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A B S T R A C T   

This paper proposes a novel grey spatiotemporal model and quantitatively analyzes the spillover and momentum 
effects of the COVID-19 lockdown policy on the concentration of PM2.5 (particulate matter of diameter less than 
2.5 μm) in Wuhan during the COVID-19 pandemic lockdown from 23 January to 8 April 2020 inclusive, and the 
post-pandemic period from 9 April 2020 to 17 October 2020 inclusive. The results suggest that the stringent 
lockdowns lead to a reduction in PM2.5 emissions arising from a momentum effect (9.57–18.67%) and a spill
over effect (7.07–27.60%).   

1. Introduction 

Strict lockdown policies to restrict movement control and to enforce 
working from home in order to combat the COVID-19 pandemic has 
helped major industrial centres in Asia such as Wuhan to return to 
economic normalcy. Consider the series of lockdown policies from 23 
January to 8 April 2020 enforced on Wuhan and other cities in Hubei, 
China to curb the outbreak of COVID-19. This strict lockdown policy 
imposed on the Wuhan Metropolitan Area (WMA) involved suspending 
factory production, movement control, and working from home was an 
unprecedented move, albeit at massive economic and social costs [1]. 
Nevertheless, it was effective in controlling the outbreak [2], resulting in 
a spillover effect on reducing CO2 emissions [3], household food man
agement and waste [4], economic slowdown [5], and lowering the 
amount of PM2.5 emissions [6]. Such environmental improvements 
have also saved more lives. Chen et al. estimated that the reduction in 
PM2.5 emissions during the economic lockdown avoided a total of 3214 
PM2.5 related deaths in China [7]. 

As the pandemic provides a context to observe and assess socio- 
economic changes nationally and regionally, we can study the effects 
of draconian lockdown policies on environmental improvement, namely 
the spillover and momentum effects. Doing so, we can then address the 
research question: are lockdown policies a blessing in disguise for 
heavily industrialized centres such as the WMA? 

1.1. Motivation 

The spillover effect is an eternality [8], stemming from an unpre
dicted or unrelated event of a socio-economic system. Correspondingly, 
the momentum effect stems from within a system, in that it is an 
empirically observed phenomena whereby events which have been 
trending in a certain direction for some time would be expected to 
continue to do so [9], akin to the momentum generated under a physical 
system. The momentum effect of a system can be traced through his
torical data [10], or through prediction modeling [11]. 

Air pollution would persist in its track unless intervened by the 
external system. In this case, the prediction of a PM2.5 concentration 
trend is possible, and the future state of air quality (labeled PM2.5Future 

Value) can be approximated using the simulated prediction value (labeled 
PM2.5Simulated Prediction) based on existing data (such as historical air 
quality and meteorological data [12]). The simulated predicted value 
comprises a current value (PM2.5Current Value) and the momentum effect, 
namely,  

PM2.5Simulated Prediction = PM2.5Current Value + Momentum effect.                  

When the intervention of external events (such as the pandemic) 
cannot be ignored, PM2.5Simulated Prediction cannot be a good predictor of 
PM2.5Future Value unless we consider the spillover effect caused by so
cioeconomic triggers such as plant closures and travel bans during a 
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lockdown, namely,  

PM2.5Future Value = PM2.5 Simulated Prediction + Spillover effect.                      

Hence, the spillover effect can be measured through the simulated 
prediction and future value, since the future value is known in the next 
period. 

Since the outbreak of COVID-19, several studies have been under
taken to discuss the spillover effect of a lockdown on air quality. For 
instance, Li and Tartarini [13] quantified the effect of the lockdown 
measures on outdoor air pollution levels in Singapore. Studying the 
spatiotemporal impact of COVID-19, Liu et al. noted that the lockdown 
reduced the overall amount of air pollutants in California [14], and 
found that the mitigation policies reduced the overall trend of NO2 
emissions in most target countries [15]. Assessing the level of PM2.5 
from the 50 most polluted capital cities globally, Rodríguez-Urrego [16] 
found that cities under quarantine decreased PM2.5 by 12.5% on 
average, when comparing the air pollutants before and during 
COVID-19. Perera et al. modeled the potential future health benefits to 
children and adults, and reported that the air quality in New York 
continued to improve during the COVID-19 lockdown [17]. Such spill
over effects of the lockdown policies are measured through the 
comparative analysis of the air pollutants during COVID-19 and those 
before the pandemic. Similarly, many cities in China are now in a 
post-pandemic period, with economic life returning to normalcy. The 
latest trade report announced that China had witnessed an 18.3% in
crease quarterly y-o-y in GDP performance in Q1 of 2021, the best result 
since 1993 [18]. For instance, in China’s industrial heartland, Wuhan is 
a rapidly industrializing city, and is constantly shifting her urban 
planning, infrastructure, and industrial structure. Thus, the momentum 
effect of such socio-economic adjustments (such as the relocation of 
heavy industries, the construction of infrastructural facilities, and 
landscaping for the Military World Games) cannot be ignored in PM2.5 
emissions. As the momentum effect is a component of PM2.5 Simulated 

Prediction, the prediction of PM2.5 concentration is therefore key to 
measuring the momentum and the spillover effects. 

1.2. Literature review 

The traditional air quality prediction methods focus on statistical or 
econometric models, which are based on economic or geographical 

phenomenon (such as seasonality, periodicity or spatiotemporal pat
terns [19]). Table 1 lists these representative methods. 

As these statistical methods lack the ability to process a large amount 
of multidimensional [36], high-frequency and nonlinear data, Machine 
Learning, Artificial Intelligence [37] or Deep Learning (DL) [38] 
methods have been popular in PM2.5 forecasting. The latter methods 
usually provide better solutions to problems with high-dimension issues 
and nonlinearity, and they have shown to be more efficient in processing 
large datasets as a time series problem. 

A high prediction precision of the DL methods can be achieved 
provided there are sufficient air quality indicators or high-frequency 
meteorological data [39], such as hourly or daily data. As research ad
vances, environmental modelers find that the complex air pollution 
datasets can be decomposed into various frequency components [40, 
41]. Although successful in predicting the high-frequency components, 
both statistical econometrics and machine learning are not ideal for 
making projections particularly for systems with low-frequency com
ponents. Besides, with respect to the air quality indicators, there exist 
sparsity and uncertainty for two reasons. First, air quality is affected by 
factors such as pressure, temperature, humidity, and rainfall [42]. These 
factors will interact to produce physical and chemical reactions, 
rendering the analysis of air quality more dynamic, variable, and com
plex. Second, comprehensive air quality indicators are only available 
post 2014 for most cities in China, leaving research with barely suffi
cient annual and quarterly observations [43]. Under such situations of 
limited training data of the quality indicators, researchers have called on 
grey models, given their advantages of relatively easy computation and 
reliable model fitting [44]. 

Using the accumulative generating operator [45] and grey difference 
information principle [46], the grey model can mitigate data uncer
tainty and avoid the complex derivation of the data distribution [47]. 
However, the existing grey prediction models are usually used on time 
series data. Almost no consideration has been given to the spatial cor
relation of air pollution. From the literature, air quality evolution often 
exhibits regularity in time and space [48]. Particulate matter has high 
cyclicality and is easily affected by space [49], stagnating or diffusing to 
pollute the surrounding environment [50]. 

Therefore, this study seeks to apply a Spatio-Temporal Grey Model 
(STGM) to forecast PM2.5 emissions and to estimate the momentum and 
spillover effects. Compared to the grey models that are constructed 
based on a simple time series, the proposed model combines spatial 

Table 1 
Contemporary methods for forecasting air quality.  

Source Model Study focus City/region 

Statistical econometric method 
Zhang et al.(2018) [20] ARIMA Monthly PM2.5 concentration Fuzhou, China 
Wang et al. (2017) [21] GARCH PM2.5 concentration Shenzhen, China 
Lei et al. (2019) [22] Multiple regression Daily average PM2.5, PM10, NO2, and O3 concentration Macao 
Samal et al. (2019) [23] Combined SARIMA and Prophet 

model 
RSPM, SO2, NO2, SPM Bhubaneswar City, India 

Machine learning/Artificial Intelligence/Deep Learning 
Sun & Sun (2017) [24] Least squares support vector 

machines 
Daily PM2.5 concentration Baoding, China 

García Nieto et al. (2018) [25] Multilayer perceptron neural 
networks 

Monthly average concentration of PM10 Oviedo region in Spain 

Murillo-Escobar et al. (2019) 
[26] 

Optimized support vector regression Pollutant concentration including NO, NO2, O3, PM10, and 
PM2.5 

Aburrá Valley, Colombia 

Feng et al. (2019) [27] Back propagation neural network Daily pollutant emissions from open burnings South China 
Bai et al. (2019) [28] LSTM Hourly PM2.5 concentration Beijing 
Wen et al. (2019) [29] Convolutional LSTM extended model Hourly PM2.5 concentration China 
Bai et al. (2019) [30] Stacked auto-encoders model Hourly PM2.5 concentration Three monitoring stations in 

Beijing 
Zhang et al. (2020) [31] Auto-encoder and bidirectional LSTM Hourly PM2.5 concentration Beijing 
Grey model (GM) 
Chen & Pai. (2015) [32] GM (1,1) model Hourly inhalable particles Taichung, Taiwan 
Xiong et al. (2019) [33] GM (1,1) model Monthly air quality index Shanghai 
Xiong et al. (2020) [34] MGM(1,2) Fog and haze Nanjing, China 
Wu et al. (2019) [35] Seasonal fractional-order grey model Quarterly concentrations of PM2.5, PM10, NO2, and CO2 Xingtai and Handan  
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correlation with temporal correlation in the space-time series of par
ticulate matter emissions. 

1.3. Contributions 

This paper makes several contributions, namely: 

(i) this paper combines the GM(1,1) model with the spatial autore
gressive model to propose a new STGM for PM2.5 trend 
forecasting.  

(ii) this paper uses historical PM2.5 data to quantify the momentum 
effect on PM2.5 emissions during a lockdown.  

(iii) this paper estimates the spillover effect of lockdown policies by 
comparing the forecast of PM2.5 with actual values.  

(iv) the momentum effect of lockdown policies are estimated post- 
pandemic using the combined STGM-LSTM forecasting model. 

The rest of the paper is organized as follows. Section 2 explores the 
framework of time series decomposition and Spatiotemporal Grey 
Models (STGM) to forecast the space-time PM2.5 series. The STGM is 
validated in Section 3 using the space-time datasets. Section 4 discusses 
the results. Section 5 concludes and offers some research directions. 

2. Materials and method 

The dataset of PM2.5 concentrations in this study is described in 
Section 2.1. Using STL (Seasonal and Trend decomposition using Loess), 
our study extracts three components, seasonal, monthly and daily, from 
the PM2.5 space-time series in Section 2.2. Then, this paper discussed 
the combined method of STGM and the LSTM network model to forecast 
PM2.5. For the trend forecasting, Section 2.3 provides STGM, which 
combines the classical GM(1,1) and spatial autoregressive models. For 
the daily component forecasting, Section 2.4 forms an LSTM network 
model. The combined PM2.5 forecasting model is summarized in Section 
2.5. 

2.1. Dataset 

The Wuhan Metropolitan Area (WMA), also known as the Wuhan "1 
+ 8" city cluster, is a 100-km wide locale with Wuhan as the core and 
eight neighboring cities of Huangshi, Ezhou, Xiaogan, Huanggang, 
Xianning, Xiantao, Qianjiang, and Tianmen as satellites. To stem the 
spread of COVID-19, a series of lockdowns began on January 23, 2020 in 
WMA. As a result, there has been a marked improvement in the air 
quality in Wuhan [51]. To measure the spillover effect on environmental 
improvement during a lockdown, this study has therefore chosen WMA 
as the study area when constructing the PM2.5 forecasting model. 

WMA has 26 air pollution monitoring stations (plotted as green 
bubbles), as shown in Fig. 1. The hourly concentrations of PM2.5 are 
recorded and published by the China National Environmental Moni
toring Centre (http://www.cnemc.cn/sssj/). The station coordinates 
(such as latitude and longitude) are recorded, to construct the spatial 
weights matrix. We used the mean of the PM2.5 concentration from 0:00 
to 23:00 h to represent the daily PM2.5 concentration [52], and we filled 
the missing data using multiple imputation, a common statistical process 
of replacing missing data with substituted values. 

The dataset has three periods:(i) pre-pandemic (1 Jan. 2015 to 22 
Jan. 2020), which was used to train and test the PM2.5 forecasting 
model; (ii) lockdown (23 Jan. to 8 April 2020), which was used to 
quantize the spillover effect of the lockdown; and (iii) post-pandemic (9 

April to 17 Oct. 2020), which was used to quantize the momentum effect 
of the lockdown. 

2.2. Time series decomposition 

The space-time series of PM2.5 data exhibits various cycles: daily, 
monthly or yearly. For each spatial unit in the series, it is often helpful to 
decompose the time series into components, each representing an un
derlying characteristic. For instance, the seasonal characteristic of the 
PM2.5 time series in a year has been mentioned in existing studies [53, 
54], namely, the concentration of PM2.5 during winter is higher than in 
summer. Further, there is a trend in PM2.5 data [55,56], which reflects 
the pollution over a longer time horizon. 

Suppose the PM2.5 value of day d in month k for spatial unit i is yi,k,d. 
Then, this value can be regarded as the sum of three components as 
shown in Equation (1) 

yi,k,d = si(k) + x(0)i (k) + ei,k,d (1)  

where si(k) is the seasonal component, which is the data fluctuation that 
recurs over a period of time. x(0)

i (k) is the trend component, which is the 
long term direction of the PM2.5 time-series data of spatial unit i. The 
trend component in PM2.5 data reflects the monthly weather pollution. 
The term ei,k,d denotes the remainder component. 

Using the time series seasonal decomposition by STL [57], the 
monthly series is then fitted iteratively until the seasonal and trend 
components stabilize, and at the end of the process, the seasonal 
component si(k) and trend component x(0)

i (k) are extracted from the 
original data series yi,k,d, and the remainder component ei,k,d is found via 
Equation (2) 

ei,k,d = yi,k,d − si(k) − x(0)i (k) (2) 

Fig. 2 shows the plots of the components. In the bottom left of Fig. 2, 
all of the seasonal components reveal a regular pattern. Clearly, the 
PM2.5 data possess periodicity by year; namely, the value in summer 
(June to September) is lower than that in winter (December to 
February). In the literature, the PM2.5 concentration decreases during 

Fig. 1. Location of air quality stations in WMA.  
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the days with rain or wind [58]. Thus, this periodic phenomenon agrees 
with Wuhan’s temperate continental climate, with most rainfall and 
windy in summer. The periodicity of the seasonal components is a year. 
Thus, these seasonal components can be set as a group of discrete pe
riodic functions. 

From the bottom centre of Fig. 2, all of the curves of the monthly 
trend components are monotone decreasing in time. Each curve appears 
to be exponential, which can be modeled using the classical GM(1,1). 
Considering the spatial structure of these observation stations, Moran’s I 
test is then performed as shown in Fig. 3 (the full results are available as 
supplementary material). 

From Fig. 3, all of the Moran’s I in the 60 months exceeded the 
critical value (I0 = 0.04), and the p-values are less than 0.01 (as lg(p) are 
below − 2), namely, there is significant spatial dependence within these 

components for each month. Thus, spatial correlation cannot be ignored 
when developing the forecasting model for these trends. 

The other components, as plotted in the bottom right of Fig. 2, 
usually consist of complex nonlinear elements and high-frequency noise. 
Here, as highlighted in the Introduction, the deep learning methods can 
handle these high-frequency components [59]. 

2.3. STGM for trend forecasting 

Considering the spatiotemporal dependence in the trend component 
of the PM2.5 time-series, an STGM is proposed. The STGM is inspired by 
the GM(1,1) model (useful for time series forecasting under limited in
formation) in subsection 2.2.1, and the first-order spatial autoregressive 
model (suitable for spatial data) in subsection 2.2.2. The parameter 
estimation and time response function of the STGM is discussed in 
subsection 2.2.3. 

2.3.1. GM(1,1) model 
Let x(0) = (x(0)(1), x(0)(2),⋯, x(0)(n)) be an original sequence of the 

observations, then x(1) = x(0)A is the accumulated generated sequence 
and z(1) = (z(0)(2), z(0)(3),⋯, z(0)(n))= x(1)B1 is the background gener
ated sequence, where A be the first order accumulated generated matrix 
[60] and B1 is the background generated matrix, 

A=

⎛

⎜
⎜
⎝

1 1 ⋯ 1
0 1 ⋯ 1
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎞

⎟
⎟
⎠

n×n

, B1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.5 0 ⋯ 0 0
0.5 0.5 ⋯ 0 0
0 0.5 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0.5 0.5
0 0 ⋯ 0 0.5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(n− 1)×n 

GM(1,1) can be written as 

x(0)(k) + az(1)(k) = b, k = 2, 3,⋯, n (3)  

Fig. 2. Decomposition of PM2.5 space-time series.  

Fig. 3. Moran’s I test on trend components.  
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where a is the development coefficient of the model, and b is the grey 
input of the model. Moreover, the whitenization differential equation of 
the GM(1, 1) model is given by Equation (4) 

dx(1)

dt
+ ax(1) = b (4) 

For Equation (4), given the initial condition x(1)(1) = x(0)(1), the 
solution to the GM(1,1) model is 

x̂(1)
(k)=

(

x(0)(1) −
b
a

)

e− a(k− 1) +
b
a

(5) 

Then, x̂(0), the prediction of x(0), can be obtained using Equation (6) 

x̂(0)
= x̂(1)A− 1 (6) 

The GM(1,1) model is the most basic grey model used to characterize 
the discrete time series with an approximate differential equation. The 
GM(1,1) model and its extensions consider only the temporal depen
dence but rarely discuss spatial dependence in the dataset. 

2.3.2. Spatial autoregressive model 
Spatial dependence in a collection of sample data observations refers 

to the phenomenon that the observation at spatial unit i, x(1)
i depends on 

the other observations at location j (i ∕= j). In short, x(1)
i can be stated as 

x(1)i = f
(

x(1)j

)
, i = 1, 2, ...,m (7)  

where f is a spatial dependence function. In the most general case, a 
weight matrix is used to depict this functional spatial dependence. 

Definition 1. For any i, let wi,j be the measurement about the spatial 
influence of unit j (j∕= i) on spatial unit i, then matrix W = {wi,j}m×m is 
the spatial weight matrix. 

The spatial weight matrix W is symmetric and always has zeros on 
the main diagonal by convention. In spatial analysis, a linear relation
ship based on W is applied to depict Equation (7) as the First-order 
spatial AutoRegressive (FAR) model. 

Definition 2. The FAR model [61] is given by 

X(1) = ρWX(1) + ε (8)  

where X(1) = (x(1)
1 , x(1)

2 ,⋯, x(1)
m )

T
, ρ is a regression parameter to be esti

mated, and ε ∼ N(0, σ2Im) is the random spatial error. Equation (8) is 
also the basial spatial model, which attempts to explain the variation in 
X(1), as a linear combination of contiguous or neighboring units with no 
other explanatory variables. 

2.3.3. STGM(1,1) model 
From Fig. 4, GM(1,1) is a point time series forecast [62], and the FAR 

model depicts the spatial data. Inspired by GM(1,1) and the FAR model, 
this subsection proposes an STGM to manage the spatiotemporal data. 
Let x(0)

i (k) be an original observation in location i at moment k, then all 
the total original observations can be listed as matrix X(0) of Equation 
(9). 

For the original spatiotemporal data matrix of Equation (9), let its 
accumulated generated data be X(1) = {X(1)

i (k)}m×n, where x(1)
i (k) =

∑k
j=1x(0)

i (j) denotes the accumulated generated observation in location i 
at moment k， k = 2,3,⋯,n. Then, X(1) is obtained using 

Fig. 4. Forecasting of space-time series. 

X(0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x(0)1 (1) x(0)1 (2) ⋯ x(0)1 (k) ⋯ x(0)1 (n)

x(0)2 (1) x(0)2 (2) ⋯ x(0)2 (k) ⋯ x(0)2 (n)
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
x(0)i (1) x(0)i (2) ⋯ x(0)i (k) ⋯ x(0)i (n)
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
x(0)m (1) x(0)m (2) ⋯ x(0)m (k) ⋯ x(0)m (n)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9)    
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X(1) =X(0)A (10) 

For spatial unit i, the time sequence x(1)
i has been characterized 

through the GM(1,1) whitenization of Equation (4) when considering 
the continuous temporal dependence. As shown in the upper right of 
Fig. 2, the spatial sequence, X(1)(k), can be formulized with the FAR 
model (8) from a spatial viewpoint at moment k. By considering both 
temporal and spatial dependence, this paper constructs the spatiotem
poral differential equation (11) for the STGM(1,1) model while ignoring 
the spatial error ε as follows. 

Definition 3. The spatiotemporal differential equation (11) is labeled 
as the whitenization differential equation of STGM(1,1), with 

dX(1)(t)
dt

+ aWX(1)(t) = b (11)  

where X(1)(t) is a sequence of functions, namely X(1)(t) =

(x(1)
1 (t), x(1)

2 (t),⋯, x(1)
m (t))

T
, x(1)

i (t) is the accumulated value of spatial 
unit i at time t, a = diag(a1,a2,⋯,am), W is the spatial weight matrix, and 
b = (b1, b2,⋯, bm)

T. For spatial unit i, ai is the spatial development co
efficient and bi is the grey input. According to Equation (11), the rate 
of change of the cumulative consumption [63] x(1)(t) in the period 
[k − 1, k] can be approximated as:   

It is worth noting that X(0)(k) is usually regarded as the grey deriv
ative, which can yield the necessary information about X(1)(t). In short, 
X(0)(k) can approximate dX(1)(t)

dt in the period [k − 1, k]. Further, the 
background value of this grey derivative [64] can be written as Equation 
(13): 

X(1)(t)|[k− 1,k] ≈ 0.5X(1)(k) + 0.5X(1)(k − 1), k = 2, 3,⋯, n. (13) 

Let Z(1)(k) = 0.5X(1)(k) + 0.5X(1)(k − 1) be the background generated 
sequence expressed as 

Z(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z(0)1 (2) z(0)1 (3) ⋯ z(0)1 (k) ⋯ z(0)1 (n)

z(0)2 (2) z(0)2 (3) ⋯ z(0)2 (k) ⋯ z(0)2 (n)
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
z(0)i (2) z(0)i (3) ⋯ z(0)i (k) ⋯ z(0)i (n)
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
z(0)m (2) z(0)m (3) ⋯ z(0)m (k) ⋯ z(0)m (n)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= X(0)AB1 (14) 

In grey modeling, the background sequence Z(1)(k), can usually take 
the place of the sequence about X(1)(t) in the period [k − 1, k] [65]. 
Hence, we can define the following grey model. 

Definition 4. Equation (15) defines STGM(1,1) 

X(0)(k)+ aWZ(1)(k) = b, k = 2, 3,⋯, n (15)  

where X(0)(k) = (x(0)
1 (k), x(0)

2 (k),⋯, x(0)
m (k))

T
, Z(1)(k) =

(z(0)1 (k), z(0)2 (k),⋯, z(0)m (k))
T
. In Equation (15), a and b are the parameter 

matrices to be estimated. 
For spatial unit i, its parameters, Pi = (ai, bi), can be estimated 

through Theorem 1, which provides an estimation method for Pi. 

Theorem 1. If Pi = (ai, bi)
T is a parameter sequence，and Wi,⋅ = (wi,1,

wi,2,⋯,wi,m), with 

Bi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− Wi,⋅z
(1)
i (2) 1

− Wi,⋅z
(1)
i (3) 1

⋮ 1
− Wi,⋅z(1)i (n) 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Yi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(0)i (2)
x(0)i (3)
⋮
x(0)i (n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

then, P̂i = (âi, b̂i)
T, and the least squares estimation of Pi satisfies 

P̂i =
(
BT

i Bi
)− 1BT

i Y (16) 

Proof. For spatial unit i, putting − z(1)i (k) into Equation (14) yields 

x(0)i (2) = − aiz(1)i (2) + ρiWi,⋅Z(1)
i (2) + bi

x(0)i (3) = − aiz(1)i (3) + ρiWi,⋅Z(1)
i (3) + bi

⋮
x(0)i (n) = − aiz(1)i (n) + ρiWi,⋅Z(1)

i (n) + bi.

This is Yi = BiPi in matrix form. For the estimation value of the 
reference sequences Pi, using − aiWi,⋅Z(1)

i (k) + b instead of x(0)
i (k), 

(k= 2, 3,⋯, n) on the left-hand side, we obtain the sequence εi = Yi −

Bi Pi. Suppose 

si = εT
i εi =(Yi − Bi Pi)

T
(Yi − Bi Pi)

=
∑n

k=2

(
x(0)i (2) + aiWi,⋅Z(1)

i (2) − bi

)2 

Then, the parameter sequence (âi, b̂i)
T that minimizes s should 

satisfy 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂si

∂ai
= 2

∑n

k=2

(
x(0)i (k) + âiWi,⋅Z

(1)
i (k) − b̂i

)(
Wi,⋅Z

(1)
i (k)

)
= 0

∂si

∂bi
= 2

∑n

k=2

(
x(0)i (k) + âiWi,⋅Z(1)

i (k) − b̂i

)
⋅(− 1) = 0 

Therefore 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑n

k=2

(
x(0)i (k) + âiWi,⋅Z

(1)
i (k) − b̂i

)(
Wi,⋅Z

(1)
i (k)

)
= 0

∑n

k=2

(
x(0)i (k) + âiWi,⋅Z(1)

i (k) − b̂i

)
= 0 

The above equations are then converted into matrix form, namely, 

BT
i (Yi − Bi P̂i)= 0 

Thus, BT
i Bi P̂i = BT

i Yi and (BT
i Bi)

− 1BT
i Bi P̂i = (BT

i Bi)
− 1BT

i Yi, proving 
Theorem 1. 

Next, we discuss the unbiasedness of this method. 

Theorem 2. Suppose εi,k = x(0)
i (k) + aiWi,⋅Z(1)

i (k) − bi, ∀k ∈

{2,3,⋯, n} with εi independent and identically distributed and E(εi,k) =

0, then E(P̂) = Pi. 

Proof. Clearly, 

dX(1)(t)
dt

|t=k ≈
ΔX(1)(t)

Δt
|t=k =

X(1)(k) − X(1)(k − 1)
k − (k − 1)

= X(1)(k) − X(1)(k − 1) = X(0)(k) (12)   
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E(P̂i)=E
((

BT
i Bi
)− 1BT

i Yi

)
=E
((

BT
i Bi
)− 1BT

i (Bi Pi + εi)
)

= E
((

BT
i Bi
)− 1BT

i Bi Pi +
(
BT

i Bi
)− 1BT

i εi

)

= Pi +E
((

BT
i Bi
)− 1BT

i εi

)
=Pi +

(
BT

i Bi
)− 1E

(
BT

i εi
)

As 

E
(
BT

i εi
)
=E

⎛

⎜
⎜
⎝

∑n

k=2
Wi,⋅Z(1)(k)εi,k

∑n

k=2
εi,k

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

∑n

k=2
Wi,⋅Z(1)(k)E

(
εi,k
)

∑n

k=2
E
(
εi,k
)

⎞

⎟
⎟
⎟
⎠

=

(
0
0

)

,

the Proof follows. 
Theorem 2 asserts that the least-squares estimate of STGM(1,1) is 

unbiased. After estimating Pi = (ai, bi)
T using Theorem 1, the parame

ters matrices a, ρ, and b in Equation (12) can be obtained and the so
lution to Equation (12) follows. 

Theorem 3. Let the initial sequence be X(1)(1) = X(0)(1). The time 
response function sequence of Equation (12) is then given by 

X̂
(1)
(t)= e(t− 1)Λ[X(1)(1) − Λ− 1b

]
+ Λ− 1b (17)  

where Λ = − aW, e(t− 1)Λ = V

⎛

⎜
⎜
⎝

eλ1(t− 1) 0 ⋯ 0
0 eλ2(t− 1) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ eλm(t− 1)

⎞

⎟
⎟
⎠V− 1, 

and V = (V1,V2,⋯,Vn)
T, Vi is an eigenvector of Λ and λi is the corre

sponding eigenvalue. Proof. As Λ = − aW, the spatiotemporal dif
ferential equation, Equation (12), can be rewritten as 

dX(1)(t)
dt

=ΛX(1)(t) + b (18) 

Suppose X(1)(t) = eΛtc(t) and X(1)(1) = X(0)(1). Then X(1)(1) =

eΛc(1) = X(0)(1), i.e., c(1) = e− ΛX(0)(1)

dX(1)(t)
dt

=
deΛt

dt
c(t) + eΛtdc(t)

dt
= ΛX(1)(t) + eΛtdc(t)

dt
= ΛX(1)(t) + b.

Then dc(t)
dt = e− tΛb, 

c(t)=
∫ t

1
e− uΛbdu+ c(1)=

(
e− tΛ − e− Λ)Λ− 1b + e− ΛX(0)(1).

Thus   

The Proof of Theorem 3 is now complete. 
Theorem 3 provides a time response function sequence for STGM 

(1,1), the original observation sequence can be predicted using the 
reduced form 

X̂
(0)

= X̂
(1)

A− 1. (19)  

2.4. LSTM for daily remainder forecasting 

As the remainder component usually consists of complex nonlinear 
elements and noise, this paper uses the LSTM network to forecast this 
component. 

The LSTM network is a recurrent neural network [66]. By treating 
the hidden layer as a memory unit, the LSTM network can handle the 
correlation within the time series in both short and long term. In this 
paper, the structure of the memory unit is shown in Fig. 5. The LSTM 
prediction model can be established directly by using the Keras deep 
learning package in MATLAB 2017b [67]. The input layer of the trained 
LSTM network has 9 features and 11 time steps; the hidden neurons were 
set to 10. The output layer with linear activation function has one 
neuron. The maximum number of epochs were set at 50. 

2.5. PM2.5 forecasting model 

The exact combined model of the STGM and LSTM network (STGM- 
LSTM) can be expressed as Equation (20), namely, 

yi,k,d = si(k) + x(0)i (k) + ei,k,d (20) 

Fig. 5. Structure of LSTM  

X̂
(1)
(t)= eΛtc(t)= eΛt[( e− tΛ − e− Λ)Λ− 1b+ e− ΛX(0)(1)

]
=Λ− 1b + eΛ(t− 1)[X(1)(1) − Λ− 1b

]
.
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where, 

si(k)←Yearly periodic ​ constant.
x(0)i (k)←STGM(1, 1)
ei,k,d←LSTM model,

and, 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X(0) =
{

x(0)i (k)
}

m×n

P̂i =
(
BT

i Bi
)− 1BT

i Y

X̂
(1)
(t) = e(t− 1)Λ[X(1)(1) − Λ− 1b

]
+ Λ− 1b

X̂
(0)

= X̂
(1)

A− 1.

The steps of this combined model are as follows: 

Step 1. Collect the original data space-time series yi,k,d. Split si(k) and 
x(0)

i (k) from yi,k,d using STL, and determine the remainder component 
based on Equation (2). 

Step 2. Determine the spatial weight matrix W, and test W based on 
Moran’s I test. 

Step 3. Form the accumulated generated observation matrix X(1), and 
construct parameter matrix B. Based on the parameter estimation 
(Theorem 1, or Equation (16)), estimate the model parameters P̂i =

(ai, bi)
T. 

Step 4. Find the model prediction value sequence X̂
(1)

based on 

Equation (17), to obtain the model reduction value sequence X̂
(0)
(t)

based on Equation (18). 

Step 5. Forecast the remainder component using LSTM, and form the 
forecast of yi,k,d. 

Step 6. Verify the results and analyze the errors of this model. 

3. Validation 

In this section, the advantages of STGM(1,1) over the existing GM 
(1,1) and the space-time series forecasting model are demonstrated 
using the five forecast accuracy metrics of Section 3.1. In Section 3.2, the 
grey space-time series datasets are used to validate the prediction per
formance of STGM(1,1). 

3.1. Forecast accuracy metrics 

Five metrics: Mean Absolute Percentage Error (MAPE), Mean Abso
lute Deviation (MAD), Standard deviation of absolute percentage error 

(STD), R-squared (R2), and Index of Agreement (IA) are used to validate 
the models. The five metrics are as shown: 

MAPE=
1

m(n − 1)
∑m

i=1

∑n

k=2

⃒
⃒
⃒x̂(0)

i (k) − x(0)i (k)
⃒
⃒
⃒

x(0)i (k)
× 100% (21)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

m(n − 1)
∑m

i=1

∑n

k=2

(
x̂(0)

i (k) − x(0)i (k)
)2

√

(22)  

STD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
m(n − 1)

∑m

i=1

∑n

k=2

(
⃒
⃒
⃒x̂(0)

i (k) − x(0)i (k)
⃒
⃒
⃒

x(0)i (k)
− MAPE

)2
√
√
√
√
√ (23)  

R2 = 1 −

∑m

i=1

∑n

k=2

(
x̂(0)

i (k) − x(0)i (k)
)2

∑m

i=1

∑n

k=2

(
x̂(0)

i (k) − x(0)i

)2 (24)  

IA= 1 −

∑m

i=1

∑n

k=2

(
x̂(0)

i (k) − x(0)i (k)
)2

∑m

i=1

∑n

k=2

(⃒
⃒
⃒x̂(0)

i (k) − xi
(0)
⃒
⃒
⃒+

⃒
⃒
⃒x(0)i (k) − x(0)i

⃒
⃒
⃒

)2 (25)  

where x(0) is the average of the training data, and x(0)
i = 1

n− 1
∑n

k=2x(0)
i (k). 

Fig. 6. Generator of grey space-time series datasets.  

Table 2 
Summary of results of fitting and prediction about the grey space-time series 
datasetsa.  

Metric STGM MGM GM(1,1) STARMA ARIMA 

Fitting      
MAPE Max. 3.39% 13.31% 22.53% 37.49% 552.51% 

Avg. 1.34% 3.77% 9.54% 23.88% 47.56% 
Std. 0.74% 5.14% 3.40% 6.73% 84.49% 

STD Max 3.61% 6.45% 20.08% 16.20% 839.84% 
Avg. 1.34% 2.59% 10.27% 8.81% 50.51% 
Std. 2.71% 6.96% 9.92% 9.05% 38.25% 

Prediction      
MAPE Max. 10.09% 32.51% 47.86% 51.46% 190.00% 

Avg. 4.02% 10.18% 14.82% 22.87% 44.37% 
Std. 0.77% 1.30% 3.45% 3.33% 133.14% 

STD Max. 8.14% 18.62% 24.51% 25.51% 194.60% 
Avg. 2.42% 3.94% 10.47% 5.87% 28.12% 
Std. 1.64% 3.67% 4.89% 5.60% 30.51%a  

a Note: Max. means the maximum value of results, Avg. means the average 
value of results, and Std. means the standard deviation of results. 
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3.2. Validating STGM (1,1) 

To evaluate the impact of the spatial dependence in the grey 
modeling, an ablation validation is designed in this subsection. As STGM 
(1,1) is established using spatial and temporal dependence, we design 
the validation about the proposed model based on 100 grey space-time 
series datasets. 

As shown in Fig. 6, the major parameter matrix of the spatiotemporal 
differential Equation (9), W is a spatial weight matrix whose spatial 
structure is referred from the literature [68], with a and b being 
randomly generated. For m spatial units with a given length of time, N, a 
diagonal random matrix εk = diag(εk

1, εk
2,⋯, εk

m) is designed to simulate 
the disturbance error at moment k, where εk

i (i = 1, 2,⋯,m k = 1,2,⋯,

N) is uniformly distributed εk
i ∼ U(0.90,1.10). Hence, we have a simu

lation observation matrix, X̃
(1)

= {x̃(1)
i (k)}m×N, and its corresponding 

original modeling observation matrix, X̃
(0)

= {x̃(0)
i (k)}m×N, where N is a 

pseudorandom scalar integer N ∈ [12, 24]. 
The STGM results are compared against four models, i.e., GM(1,1) 

without spatial dependence, multi-variable grey model (MGM) [69], 
ARIMA, and STARMA [70]. The metrics, MAPE and STD, are used to 
evaluate these results. Table 2 lists the summary of the results. (The 
average and max of the RMSE are not listed since this metric depends on 
the order of the magnitude of the training data). All of the detailed data 
and corresponding model results are placed as supplementary material. 

STGM always yields the best performance both in the fitting and 
prediction of these grey space-time series datasets. As shown in Table 2, 
STGM has the smallest MAPE and STD (marked with bold font) both in 
fitting and prediction, which means that STGM has the best performance 
on precision and robustness. Fig. 7, which shows the detailed result of 
the grey space-time datasets, supports this outcome. In Fig. 7, both the 
MAPE and STD of STGM lie at the bottom, regardless of fitting or 
prediction. 

As expected, the design of spatial dependence helps to weaken the 
disturbance effect, which is necessary in STGM(1,1). From Table 2 and 
Fig. 7, all metrics of STGM(1,1) are better than those of MGM(1,N) and 
GM(1,1), which do not characterize the spatial weight matrix. Further, 
STARMA performs better than the ARIMA model, which assumes that 

Fig. 7. MAPE and STD of various forecasting models on grey space-time datasets.  

Fig. 8. Remaining components of PM2.5 time series.  
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the spatial units are independent. Thus, including spatial dependence 
helps to improve the model’s precision. Moreover, STGM(1,1) behaves 
better than STARMA, which is absent from the design of the dynamic 
differential equation. At the same time, GM(1,1) has a smaller MAPE and 
STD than the ARIMA model. Thus, it is worthwhile to consider spatial 
dependence to attenuate the disturbance error and improve the preci
sion and robustness of the model. 

3.3. Validation using historical PM2.5 space-time series 

In this section, the historical space-time series dataset about PM2.5 
in WMA (from 1 Jan 2015 to 31 Dec 2019) are collected to validate the 
proposed method. The data cover 26 observation sites over 60 months. 
Through STL decomposition, the trend and remainder components are 
extracted from the original data in Fig. 2. Then, as shown in Fig. 8, these 
components are continuously rolling and spilt into 46 datasets to avoid 
the contingency in a single validation. 

For each group of datasets, the first 5 months are used as the training 
data for estimating the parameters and for building the model. The rest 
of the data from the last 10 months are used to test the model. Thus, 46 

STGM-LSTM models are formed for each dataset. 
The results are compared against other combination models, 

including STARMA-LSTM, STGM-Elman (STGM combined with the 
Elman neural network model), STGM-LSSVM (STGM combined with the 
Least Squares SVM), STGM-GRNN (STGM combined with the general 
regression neural network). The RMSE, STD, R2, and IA of the model 
outcomes against the actual values are listed in Table 3. 

All the criteria of STGM-LSTM for prediction fare better than those of 
STARMA-LSTM, STGM-Elman, STGM-LSSVM, and STGM-GRNN, sug
gesting that STGM-LSTM has the highest prediction accuracy and sta
bility. The results also inform that the metrics of STGM-LSSVM are ideal 
for fitting. The prediction of STGM-LSTM ranks first, followed by the 
fitting results. The ranking for the prediction effect of STARMA-LSTM 
ranks second, and the fitting effect ranks third. The R2 obtained by 
STGM-LSTM is close to the actual data. In conclusion, STGM-LSTM is the 
best method for validating the 46 datasets. Thus, this novel combined 
model is a potential approach for the mid-long forecast of PM2.5 
concentration. 

4. Application 

In this section, the daily PM2.5 emissions in Wuhan during the 
lockdown and post-pandemic period are predicted using STGM-LSTM. 
The momentum and spillover effects of the lockdown policy are 
measured by comparing with the actual observations. 

4.1. PM2.5 concentration forecast during lockdown 

As the combined STGM-LSTM model has shown potential for mid to 
long term forecasting of PM2.5 concentration in subsection 3.3, this 
paper applied this model to forecast the PM2.5 concentration during the 
lockdown based on the historical training data (from 1 August to 31 
December 2019), which is plotted as a solid blue line in Fig. 9. 

To compare the forecasts, the historical PM2.5 concentration (from 
23 January to 7 April 2019, marked with a solid green line) and the 
actual value (from 23 January to 7 April 2020, marked with a solid red 
line) are plotted in Fig. 9. The average daily PM2.5 of the six main cities 
of WMA are plotted on the left of Fig. 9. 

The left of Fig. 7 shows that there is a spatial effect in the PM2.5 
concentration of these cities. As shown in Fig. 1, the observation sites in 
Huanggang are closer to those in Ezhou than the others. Thus, the curves 
of Huanggang are similar to those of Ezhou. This suggests that there 

Table 3 
Comparison of STGM-LSTM against other models on forecasting PM2.5 time 
series.  

Metric STGM- 
LSTM 

STARMA- 
LSTM 

STGM- 
Elman 

STGM- 
LSSVM 

STGM- 
GRNN 

Fitting      
RMSE Max. 10.196 19.969 32.720 6.226 34.183 

Avg. 1.187 5.534 13.841 1.078 6.555 
STD Max. 18.294 21.818 27.476 12.604 37.191 

Avg. 2.139 3.781 13.151 1.185 7.222 
R2 Min. 0.896 0.834 0.733 0.817 0.899 

Avg. 0.983 0.916 0.850 0.927 0.924 
IA Min. 0.950 0.884 0.770 0.796 0.722 

Avg. 0.993 0.925 0.860 0.903 0.864 

Prediction      
RMSE Max. 46.93 75.96 128.71 146.68 131.86 

Avg. 29.14 42.54 77.58 48.21 58.19 
STD Max. 32.57 83.46 112.41 84.73 134.71 

Avg. 19.94 46.70 61.84 45.44 71.14 
R2 Min 0.721 0.659 0.579 0.720 0.710 

Avg. 0.744 0.723 0.672 0.732 0.729 
IA Min. 0.740 0.698 0.608 0.628 0.720 

Avg. 0.748 0.730 0.679 0.679 0.682  

Fig. 9. PM2.5 concentration forecast during lockdown.  
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exists a spatial effect in PM2.5 concentration observations. Further, 
there is now some rationale for adopting a spatial model for forecasting 
PM2.5. 

Initiating a stringent lockdown has a positive effect on reducing the 
concentration of PM2.5. To improve the readability of these subplots, 
the daily curves are smoothed with the local k-point moving average 
operator and marked with the dashed line in the right of Fig. 9. From the 
smoothed curves, it is noted that the red dashed lines are invariably at 
the bottom, suggesting that the actual concentration of PM2.5 is at the 
lowest level. With the end of the lockdown, the red line converges to the 
green and blue lines, implying that the improvement in the concentra
tion of PM2.5 due to the lockdown policies is weakening. These results 
suggest that the lockdown policies have a significant spillover effect on 
reducing the PM2.5 concentration, concurring with Zheng et al. (2020) 
[71]. 

Efforts by the community can also help to promote the reduction in 
PM2.5 concentration. The blue lines are the forecast of PM2.5 based on 
the training data from the pre-pandemic period. They are also regarded 
as the estimation of PM2.5 concentration where COVID-19 and the 
lockdown would not have happened. From Fig. 9, the forecast curves are 
almost lower than the historical curves for the same period in 2019, 
suggesting that the social efforts from the pre-pandemic period might 
lend a downward momentum to the PM2.5 concentration. This obser
vation is supported by the fact that the local government carried out 
many landscaping projects for the Military World Games in 2019, 
thereby improving the air quality since then. 

4.2. PM2.5 concentration forecasting after pandemic 

For the post-pandemic period, this paper collected the latest PM2.5 
concentration data (from 9 April to 17 October 2020), which are plotted 
with a solid red line in Fig. 10. To analyze the influence of the historical 
and the lockdown policies, this paper forecasts the PM2.5 concentration 
based on the training data from 1 August to 31 December 2019 (Pre
diction 1, marked with a solid blue line) and the training data from 8 
December 2019 (when the first case is reported in literature [72]) until 8 
April 2020 (Prediction 2, marked in solid cyan). The PM2.5 concentra
tion during the same period of 2019 is labeled as the historical value, 
which is a solid green line in Fig. 10. Similarly, the daily curves are 
smoothed using a local moving average operator and marked by a 

dashed line on the right of Fig. 10. 
Social efforts in a pre-pandemic period appear to lend a positive 

momentum effect in lowering the concentration of PM2.5 after the 
pandemic. From the smoothed curves, it is noted that the blue dashed 
lines are generally below the green dashed lines. As Prediction 1 is based 
on pre-pandemic training data, which only takes into account the social 
efforts pre-pandemic, this suggests that social efforts have a positive 
momentum in lowering PM2.5 concentration. 

The lockdown has a further momentum effect on decreasing PM2.5 
concentration. As shown in the right of Fig. 10, the red dash lines are 
generally below the blue or green dash lines. The red dash lines are 
obtained from the solid red curves, which is the actual PM2.5 concen
tration. As the actual PM2.5 concentration is influenced by past social 
efforts and the lockdown policies, the momentum effect of a lockdown 
will continue to promote the reduction in PM2.5 concentration even 
after a lockdown. However, the red dash curves converge to the blue 
dash curves after August 2020, suggesting that the momentum effect of 
these lockdown policies may disappear, allowing PM2.5 pollution to 
rebound, a sign of economic recovery. 

Extending the lockdown period can keep the PM2.5 concentration at 
bay. The cyan curves (Prediction 2) are based on the training data from 
the lockdown period. Compared to the others, the cyan curves are al
ways the lowest, which means that there will be more spillover effects 
from reducing the PM2.5 concentration if the lockdown period were to 
be extended. 

These spillover effects are spatial heterogeneous. On the right of 
Fig. 10, the difference between the cyan and the other curves in Wuhan 
is always larger than those in the other cities, suggesting a greater 
spillover effect in Wuhan. This is due to the social structure or economic 
differences of these cities. Hence, the policies instituted during a lock
down should be tuned to local conditions notably the environmental and 
economic concerns. 

4.3. Discussion 

This study is an initial effort to understand how a pandemic lock
down can affect PM2.5 concentration. Compared with those in the same 
period of 2019, the PM2.5 concentration has significantly decreased in 
2020, which is caused by the momentum effect of earlier social efforts 
and the spillover effect of the lockdown policies. The momentum and 

Fig. 10. PM2.5 concentration forecast during post-pandemic period.  
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spillover effects are analyzed through a PM2.5 concentration forecast 
model (STGM-LSTM). The results are plotted in Figs. 9 and 10, and the 
momentum and spillover effects are quantified in Table 4. 

From the results in subsections 4.1 and 4.2, the values of PM2.5 
concentration during the lockdown and post-pandemic periods is aver
aged in Table 4. Compared to the same period in 2019 (the historical 
period), the values of the reduction caused by the momentum effect of 
past social efforts (labeled as Momentum effect 1) are obtained. 
Comparing the actual values with those of Prediction 1, the spillover of 
the lockdown are estimated in a lockdown period. During the post- 
pandemic period, the additional momentum effect of the lockdown 
policies (labeled as Momentum effect 2) are obtained using Prediction 2 
less the actual values. 

Benefiting from past social efforts before a lockdown, the PM2.5 
concentration would drop by an average of 4.92–8.29 μg/m3 during a 
lockdown. Comparing the forecast of PM2.5 concentration with the 
actual values, this paper estimates that the lockdown policies lowered 
the PM2.5 concentration reduce by 3.14–16.21 μg/m3, while the spill
over effect of a lockdown varies from 7.07 to 27.60%, a function of the 
cities studied. Compared to the other cities, Wuhan has more industrial 
and vehicular traffic. As movement control is closely monitored during a 
lockdown, the PM2.5 from traffic pollution has thus reduced much 
more. 

After the pandemic, the reduction in PM2.5 concentration arises 
from two momentum effects – (i) past social efforts which helped to 
reduce the concentration by 0.36–3.62 μg/m3 (3.26–15.10% y-o-y), and 
(ii) lockdown which forced PM2.5 concentration to drop a further 
1.16–3.22 μg/m3 (or 4.57–12.97% compared to the same period in the 
previous year). 

The additional spillover effect would be spatial heterogeneous if the 
lockdown were extended. This research discussed an additional spillover 
effect on improving the PM2.5 pollution. Comparing Prediction 2 with 
the actual, the additional spillover effect of a lockdown can lower PM2.5 
by 3.66–10.19 μg/m3. As these spillover effects are spatially heteroge
neous, the lockdown policies should be adjusted based on economic and 
environmental considerations. 

As the existing research emphasizes, the lockdown policies for 
COVID-19 usually have some unneglected influences on the air quality 
[73]. Quantitatively analyzing these influences using the grey spatio
temporal model and empirical data in WMA, this research discussed the 
spillover and momentum effect of the Lockdown on improving the 
PM2.5 pollution, where the momentum effect even sustained influence 
the air quality in the post-epidemic era. These effects can be explained 

from two following aspects. 
On the one hand, the air pollution from industry is affected by the 

momentum effect of Lockdown, and fluctuates with the scale of pro
duction. The lockdown policies made the production and service of 
manufacturing in WMA have slowed down even standstill. And Wuhan’s 
GDP during this period decreased by 40.5% comparing with the same 
period in history. Aiming at recovering the economic, the government of 
Wuhan raised 60 billion yuan (about $9.15 billion) and introduced 21 
policies to help enterprises resume production [74]. These policies bring 
the industrial economy in steady recovery, the PM2.5 also slowly 
mushrooms as manufacturing production grow at the same time, which 
means the momentum effect of the Lockdown is gradually dying out. 

On the other hand, the air pollution from traffic also is affected by the 
momentum effect. Although the daily traffic travel has been close to pre- 
epidemic levels since April 22th 2020, the COVID-19 still affects citi
zens’ lifestyles. Office travel is dropped because many employees start to 
switch to remote work [75]. More relevantly, the falling of tourism 
demand reduces the related PM2.5 emission in the early post-epidemic 
era. Then this part of PM2.5 emission arises with the tourism recovery 
[76] in following period, which makes the momentum effect weaken. 

5. Conclusion 

This study analyses the trends in the PM2.5 concentration measured 
on the urban clusters around Wuhan in Hubei province during three 
periods: pre-pandemic, lockdown, and post-pandemic. Specifically, the 
study has delivered on the following:  

(1) A novel spatiotemporal grey model considering the spatial effect 
of PM2.5 emission is proposed.  

(2) Benefiting from the past social efforts before a pandemic, the 
PM2.5 concentration has declined by 4.92–8.29 μg/m3 during a 
lockdown, and the reduction due to the momentum effect is 
9.57–18.67%.  

(3) Comparing the forecast of PM2.5 with the actual values, the 
lockdown policies lead to a further reduction in PM2.5 concen
tration of 3.14–16.21 μg/m3, and the corresponding reduction 
due to the spillover effect of the lockdown is 7.07–27.60%.  

(4) After the pandemic, PM2.5 concentration decreases by 0.36–3.62 
μg/m3 compared to the same period in 2019. The momentum 
effect of a lockdown has reduced the PM2.5 concentration by 
1.16–3.83 μg/m3. 

Table 4 
Momentum and spillover effects on PM2.5 concentration (in μg/m3).  

City Wuhan Huangshi Ezhou Xiaogan Huanggang Xianning 

Lockdown period       
Historical period 58.72 51.39 53.39 57.16 51.74 44.39 
Momentum effect 1 Prediction 1 52.28 46.47 45.14 49.13 45.44 36.10 

Reducing 6.44 4.92 8.25 8.03 6.29 8.29 
R.P. 10.97% 9.57% 15.45% 14.05% 12.17% 18.67% 

Spillover effect Actual 36.07 34.09 38.28 38.36 39.43 32.96 
Reducing 16.21 12.38 6.86 10.77 6.01 3.14 
R.P. 27.60% 24.09% 12.84% 18.84% 11.62% 7.07% 

Post-pandemic period       
Historical period 30.56 28.77 29.55 29.52 29.29 23.98 
Momentum effect 1 Prediction 1 29.17 28.41 27.81 28.56 28.17 20.36 

Reducing 1.39 0.36 1.74 0.96 1.12 3.62 
R.P. 4.55% 1.26% 5.89% 3.26% 3.81% 15.10% 

Momentum effect 2 Actual 25.95 26.31 26.46 24.73 25.98 19.20 
Reducing 3.22 2.10 1.35 3.83 2.19 1.16 
R.P. 10.54% 7.29% 4.57% 12.97% 7.48% 4.82% 

Spillover effect Prediction 2 15.76 20.77 19.08 19.80 21.61 15.54 
Reducing 10.19 5.54 7.38 4.93 4.37 3.66 
R.P. 33.35% 19.25% 24.97% 16.69% 14.93% 15.27% 

Note: R.P. refers to reducing percentage, which is the reduced value divided by the value in the historical period. 
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The above results are constrained by the characteristics of the data 
and policy. As a system’s behavior is influenced by the system factors, 
this would suggest that the system’s behavior also carries the informa
tion about the factors [77]. Grey modeling usually constructs a fore
casting model based on a univariate time series (behavior sequence). 
However, air pollution is a complex problem linked to multiple factors 
like meteorological or socioeconomic, so the forecasting model can be 
improved by considering the interaction amongst the socio-economic 
activities and environmental concerns. Using granular socioeconomic 
and meteorological data, deconstructing the mechanism of spillover 
effects of pollution prevention and a lockdown simultaneously may be 
another interesting research pursuit. 
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Colombia. Urban Clim 2019;29:100473. https://doi.org/10.1016/j. 
uclim.2019.100473. 

[27] Feng X, Fu T, Cao H, et al. Neural network predictions of pollutant emissions from 
open burning of crop residues: application to air quality forecasts in southern 
China. Atmos Environ 2019;204:22–31. https://doi.org/10.1016/j. 
atmosenv.2019.02.002. 

[28] Bai Y, Zeng B, Li C, Zhang J. An ensemble long short-term memory neural network 
for hourly PM2.5 concentration forecasting. Chemosphere 2019;222:286–94. 
https://doi.org/10.1016/j.chemosphere.2019.01.121. 

[29] Wen C, Liu S, Yao X, et al. A novel spatiotemporal convolutional long short-term 
neural network for air pollution prediction. Sci Total Environ 2019;654:1091–9. 
https://doi.org/10.1016/j.scitotenv.2018.11.086. 

[30] Bai Y, Li Y, Zeng B, Li C, Zhang J. Hourly PM2.5 concentration forecast using 
stacked autoencoder model with emphasis on seasonality. J Clean Prod 2019;224: 
739–50. https://doi.org/10.1016/j.jclepro.2019.03.253. 

[31] Zhang B, Zhang H, Zhao G, Lian J. Constructing a PM2.5 concentration prediction 
model by combining auto-encoder with Bi-LSTM neural networks. Environ Model 
Software 2020;124:104600. https://doi.org/10.1016/j. envsoft.2019.104600. 

[32] Chen L, Pai T. Comparisons of GM (1,1), and BPNN for predicting hourly 
particulate matter in Dali area of Taichung City, Taiwan. Atmos Pollut Res 2015;6 
(4):572–80. https://doi.org/10.5094/APR.2015.064. 

[33] Xiong P, Yan W, Wang G, Pei L. Grey extended prediction model based on IRLS and 
its application on smog pollution. Appl Soft Comput 2019;80:797–809. https://doi. 
org/10.1016/j.asoc.2019.04.035. 

[34] Xiong P, Huang S, Peng M, Wu X. Examination and prediction of fog and haze 
pollution using a Multi-variable Grey Model based on interval number sequences. 
Appl Math Model 2020;771:531–44. https://doi.org/10.1016/j.apm.2019.09.027. 

[35] Wu LF, Li N, Zhao T. Using the seasonal FGM (1, 1) model to predict the air quality 
indicators in Xingtai and Handan. Environ Sci Pollut Res 2019;26(14):14683–8. 
https://doi.org/10.1007/s11356-019-04715-z. 

[36] Li X, Zhang X. Predicting ground-level PM2.5 concentrations in the Beijing-Tianjin- 
Hebei region: a hybrid remote sensing and machine learning approach. Environ 
Pollut 2019;249:735–49. https://doi.org/10.1016/j.envpol. 2019.03.068. 

[37] Li Y, Horowitz MA, Liu J, et al. Individual-level fatality prediction of COVID-19 
patients using AI methods. Front Public Health 2020;8:587937. https://doi.org/ 
10.3389/fpubh.2020.587937. 

[38] Liu Q, Li Y, Yu M, et al. Daytime rainy cloud detection and convective precipitation 
delineation based on a deep neural network method using GOES-16 ABI images. 
Remote Sens 2019;11(21):2555. https://doi.org/10.3390/rs11212555. 

M. Gao et al.                                                                                                                                                                                                                                     

https://doi.org/10.1016/j.seps.2020.100911
https://doi.org/10.1016/j.seps.2020.100911
https://doi.org/10.1007/s12561-020-09277-0
https://doi.org/10.1007/s12561-020-09277-0
https://doi.org/10.1016/j.scitotenv.2020.139806
https://doi.org/10.1016/j.scitotenv.2020.139806
https://doi.org/10.1016/j.seps.2020.100953
https://doi.org/10.1016/j.seps.2020.100953
https://doi.org/10.1016/j.envres.2021.110936
https://doi.org/10.1007/s11869-020-00863-1
https://doi.org/10.1007/s11869-020-00863-1
https://doi.org/10.1016/S2542-5196(20)30107-8
https://doi.org/10.1016/j.seps.2021.101023
https://doi.org/10.1016/j.seps.2021.101023
https://doi.org/10.1038/36825
https://doi.org/10.1016/j.chaos.2018. 10.012
https://doi.org/10.1016/j.seps. 2020.100916
https://doi.org/10.1016/0004-6981(75)90127-4
https://doi.org/10.4209/aaqr. 2020.06.0303
https://doi.org/10.1016/j.scitotenv.2020.141592
https://doi.org/10.1016/j.scitotenv.2020.141592
https://doi.org/10.1016/j.scitotenv.2021. 146027
https://doi.org/10.1016/j.envpol. 2020.115042
https://doi.org/10.1016/j.envres.2020.110555
https://doi.org/10.1016/j.envres.2020.110555
https://doi.org/10.3390/rs12101576
https://doi.org/10.1016/j.ecolind.2018.08.032
https://doi.org/10.1016/j.ecolind.2018.08.032
https://doi.org/10.1016/j.apr.2017.01.003
https://doi.org/10.1007/s11869-019-00721-9
http://refhub.elsevier.com/S0038-0121(22)00006-4/sref23
http://refhub.elsevier.com/S0038-0121(22)00006-4/sref23
http://refhub.elsevier.com/S0038-0121(22)00006-4/sref23
http://refhub.elsevier.com/S0038-0121(22)00006-4/sref23
https://doi.org/10.1016/j.jenvman. 2016.12.011
https://doi.org/10.1016/j.scitotenv.2017.11.291
https://doi.org/10.1016/j.uclim.2019.100473
https://doi.org/10.1016/j.uclim.2019.100473
https://doi.org/10.1016/j.atmosenv.2019.02.002
https://doi.org/10.1016/j.atmosenv.2019.02.002
https://doi.org/10.1016/j.chemosphere.2019.01.121
https://doi.org/10.1016/j.scitotenv.2018.11.086
https://doi.org/10.1016/j.jclepro.2019.03.253
https://doi.org/10.1016/j. envsoft.2019.104600
https://doi.org/10.5094/APR.2015.064
https://doi.org/10.1016/j.asoc.2019.04.035
https://doi.org/10.1016/j.asoc.2019.04.035
https://doi.org/10.1016/j.apm.2019.09.027
https://doi.org/10.1007/s11356-019-04715-z
https://doi.org/10.1016/j.envpol. 2019.03.068
https://doi.org/10.3389/fpubh.2020.587937
https://doi.org/10.3389/fpubh.2020.587937
https://doi.org/10.3390/rs11212555


Socio-Economic Planning Sciences 83 (2022) 101228

14

[39] Dai X, Liu J, Zhang X, Chen W. An artificial neural network model using outdoor 
environmental parameters and residential building characteristics for predicting 
the nighttime natural ventilation effect. Build Environ 2019;159:106139. https:// 
doi.org/10.1016/j.buildenv.2019.05.017. 

[40] Jin X, Yang N, Wang X, et al. Deep hybrid model based on EMD with classification 
by frequency characteristics for long-term air quality prediction. Mathematics 
2020;8(2):214. https://doi.org/10.3390/math8020214. 

[41] Niu M, Gan K, Sun S, Li F. Application of decomposition-ensemble learning 
paradigm with phase space reconstruction for day-ahead PM2.5 concentration 
forecasting. J Environ Manag 2017:196110–8. https://doi.org/10.1016/j. 
jenvman.2017.02.071. 

[42] Ventura LMB, de Oliveira Pinto F, Soares LM, Luna AS, Gioda A. Forecast of daily 
PM 2.5 concentrations applying artificial neural networks and Holt-Winters 
models. Air Qual Atmos Health 2019;12(3):317–25. https://doi.org/10.1007/ 
s11869-018-00660-x. 

[43] Pai T, Hanaki K, Chiou R. Forecasting hourly roadside particulate matter in Taipei 
county of Taiwan based on first-order and one-variable grey model. Clean 2013;41 
(8):737–42. https://doi.org/10.1002/clen.201000402. 

[44] Zhang Z, Wu L, Chen Y. Forecasting PM2.5 and PM10 concentrations using GMCN 
(1, N) model with the similar meteorological condition: case of Shijiazhuang in 
China. Ecol Indicat 2020;119:106871. https://doi.org/10.1016/j. 
ecolind.2020.106871. 

[45] Xiao Q, Gao M, Xiao X, Goh M. A novel grey Riccati-Bernoulli model and its 
application for the clean energy consumption prediction. Eng Appl Artif Intell 
2020;95:103863. https://doi.org/10.1016/j.engappai. 2020.103863. 

[46] Xiao Q, Shan M, Gao M, Xiao X, Guo H. Evaluation of the coordination between 
China’s technology and economy using a grey multivariate coupling model. 
Technol Econ Dev Econ 2021;27(1):24–44. https://doi.org/10.3846/ 
tede.2020.13742. 

[47] Xiang X, Ma X, Ma M, Wu W, Yu L. Research and application of novel Euler 
polynomial-driven grey model for short-term PM10 forecasting. Grey Syst 2020. 
https://doi.org/10.1108/GS-02-2020-0023. online. 

[48] Zhao G, Huang G, He H, Wang Q. Innovative spatial-temporal network modeling 
and analysis method of air quality. IEEE Access 2019;726:241–54. https://doi.org/ 
10.1109/access.2019.2900997. 

[49] Cheng Z, Li L, Liu J. Identifying the spatial effects and driving factors of urban 
PM2.5 pollution in China. Ecol Indicat 2017;82:61–75. https://doi.org/10.1016/j. 
ecolind.2017.06.043. 

[50] Li L, Wu AH, Cheng I, Chen J, Wu J. Spatiotemporal estimation of historical PM2.5 
concentrations using PM10, meteorological variables, and spatial effect. Atmos 
Environ 2017;166:182–91. https://doi.org/10.1016/j. atmosenv.2017.07.023. 

[51] Yang C, Sha D, Liu Q, et al. Taking the pulse of COVID-19: a spatiotemporal 
perspective. Int J Digit Earth 2020;13(10):1186–211. https://doi.org/10.1080/ 
17538947.2020.1809723. 

[52] Liu Q, Liu W, Sha D, et al. An environmental data collection for COVID-19 
pandemic research. Data 2020;5(3):58. https://doi.org/10.3390/data5030068. 

[53] Miri M, Ghassoun Y, Dovlatabadi A, Ebrahimnejad A, Löwner M. Estimate annual 
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