
����������
�������

Citation: Olkeba, B.K.; Boets, P.;

Mereta, S.T.; Mandefro, B.; Debesa,

G.; Ahmednur, M.; Ambelu, A.;

Korma, W.; Goethals, P.L.M.

Malacological and Parasitological

Surveys on Ethiopian Rift Valley

Lakes: Implications for Control and

Elimination of Snail-Borne Diseases.

Int. J. Environ. Res. Public Health 2022,

19, 142. https://doi.org/10.3390/

ijerph19010142

Academic Editor: Paul B. Tchounwou

Received: 29 August 2021

Accepted: 16 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Malacological and Parasitological Surveys on Ethiopian Rift
Valley Lakes: Implications for Control and Elimination of
Snail-Borne Diseases

Beekam Kebede Olkeba 1,2,3,* , Pieter Boets 1,4 , Seid Tiku Mereta 2, Belayhun Mandefro 5, Gemechu Debesa 6 ,
Mahmud Ahmednur 2 , Argaw Ambelu 2 , Wolyu Korma 2 and Peter L. M. Goethals 1

1 Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Building F,
9000 Ghent, Belgium; pieter.boets@oost-vlaanderen.be (P.B.); Peter.Goethals@ugent.be (P.L.M.G.)

2 Department of Environmental Health Science and Technology, Jimma University, Jimma 378, Ethiopia;
seidtiku@yahoo.com (S.T.M.); mahmudahmednur@gmail.com (M.A.); aambelu@yahoo.com (A.A.);
wolyukorma53@gmail.com (W.K.)

3 Department of Environmental Health Science, Hawassa University, Hawassa 1560, Ethiopia
4 Provincial Centre of Environmental Research, Godshuizenlaan 95, 9000 Ghent, Belgium
5 Department of Biology, College of Natural and Computational Sciences, Dilla University, Dilla 419, Ethiopia;

belayhunmandefro@gmail.com
6 Department of Geography and Environmental Studies, Jimma University, Jimma 378, Ethiopia;

gemechudebesa@gmail.com
* Correspondence: beekamkebede@gmail.com

Abstract: Schistosomiasis is one of the snail-borne diseases responsible for the second-highest
burden of diseases among neglected tropical diseases. The use of mass drug administration to
the populations most at risk is a backbone of the strategy to prevent and control schistosomiasis
transmission. However, it offers no protection against re-infection, and humans are often re-exposed
when they return to water bodies where snails release cercariae. Surveys on cercarial infection in snails
could provide better insights on human disease risk. Hence, in this study, we investigated cercarial
infection in snails and also determined the epidemiology of Schistosoma mansoni among fishermen at
Ethiopian Rift Valley lakes. Freshwater snails were collected from the shorelines of Ethiopian Rift
Valley lakes for examination of cercarial infection during 2020. Environmental data on water quality
variables and physical characteristics of snail habitats were collected. Stool samples were collected
from fishermen and the Kato-Katz technique was applied for the quantification of Schistosoma mansoni
eggs. A malacological survey indicated that six morphologically distinguishable types of cercariae
were found in snails. Infected snails with cercaria were more likely present in habitats with high
five-day biological oxygen demand and low dissolved oxygen. The overall prevalence of Schistosoma
mansoni infection among the fishermen at Ethiopian Rift Valley lakes was found to be 21.5%. This
indicates that fishermen at Ethiopian Rift Valley lakes are one of the groups of people harboring
schistosome cercariae which are potentially responsible for the transmission of schistosomiasis
to lakeshore communities who have contact with lake water. Therefore, complementary medical
treatment, public health interventions, environmental management and snail reduction are needed to
control the transmission of schistosomiasis.

Keywords: freshwater snails; cercarial infection; Schistosoma mansoni; fishermen; Ethiopian Rift
Valley lakes

1. Introduction

Snail-borne diseases form an important share of parasitic diseases that pose risks to
human health and cause major socioeconomic problems [1]. Schistosomiasis and fascioliasis
are two of the most common snail-borne diseases worldwide which are widespread in many
tropical and sub-tropical countries. The medical and economic burden of these diseases are
often neglected which is why they are included in the list of the neglected tropical diseases
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(NTDs) [2]. Schistosomiasis is responsible for the second highest disease burden among
NTDs [3], with almost 93% of the 230 million infected people worldwide living in African
regions [4]. Fascioliasis is another important snail-borne disease that affects livestock
and humans throughout the world [5]. Traditionally regarded as a disease of livestock,
fascioliasis is now recognized as important emerging zoonotic disease of humans [6]. An
estimated 2.4 million people are infected worldwide while 180 million people are at risk of
infection [7]. Ethiopia is one of those countries with the highest number of cases of human
schistosomiasis where 38.3 million people are either infected or live in schistosomiasis
endemic areas [8]. Both diseases, schistosomiasis and fascioliasis, share similarities in
their life cycle, of which the most prominent feature is the infection of specific freshwater
snails that act as intermediate hosts [9–11]. Many species of freshwater snails belonging
to the genera Biomphalaria, Bulinus and Oncomelania are intermediate hosts of different
trematode parasites of medical and veterinary importance [2]. In Ethiopia, snails of the
genus Biomphalaria (B. pfeifferi and B. sudanica) Bulinus (Bu. abyssinicus and Bu. africanus) are
intermediate hosts of S. mansoni and S. heamatobium, respectively [12]. Snails of the genus
Lymnaea (L. natalensis and L. truncatula) are intermediate hosts of Fasciola parasites [13,14].

The transmission cycle of snail-borne diseases starts when urine or feces containing
parasites are deposited in freshwater bodies and the hatched miracidia infect the snail
intermediate hosts [15]. In the snails, the miracidium develops into a mother sporocyst. In
the schistosomes, the sporocyst develops into the second generation sporocysts, after which
in the infective larvae, cercariae are formed. In some hermaphroditic trematodes (e.g., liver
flukes), the mother sporocyst develops into rediae which produce cercariae [15]. Once the
cercariae are released into the water, they either penetrate the skin of the definitive host
(e.g., schistosomes) or are ingested after encysting as metacercariae in or on edible plants
or animals. After entering the definitive host, the schistosome larvae mature into adult
worms in the blood vessels of the liver, intestine and bladder. The worms lay thousands
of eggs that causes damage as they grow through tissues and consequently, infection
occurs accordingly [16]. The cycle perpetuates when infected human/animal defecate or
urinate into freshwater sources [15]. The populations that are at risk of schistosomiasis
include school-aged children and adults in endemic areas and people with occupations that
put them in direct contact with potentially infectious waters, such as fishermen, farmers,
irrigation workers and women fetch/transport water for domestic use [4,17].

The World Health Organization (WHO) guided schistosomiasis prevention and control
strategies depending on mass drug administration (MDA) [18,19]. Similarly, following
the London declaration on NTDs in 2012 [20], the Federal Ministry of Health (FMoH) of
Ethiopia developed a national master plan for combating the country’s most common
NTDs to attain a transmission break plan by 2025 [21]. For schistosomes, the target is to
control morbidity by means of MDA of Praziquantel to the population at risk. The MDA
strategies are effective in reducing morbidity associated with schistosomes by decreasing
the worm burden and the intensity of infection [15]. Although MDA is the backbone to
break the transmission of schistosomiasis, the prevalence of the disease remains very high in
many countries [22,23]. Mass drug administration offers no protection against re-infection,
and humans are often re-exposed when they return to water bodies with snail releasing
cercariae [24,25]. Hence, MDA is not effective as sole component to limit the transmission
of schistosomiasis in high prevalence regions [26,27]. Snail control has appeared to be
a more effective strategy to reduce the transmission of snail-borne diseases in several
countries [28–30]. However, snail control efforts that make considerable reductions in
density of snail intermediate hosts at water-access points can sometimes fail if infected
snails remain [31]. In recent times, it has been shown that information on cercarial infection
in freshwater snail intermediate hosts could provide a better prediction of human disease
risk rather than investigating snail population size alone [32–34].

Therefore, this study aimed to (i) investigate cercarial infection in freshwater snails
and (ii) determine the epidemiology of S. mansoni infection among fishermen, an important
group being at risk, at Ethiopian Rift Valley lakes and its associated risk factors. The
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findings of this study can be used to provide information on the importance of a holistic
approach to support the prevention and control of schistosomiasis.

2. Materials and Methods
2.1. Study Area

The study was conducted on Ethiopian Rift Valley lakes, namely Lake Hawassa and
Lake Ziway which are situated in central Ethiopia (Figure 1). Lake Hawassa is located
in the tropical rainy climate zone at a distance of 271 km from Addis Ababa, the capital
city. It is situated between latitudes 06◦0.97′ N and 07◦0.23′ N and longitudes 38◦0.37′

E and 38◦0.47′ E at an elevation of 1685 m above sea level, covering a total area of km2,
with an average depth of 11 m [35,36]. Lake Ziway is located in the warm temperate rainy
climate zone at a distance of about 160 km from Addis Ababa. It has an open water area
of 434 km2, with an average depth of 4 m. It is situated between latitudes 07◦0.85′ N and
08◦0.01′ N and longitudes 38◦0.72′ E and 38◦0.83′ E at an elevation of 1636 m above sea
level [37,38]. Ethiopian Rift Valley lakes provide social, economic and ecological benefits
for the local communities in the area. In spite of these benefits, there is a high probability
of acquiring snail-borne diseases as there is frequent human-water contact for purposes
such as domestic use, irrigation, livestock watering, fishing, recreation and alike. Fishing is
an off-season activity dominant in both zones through which fishing communities get in
contact with water possibly contaminated with trematode parasites.
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Figure 1. Map of the study area showing locations of sampling sites. The map was constructed using
the geographic information system (GIS) software ArcGIS 10.7.

2.2. Sampling Site Selection

Shorelines of the Ethiopian Rift Valley lakes and Tikur Wuha River (the tributary of
Lake Hawassa) where there was evidence of human-water contact activities were selected
as sampling sites for data collection. Data on environmental factors (water quality vari-
ables and snail physical habitat characteristics) and cercarial infections of freshwater snail
intermediate hosts were collected from each sampling site. Data collection was carried out
during the dry (March) and wet (November) seasons in 2020 at Lake Hawassa, whereas
only during the wet season (November) in 2020 at Lake Ziway. During the dry season, data
collection at Lake Ziway could not be carried out due to interruption by the worldwide
COVID-19 pandemic.
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2.3. Environmental Variables

Physico-chemical water quality variables including pH, water temperature, dissolved
oxygen and electrical conductivity were measured onsite using a portable Multiprobe Meter
(HQ40d Single-Input Multi-parameter Digital Meter, Hach Company, Loveland, CO, USA).
Turbidity was measured onsite using a turbidity meter (Wag-WT3020; Halma PLC Com-
pany, Amersham, UK). Chlorophyll-a was measured onsite using a hand-held fluorometer
(Aqua Fluor; Turner Designs, San Jose, CA, USA). A water sample (2000 mL) was taken
from each sampling site in polyethylene bottles and transported to the laboratory using an
ice cooler box for analysis of other water quality variables. In the laboratory, a water sample
(250 mL) was filtered through a 45 µm filter paper and then analyzed for concentrations
of total hardness and ions such as calcium, magnesium and chloride. An unfiltered water
sample was used for the determination of total suspended solids, and five-day biologi-
cal oxygen demand (BOD5). These analyses were carried out according to the standard
methods for the examination of water and wastewater [39].

The percentage of macrophyte (emergent, submerged and floating) cover was visu-
ally estimated at each sampling site [40]. The percentage of the macrophyte cover was
categorized into five groups: very low (<10%); low (10–35%); moderate (35–65%); high
(65–90%); and very high (>90%) [41]. Canopy cover was estimated visually based on the
percentage of shade [42]. Water depth was measured using a graduated stick calibrated in
centimeters. Transparency of water was determined with a Secchi disk 30 cm in diameter
attached to a calibrated cord. Ambient temperature was measured using a mercury-in-glass
thermometer (THL-210-050T; Vintage Gallenkamp Griffin, England). The type of substrate
was carefully assessed by observation and classified into detritus, silt, sand, gravel, cobble,
boulder or bedrock [43]. The presence or absence of anthropogenic activities taking place
at each sampling site was recorded following direct observations (Figure 2). The common
anthropogenic activities recorded were: fishing, farming/cultivation, washing/bathing,
swimming/playing in the water, open defecation/urination, livestock watering and water
abstraction for irrigation and industry.
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Figure 2. Pictures taken at sampling sites in the study area: Lake Hawassa (a,b); Lake Ziway (c);
and Tikur Wuha River (d). Data were collected at Lake Hawassa and Tikur Wuha River during both
the dry (15–22 March) and wet (13–30 November) seasons in 2020, but only during the wet season
(13–30 November) at Lake Ziway.

A hand-held global positioning system (GPS) instrument (GPS 72H; Garmin Ltd.,
Olathe, KS, USA) was used to record altitude and coordinates (latitude and longitude) at
each sampling site.
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2.4. Snail Collection and Examination of Cercarial Infection

Freshwater snails were collected using long-handheld scoops [44]. Two experienced
and well-trained persons carried out scooping for 30 min. The scoop was pushed through
vegetation; the biomphalarid snails were picked out of the scoops by hand using gloves and
placed in plastic containers containing water and vegetation from the same habitat to trans-
port them to the laboratory. In the laboratory, the biomphalarid snails were morphologically
identified to species level using the standard identification keys [45].

The biomphalarid snail species were examined for cercarial infections by the natural
shedding method following procedures used in previous studies [34,44,46]. The snails
were rinsed with aerated (dechlorinated) tap water to remove the mud from their shells
and placed individually in beakers containing 10 mL aerated tap water and exposed to
sunlight for 1–4 h to induce shedding cercariae. The time for cercariae shedding was
carefully selected to coincide with the early peak shedding time (mid-day). The water in
the bottle was then checked frequently for cercariae shedding with a hand lens. If any
beaker confirmed the presence of cercaria, a sample of water was transferred to slides
using a dropper and stained with iodine solution and covered by a cover slip for cercariae
identification. Shed cercariae were morphologically identified to genus level with a light
microscope (100×) (TK-C921BEG; Victor Company of Japan Limited, T2 Tokyo, Japan) and
identification keys [47]. Snails that did not shed on the first exposure were re-exposed to
sunlight for the cercariae shedding every day for another consecutive seven days. During this
course of time, the snails were fed lettuce in the containers containing aerated water which
was replaced daily. The genus of the cercariae released by each snail was recorded. Pictures of
the cercariae were taken by digital camera fitting the eye lens of the microscope (SM-G920F).

2.5. Mapping Spatial Distribution of Sampling Sites

The type of land use/land cover at each sampling site in a 10 m stretch starting from
the lakeshore and moving outwards was assessed [48] and then checked with the map
templates of land use/land cover types of the study area computed from satellite images.
The Sentinel-2 images of the study area were downloaded from the United States Geological
Survey website (https://earthexplorer.usgs.gov; accessed on 25 March 2020) from which
land use/land cover types were computed. Sentinel-2 images with spatial resolution of
10 m were used to assess land use/land cover of the study area through earth resource
data analysis system (ERDAS) 2015 image processing software. Images used dated from
the dry season of 2020. The catchment landscapes (land use/land cover types) adjacent to
sampling sites were classified into five categories, including built-up, farmland, marshy
land, wetland or water body based on standard guidelines [48]. A confusion matrix was
employed to assess the classification accuracy. Accuracy of the classified land use/land
cover maps were assessed using a combination of overall accuracy, producer’s accuracy,
user’s accuracy, errors of commission and omission [49] and kappa coefficient [50].

Maps of the study area and each land use/land cover types were mapped and visually
digitized using the satellite image in the geographic information system (GIS) software
packages ERDAS 2015, ArcGIS 10.7 and validated by ground truth points.

2.6. Parasitological Survey and Assessment of Risk Factors

The parasitological survey was carried out to determine the prevalence and infection
intensity of S. mansoni among fishermen at Ethiopian Rift Valley lakes. Despite the fact
that the malacological survey included all cercarial infections in biomphalarid snails, the
parasitological survey focused on S. mansoni, a severe intestinal infection in Ethiopia. Based
on the WHO monitoring guidelines [51], stool samples were collected from 200 fishermen
at each Lake. Fishermen who were members of fishermen associations and had no history
of taking Praziquantel (anthelmintic) in the past 6 months were considered as possible
participants of the study. They were purposively selected based on their availability at the
landing place.

https://earthexplorer.usgs.gov
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A unique identification number was given to each participant. Each participant was
provided with a labeled stool cup with an applicator stick for a stool sample after orienting
them on how to provide a sufficient stool sample. Collected stool samples were processed
using a Kato–Katz technique [52]. For quantification of S. mansoni eggs the samples were
examined using a light microscope (TK-C921BEG; Victor Company of Japan Limited, T2
Tokyo, Japan). The egg of S. mansoni in the Kato slides was counted and multiplied by 24 to
convert eggs per gram of stool (EPG). The intensity of infection was classified as light (1–99
EPG), moderate (100–399 EPG), and heavy infections (≥400 EPG) [53].

A questionnaire was used to assess the practices of the fishermen to prevent and
control schistosomiasis transmission.

2.7. Ethical Approval and Consent to Participate

Ethical clearance was obtained from the institutional review boards (IRBs) of the
Institute of Health Sciences, Jimma University. A formal letter was written to all concerned
bodies and permission was secured at all levels. The objectives of the study were explained
to the study participants and written consents were obtained. The confidentiality of the
information was assured, and the respondent’s privacy was maintained. Participants with
positive results in the microscopic examination test for S. mansoni were referred to the
nearby health facility for treatment.

2.8. Data Analysis

Data analyses were carried out using R software (Version 3.5.2) [54]. The prevalence
of cercarial infection in snails was determined as a percentage, by dividing the number
of snails that shed cercariae by the total number of snails examined and multiplying the
outcome by 100. Shapiro–Wilk normality tests for normality and homogeneity of variance
showed that data were not normally distributed. Hence, a non-parametric Kruskal–Wallis
test was performed to test whether significant differences in the number of infected snails
existed among physical characteristics of the snail habitats (i.e., category of macrophyte
cover and substrate type). A Wilcoxon post-hoc multiple comparison test was performed
to identify significantly different pairs. The post-hoc test was Bonferroni corrected.

Logistic regression analysis was used to identify the factors that significantly influence
the occurrence (presence/absence) of infected snails. Spearman’s rank-order correlation
was used to determine associations between the number of infected snails and environmen-
tal (physico-chemical) variables.

Prevalence and intensity of S. mansoni infection were reported in percent and mean egg
count, respectively. Risk factors associated with S. mansoni infection among the fishermen
were analyzed by bivariate logistic regression followed by a multiple logistic regression
model. The magnitude of association was measured through odds ratio at the 95% confi-
dence interval. p-values less than 0.05 were considered to be statistically significant.

3. Results
3.1. Cercarial Infection in Snails

A total of 169 biomphalarid snails were collected from 61 sampling sites on the
shorelines of Lake Hawassa during both dry and wet seasons, while 88 biomphalarid snails
were collected from 35 sampling sites on the shorelines of Lake Ziway during the wet
season. Overall, a total of 257 snails were collected from the total of 96 sampling sites
on the shorelines of Ethiopian Rift Valley lakes, 78 snails were infected which accounted
for an infection prevalence of 30.5% (pooling all cercariae identified).Infected snails were
encountered at 20 sampling sites out of the total number of 96 sampling sites (20.8%).
During the wet season, a higher prevalence of cercarial infection in snails (49.2%) was
encountered at Lake Hawassa compared to Lake Ziway (36.7%). The prevalence of different
types of cercarial infection in snails and the number of infected snails are summarized
in Table 1.
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Table 1. Prevalence of cercarial infection in biomphalarid snails collected from the shorelines of
Ethiopian Rift Valley lakes (BAD = Brevifurcate-apharyngeate distome cercariae, Echis = Echinostome
cercariae, Xior = Ornatae xiphidiocercariae, Gymn = Gymnocephalous, Amph = Amphistome, Meta
= Metacercariae).

Study Area Season Snail Species
Infection Prevalence with a Type of Cercaria (%)

BAD Echis Xior Gymn Amph Meta

Lake Hawassa
Wet

B. pfeifferi 9 30 7 2 12 5
B. sudanica 0 0 0 0 13 0

Dry B. pfeifferi 0 0 0 0 0 0
B. sudanica 6 4 1 2 3 0

Lake Ziway Wet
B. pfeifferi 4 16 4 6 12 0

B. sudanica 0 14 0 0 5 0

Collectively, six morphologically distinguishable types of cercariae were found in
biomphalarid snails. These are amphistomes, brevifurcate-apharyngeate distome (BAD),
echinostome, gymnocephalous, metacercariae, and ornatae xiphidiocercariae (Figure 3).
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Amphistome cercariae; (b) BAD cercariae; (c) Echinostome cercariae; (d) Gymnocephalous cercariae;
(e) Metacercariae; (f) Ornatae xiphidiocercariae. All cercariae identified to the genus level were 2 mm
in size.

Concurrent infections, with more than one type of cercaria, were observed in a single
biomphalarid snail. With the exception of metacercariae which was only found in B. pfeifferi,
the other five types of cercariae were found in both B. pfeifferi and B. sudanica. The highest
infection prevalence was recorded for BAD cercariae in biomphalarid snails collected from
Lake Hawassa (37.5%) during dry season, whereas the highest infection prevalence was
recorded for echinostome cercariae (30.2%) during the wet season. Echinostomes were
the most prevalent cercariae released by biomphalarid snails collected from Lake Ziway
(16.6%) during the wet season.
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3.2. Spatial Distribution of Infected Snails

The spatial mapping of sampling sites indicated that infected snails were distributed
in habitats surrounded by all land use/land cover types found in the study area. However,
the presence of infected snails was most frequently collected from sampling sites located
adjacent to farmland (Figure 4).
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Figure 4. Mapping of hotspots of infected snails in relation to land use/land cover types on the
shorelines of Ethiopian Rift Valley lakes.

3.3. Factors Affecting the Occurrence of Infected Snails

Descriptive statistics of the environmental variables determined at snail collection sites
are given in Table 2. The output of the logistic regression analysis revealed that snails living
in water with low dissolved oxygen and high BOD5 were more likely infected (Table 3).
The number of infected snails was negatively associated with dissolved oxygen and water
transparency, but positively associated with water turbidity (all p < 0.05).

3.4. Schistosoma Mansoni Infection and Associated Risk Factors

The result of the parasitological survey indicated that the overall prevalence of S.
mansoni among the fishermen at Ethiopian Rift Valley lakes was found to be 21.5% (86/400).
Comparing the two lakes, S. mansoni infection was more prevalent among the fishermen at
Lake Hawassa, 31% (62/200) than those at Lake Ziway, 12% (24/200). The overall infection
intensities recorded for S. mansoni were categorized as light, moderate and heavy among
the fishermen at the Ethiopian Rift Valley lakes (Table 4). The majority of overall infections
were categorized as light with EPG ranging from 24 to 2112. Specifically, the distribution of
infection intensities of S. mansoni was fairly even among fishermen at Lake Hawassa with
one-third of the fishermen having light, one-third having moderate and one-third having
heavy signs of infection, whereas most of the infection intensities were categorized as light
among fishermen at Lake Ziway.
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Table 2. Descriptive statistics for environmental variables used to assess the occurrence of infected
snails at Ethiopian Rift Valley lakes (TSS = total suspended solids, NTU = nephelometric turbidity
unit, SD = standard deviation).

Environmental Variable Unit Mean SD Minimum Maximum

pH - 9 1 6 10
Turbidity NTU 20 31 2 247

Dissolved oxygen mg/L 5 3 0.5 17
Chlorophyll-a µg/L 25 13 11 76

Electrical conductivity µs/cm 564 243 71 940
BOD5 mg/L 26 40 0.3 184
TSS mg/L 43 31 5.2 136

Total hardness mg/L 68 22 24 120
Calcium ion mg/L 49 18 16 100

Magnesium ion mg/L 19 8 0 36
Chloride ion mg/L 29 9 11 48
Water depth m 0.6 0.3 0.2 2

Water transparency m 0.3 0.1 0 0.6
Water temperature ◦C 24 3 19 30

Ambient temperature ◦C 26 2 20 31
Canopy cover % 16 21 0 100

Table 3. Output of the logistic regression model to predict the occurrence of infected snails.

Variable Estimate Std. Error z Value Pr (>|z|)

Dissolved oxygen −0.29322 0.11558 −2.537 0.0112 *
BOD5 0.011696 0.005558 2.104 0.0354 *

* Significant association (p < 0.05).

Table 4. Distribution of the infection intensities of S. mansoni among fishermen at Ethiopian Rift
Valley lakes.

Study Area
Infection Intensity of S. mansoni, n (%)

Light Moderate Heavy

Lake Hawassa 22 (35) 19 (31) 21 (34)
Lake Ziway 17 (71) 4 (17) 3 (13)
Both lakes 39 (45) 23 (27) 24 (28)

n, the number of participants; % = percentage of participants categorized by the type of infection intensity.

Multiple logistic regression analysis indicated that the odds of infection by S. mansoni
was significantly associated with the age of the fishermen, habit to defecate in the shorelines
of lakes, using water from the lakes for domestic purposes and the type of activity to which
the fishermen are engaged (Table 5). The odds of infection by S. mansoni were 79% less
among fishermen aged between 18 and 27 years compared to fishermen aged 38 years and
above (AOR = 0.21; 95% CI: 0.07–0.64). Likewise, the odds of infection among fishermen
aged between 28 and 37 years were 63% less compared to fishermen aged 38 years and
above (AOR = 0.37; 95% CI: 0.13–0.96).

The odds of infection by S. mansoni were 2.37 times higher among fishermen with the
habit to defecate in the shorelines of lakes compared to the counter parts (AOR = 2.37; 95%
CI: 1.37–4.16). The odds of infection by S. mansoni were 2.24 times higher among fisher-
men who engaged in fishing activity compared to those who engaged in fish processing
(AOR = 2.24; 95% CI: 1.28–3.91).

On the contrary, fishermen who used water from the lakes for domestic purposes were
67% less likely to acquire S. mansoni infection compared to those who did not use water
from the lakes for the same purposes (AOR = 0.33; 95% CI: 0.14–0.75).
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Table 5. Multiple logistic regression analysis of factors associated with S. mansoni infection among
the fishermen at Ethiopian Rift Valley lakes (n = number participants tested positive/negative for S.
mansoni, % = percentage of participants tested positive/negative for S. mansoni).

Risk Factor Category
S. mansoni Infection Status

COR (95% CI) AOR (95% CI)Positive,
n (%)

Negative,
n (%)

Age group (years)

18–27 19 (15) 104 (85) 0.40 (0.17–0.95) * 0.21 (0.07–0.64) *

28–37 57 (24) 185 (76) 0.67 (0.31–1.46) 0.38 (0.13–0.96) *

38 and above 11 (31) 24 (69) 1 1

Level of education

No formal education 11 (27) 30 (73) 1.1 (0.35–3.45) 1.77 (0.45–7.19)

Primary education 70 (21) 265 (79) 0.79 (0.30–2.1) 0.97 (0.32–2.97)

Secondary education and above 6 (25) 18 (75) 1 1

Residence
Urban 46 (22) 160 (78) 1.07 (0.67–1.74) 1.29 (0.73–2.27)

Rural 41 (21) 153 (79) 1 1

Type of activity
Fishing 58 (27) 160 (73) 1.91 (1.16–3.15) * 2.24 (1.29–3.92) *

Fish processing 29 (16)) 153 (84) 1 1

Swimming/bathing in lake
Yes 75 (22) 264 (78) 1.16 (0.59–2.29) 1.08 (0.49–2.38)

No 12 (20) 49 (80) 1 1

Open defecation/urination in lake
Yes 32 (32) 68 (68) 2.10 (1.26–3.50) * 2.37 (1.35–4.16) *

No 55 (18) 245 (82) 1 1

Using water from lake for domestic purposes
Yes 13 (16) 70 (84) 0.61 (0.32–1.14) 0.33 (0.14–0.76) *

No 74 (23) 243 (77) 1 1

Boiling water before drinking
Yes 3 (19) 13 (81) 0.84 (0.23–2.96) 0.67 (0.18–2.51)

No 84 (22) 300 (78) 1 1

Defecating in bush
Yes 59 (21) 220 (79) 0.89 (0.53–1.49) 0.79 (0.42–1.48)

No 28 (23) 93 (77) 1 1

Abbreviations: COR, crude odds ratio; AOR, adjusted odds ratio; CI confidence interval (an AOR has been
adjusted to account for other predictor variables in a model). * Significant association (p < 0.05).

4. Discussion

This study is one of the few studies investigating the infection prevalence of cercariae in
freshwater snails. In this study, the malacological survey revealed that six morphologically
distinguishable types of cercariae are shed by biomphalarid snails which accounted to
an infection prevalence of 30.5%. This finding is higher than the infection prevalence of
cercariae in snails reported from Omo Gibe river basin, southwest Ethiopia (3.6%) [44],
Chitwan district, central Nepal (3.5%) [55], and Kavre, Nepal (1.7%) [56]. Previous research
has reported that cercarial infection in freshwater snails could be due to contamination
of the water bodies by feces of human beings, aquatic birds, and domestic and/or wild
animals being present in the catchment area [57,58].

Previous studies have demonstrated that cercarial infection in freshwater snails is asso-
ciated with water quality variables and physical characteristics of snail habitats [34,44,59].
In this study, snails living in water with high BOD5 and low dissolved oxygen were more
likely infected. In addition, the number of infected snails was positively associated with
water turbidity, but negatively associated with dissolved oxygen and transparency of
the water. This could be related to contamination of water with human feces and the
presence of organic matter that snails feed upon. Well-fed snails tend to produce more
parasites [60,61]. Consequently, humans and animals that drink lake water or come into
contact with cercariae-infested water are at risk of infection. At the time of data collection
in this study, infected snails were collected from lakeshores where anthropogenic activities
(i.e., open defecation, washing and bathing, swimming and children playing in the water,
and others) were present. Similarly, it has been documented that water pollution caused by
people also promotes the occurrence of snails being infected with cercariae [44,62]. Open
defecation in and around water bodies, fields, forests, bushes, or other open spaces is
common practice in low-and middle-income countries [44,63,64]. These practices may
result in the release of Schistosoma eggs into water bodies where they hatch and release
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miracidia, which enter into snail hosts and release cercariae [26]. Infection with cercariae
occurs when humans are exposed to water bodies infested with cercariae released by snail
intermediate hosts [65].

In this study, the presence of BAD cercariae (schistosome cercariae) in biomphalarid
snails is a potentially important digenean of medical importance which could be linked to
the transmission of S. mansoni infection among fishermen in the study area. Biomphalarid
snails can serve as an intermediate hosts for the S. mansoni parasite in Ethiopia [66,67].
A parasitological survey carried out in this study showed that the overall prevalence of
S. mansoni among fishermen at Ethiopian Rift Valley lakes was found to be 21.5%. This
finding is higher than reports on the prevalence of S. mansoni among fishermen from
different African countries, such as Burkina Faso (16.35%) [61] and Zambia (12.6%) [68], but
lower than the prevalence reported from Ethiopia (29.2%) [69] and Egypt (26.6%) [70]. This
variation might be due to the differences in environmental factors that favor the distribution
of snail intermediate hosts, frequency of human-water contact, endemicity in the area, and
others. Moreover, differences in personal and environmental sanitation levels might be
responsible for the variation of S. mansoni infection from place to place. In this study,
defecation on the shorelines of lakes was found to be a risk factor associated with S. mansoni
infection among fishermen. Overall, the fishermen at Ethiopian Rift Valley lakes are one of
the groups of people at risk of S. mansoni infection and that might be responsible for the
transmission of schistosomiasis to other segments of the lakeshore community. However,
fishermen using lake water for domestic purposes were less likely infected with S. mansoni
which is probably due to the effect of household water treatment (i.e., boiling, chlorination)
and/or poor report by fishermen on the practices to prevent and control schistosomiasis
transmission. Unless appropriate measures are taken to protect the lakes from pollution,
the range of suitable habitats for snail intermediate hosts can further extend and threaten
the health of nearby residents.

In principle, individual protection from schistosomiasis infection can be achieved by
avoiding contact with water infested with schistosome cercariae. However, for people living
in areas of Ethiopian Rift Valley lakes, water-human contact is often unavoidable as their
daily lives are dependent on the lakes. Therefore, the Ethiopian Rift Valley lakes should be
protected from disturbance by anthropogenic activities in order to control schistosomiasis
in a sustainable way. For instance, there is an urgent need to establish a buffer zone to
reduce pollutants entering Lake Ziway. In the case of Lake Hawassa, there is a good start to
establish a buffer zone to retain the pollutants from urban runoff, but it should be expanded
to other areas surrounding the lake to reduce pollutants originating from agricultural areas.

In addition to protecting the lakes from pollution, there should be public toilets
available in strategic places around the lakes so that people especially fishermen and
farmers can defecate safely during occupational activities on the field as well as when they
are not in their houses. There is also a need for behavioral change, because even if toilets are
available, people still need to be convinced to cease open defecation. Health workers and
local authorities should give health education on the health problems associated with open
defecation and lake pollution. Several countries succeeded in eliminating schistosomiasis
as a public health problem through integrated intervention tools [71,72].

Although this study has shed some light on cercarial infections in Ethiopia, it also
had some limitations. This study focused only on biomphalarid snails for the examination
of cercarial infection, further study is suggested to investigate cercarial infection of other
freshwater snails (i.e., lymnaeid snails). The presence of BAD cercariae in snails does not
constitute robust epidemiological information unless schistosome cercariae are precisely
identified to species level by molecular techniques. Hence, molecular techniques are useful
to differentiate human schistosome cercariae from non-human schistosomes or cryptic
cercariae (such as a bird or wildlife parasites) shed by the same snail species. In addition,
molecular techniques are required to determine pre-patent stages of cercarial infection of
snails to improve the detection of snail infectivity. A more integrated analysis on fisheries
and ecosystem management in the context of sustainability as indicated by Forio and
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Goethals [73] and Gebremedhin et al. [74] would be useful to tackle these and other major
needs of freshwater ecosystems [75].

5. Conclusions

This study revealed the presence of six morphologically distinguishable types of
cercariae in biomphalarid snails collected from Ethiopian Rift Valley lakes. According to a
parasitological survey, fishermen and people frequently visiting the lake water are at highest
risk of S. mansoni infection where infected snails are present in the environment. Therefore,
there is a need to apply medical treatment accompanied by public health interventions,
environmental management and snail control to reduce the transmission of schistosomiasis
and avoid re-infection with trematode cercariae in such settings. There is also a need to
promote health education to increase awareness of the fishermen and the community in the
area on the practices of the prevention and control of snail-borne diseases. Furthermore,
enforcement of existing environmental, fisheries and public health laws along lakeshore
inhabitants is essential to tackle problems in an integrated manner.
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