.
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Direct and indirect comparisons of our custom IRT systems with commercial NCITs
showed that the former (i.e., IRT systems) were more accurate and provide greater diagnos-
tic efficacy. Our results indicate that this is due at least partly to the fact that IRTs measure
temperature from a more thermally stable facial location provided by a large number of
pixels (e.g., 320 × 240 pixels). The superior capability of IRTs may enable the detection of
lower grade and/or earlier stage fevers. Compared with NCITs, IRTs might be a better
choice for fever screening in high-traffic areas or higher-risk locations where the higher cost
could be justified by greater effectiveness. Furthermore, an IRT operator is not required
to be in physical proximity to the subject (e.g., the distance between subject and IRTs was
0.6–0.8 m in this study). Indeed, they could even be in a different area or room, or a
completely automated approach could be implemented, thus reducing the risk of infection.
Another advantage of IRTs is their ability to provide temperature data from a range of
facial locations, such as the inner canthi for fever detection [41]. Spatial variations in facial
temperature can also be related to certain diseases (e.g., skin inflammatory conditions,
breast cancer, systemic inflammatory diseases, septic shock, and the healing potential of
wounds) [68]. Finally, it should be noted that additional study of our clinical results will be
needed to elucidate additional confounding factors.
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Appendix A. Additional Data for Toral Based on Forehead Temperatures

Table A1. Clinical accuracy of IRT-1 for Toral based on TFC and TFCmax: ∆cb, σ∆cb, Arms, σr, Se/Sp,
and dSeSp.

Toral Based on TFC Toral Based on TFCmax

Offset Ordinary Weighted Segmented Deming Binning Offset Ordinary Weighted Segmented Deming Binning

All ∆cb −0.02 −0.02 0.47 −0.04 −0.02 0.10 −0.03 −0.02 0.41 −0.04 −0.03 0.07

Tref σ∆cb 0.67 0.45 0.45 0.39 0.51 0.75 0.55 0.43 0.44 0.37 0.48 0.66

Arms 0.66 0.45 0.65 0.39 0.51 0.75 0.55 0.43 0.60 0.37 0.48 0.66

Tref< ∆cb 0.12 0.21 0.70 0.18 0.17 0.21 0.10 0.19 0.61 0.16 0.14 0.17

37 ◦C σ∆cb 0.63 0.26 0.28 0.22 0.42 0.72 0.52 0.27 0.31 0.21 0.41 0.64

Arms 0.64 0.33 0.75 0.28 0.45 0.75 0.53 0.33 0.68 0.27 0.43 0.66

37 ◦C≤ ∆cb −0.18 −0.28 0.22 −0.31 −0.24 −0.04 −0.19 −0.27 0.18 −0.29 −0.22 −0.05

Tref σ∆cb 0.66 0.34 0.35 0.30 0.46 0.75 0.53 0.32 0.34 0.31 0.42 0.65

≤38.5 ◦C Arms 0.68 0.44 0.41 0.43 0.51 0.75 0.56 0.42 0.39 0.42 0.48 0.65

Tref> ∆cb −0.87 −1.71 −1.15 −1.10 −1.32 −0.56 −0.96 −1.61 −1.06 −0.93 −1.23 −0.57

38.5 ◦C σ∆cb 0.46 0.38 0.36 0.74 0.32 0.56 0.43 0.34 0.32 0.64 0.33 0.58

Arms 0.97 1.75 1.20 1.30 1.35 0.77 1.04 1.64 1.10 1.11 1.27 0.79

σr 0.20 0.07 0.08 0.08 0.13 0.23 0.18 0.08 0.10 0.08 0.14 0.22

Se 0.67 0.14 0.88 0.35 0.58 0.74 0.67 0.33 0.86 0.42 0.58 0.72

Sp 0.82 1.00 0.48 0.99 0.92 0.72 0.87 1.00 0.62 0.99 0.94 0.78

dSeSp 0.37 0.86 0.53 0.65 0.43 0.38 0.35 0.67 0.41 0.58 0.42 0.36

Note: The bold font shows the best results (i.e., minimum values of ∆cb, σ∆cb, Arms, σr , and dSeSp). The green font
indicates correlation between ∆cb in temperature range of 37.0–38.5 ◦C and dSeSp.

Table A2. Clinical accuracy of IRT-2 for Toral based on TFC and TFCmax: ∆cb, σ∆cb, Arms, σr, Se/Sp,
and dSeSp.

Toral Based on TFC Toral Based on TFCmax

Offset Ordinary Weighted Segmented Deming Binning Offset Ordinary Weighted Segmented Deming Binning

All ∆cb 0.14 0.07 0.58 0.04 0.10 0.19 0.06 0.05 0.56 0.02 0.05 0.07

Tref σ∆cb 0.70 0.43 0.43 0.40 0.48 0.73 0.57 0.40 0.40 0.36 0.44 0.63

Arms 0.71 0.43 0.72 0.40 0.49 0.76 0.58 0.40 0.69 0.36 0.44 0.63

Tref< ∆cb 0.23 0.27 0.77 0.22 0.25 0.26 0.14 0.24 0.75 0.18 0.19 0.13

37 ◦C σ∆cb 0.65 0.25 0.27 0.23 0.39 0.68 0.53 0.24 0.24 0.22 0.36 0.59

Arms 0.69 0.37 0.82 0.31 0.46 0.73 0.55 0.34 0.79 0.28 0.40 0.60

37 ◦C≤ ∆cb 0.01 −0.21 0.31 −0.24 −0.12 0.07 −0.06 −0.21 0.31 −0.24 −0.14 −0.03

Tref σ∆cb 0.76 0.37 0.38 0.37 0.49 0.80 0.63 0.35 0.35 0.35 0.45 0.69

≤38.5 ◦C Arms 0.76 0.42 0.49 0.44 0.50 0.80 0.63 0.41 0.47 0.43 0.47 0.69

Tref> ∆cb 0.06 −1.33 −0.75 −0.23 −0.79 0.21 −0.04 −1.22 −0.71 −0.34 −0.69 0.17

38.5 ◦C σ∆cb 0.71 0.19 0.20 1.24 0.34 0.76 0.51 0.15 0.15 0.82 0.26 0.59

Arms 0.67 1.35 0.77 1.18 0.85 0.74 0.48 1.23 0.72 0.84 0.73 0.58

σr 0.22 0.06 0.07 0.08 0.13 0.23 0.20 0.07 0.07 0.08 0.13 0.22

Se 0.70 0.26 0.86 0.33 0.60 0.74 0.74 0.35 0.88 0.37 0.60 0.74

Sp 0.75 1.00 0.35 0.99 0.90 0.73 0.84 0.99 0.40 0.99 0.93 0.82

dSeSp 0.39 0.74 0.67 0.67 0.41 0.37 0.30 0.65 0.61 0.63 0.40 0.31

Note: The bold font shows the best results (i.e., minimum values of ∆cb, σ∆cb, Arms, σr , and dSeSp). The green font
indicates correlation between ∆cb in temperature range of 37.0–38.5 ◦C and dSeSp.
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Figure A1. Scatter plots of Toral imputed from TFC based on different regression methods versus Tre f
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