
RESEARCH Open Access

Patient-derived xenograft models capture
genomic heterogeneity in endometrial
cancer
Vanessa F. Bonazzi1,2†, Olga Kondrashova3†, Deborah Smith4,5,6, Katia Nones3, Asmerom T. Sengal1, Robert Ju1,
Leisl M. Packer1, Lambros T. Koufariotis3, Stephen H. Kazakoff3, Aimee L. Davidson3,6, Priya Ramarao-Milne3,6,
Vanessa Lakis3, Felicity Newell3, Rebecca Rogers5, Claire Davies5, James Nicklin7,8, Andrea Garrett7,8,
Naven Chetty4,5, Lewis Perrin4,5, John V. Pearson3, Ann-Marie Patch3,6, Nicola Waddell3,6 and Pamela M. Pollock1*

Abstract

Background: Endometrial cancer (EC) is a major gynecological cancer with increasing incidence. It comprises four
molecular subtypes with differing etiology, prognoses, and responses to chemotherapy. In the future, clinical trials
testing new single agents or combination therapies will be targeted to the molecular subtype most likely to
respond. As pre-clinical models that faithfully represent the molecular subtypes of EC are urgently needed, we
sought to develop and characterize a panel of novel EC patient-derived xenograft (PDX) models.

Methods: Here, we report whole exome or whole genome sequencing of 11 PDX models and their matched
primary tumor. Analysis of multiple PDX lineages and passages was performed to study tumor heterogeneity across
lineages and/or passages. Based on recent reports of frequent defects in the homologous recombination (HR)
pathway in EC, we assessed mutational signatures and HR deficiency scores and correlated these with in vivo
responses to the PARP inhibitor (PARPi) talazoparib in six PDXs representing the copy number high/p53-mutant
and mismatch-repair deficient molecular subtypes of EC.

Results: PDX models were successfully generated from grade 2/3 tumors, including three uterine carcinosarcomas.
The models showed similar histomorphology to the primary tumors and represented all four molecular subtypes of
EC, including five mismatch-repair deficient models. The different PDX lineages showed a wide range of inter-tumor
and intra-tumor heterogeneity. However, for most PDX models, one arm recapitulated the molecular landscape of
the primary tumor without major genomic drift. An in vivo response to talazoparib was detected in four copy
number high models. Two models (carcinosarcomas) showed a response consistent with stable disease and two
models (one copy number high serous EC and another carcinosarcoma) showed significant tumor growth
inhibition, albeit one consistent with progressive disease; however, all lacked the HR deficiency genomic signature.
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Conclusions: EC PDX models represent the four molecular subtypes of disease and can capture intra-tumor
heterogeneity of the original primary tumor. PDXs of the copy number high molecular subtype showed sensitivity
to PARPi; however, deeper and more durable responses will likely require combination of PARPi with other agents.

Keywords: Endometrial cancer, Patient-derived xenografts, Genomic characterization, Mutational signatures,
Genomic scarring, Tumor heterogeneity, Homologous recombination, PARP inhibitors

Background
Endometrial cancer (EC) is the most common
gynecological malignancy in developed countries with
increasing annual rates [1]. While most ECs are detected
early and have good prognosis, patients with metastatic
disease (15%) or who relapse after surgery (~15%) have a
median survival of less than 12 months [2].
EC is comprised of multiple histological subtypes, in-

cluding low- and high-grade endometroid, serous, clear
cell, and uterine carcinosarcomas. The Cancer Genome
Atlas (TCGA) identified four molecular subtypes: POLE
mutant with an excellent prognosis; MSI/”hypermu-
tated” equivalent to mismatch repair deficient (MMRd)
with an intermediate prognosis; copy number high (CN-
high) or frequently TP53 mutated (p53mut) with the
worst prognosis; and copy number low (CN-low) or p53
wild-type with intermediate prognosis [3]. Diagnostic al-
gorithms utilizing surrogate immunohistochemistry
stains have since been adopted, with the CN-high sub-
type now identified as p53mut/p53-abnormal, the MSI
subtype identified as MMRd, and POLE defined as only
those samples with mutations in the POLE exonuclease
domain. Similar algorithms have been developed by mul-
tiple labs and shown to be prognostically important in
low-, intermediate-, and high-risk ECs [2, 4–6]. Genomic
studies of uterine carcinosarcomas (UCS) have also re-
vealed the presence of similar subtypes; however, the
majority of tumors (~90%) contain TP53 mutations and
a low tumor mutation burden (TMB) [7–9].
Apart from the recent approval of immune checkpoint

inhibitors (ICIs) for MMRd cancers, there has been little
development in terms of precision medicine for EC. Sur-
gery, radiotherapy, and chemotherapy still remain the
main treatment options. In recent years, there has been
a growing interest in applying PARP inhibitors (PARPi)
for treatment of EC. PARPi have proven to be incredibly
effective in cancers with homologous recombination
(HR) deficiency, such as ovarian and breast cancers with
BRCA1/2 mutations. In EC, PARPi sensitivity was ori-
ginally associated with PTEN loss [10], which has since
been refuted using a larger panel of cell lines [11], as
well as loss of MRE11 [12]. Mutations in ARID1A, which
commonly occur in EC, have also been associated with
PARPi sensitivity in cell lines from other cancers [13]. In
2017, a pan-cancer analysis of 102 HR DNA repair genes
revealed that 2.4% of ECs have a combination of

germline or somatic bi-allelic mutations and/or LOH
[14]. In 2019, a BRCA-like genomic scar and COSMIC
Signature 3 were reported in 41% and 46% of non-
endometrioid EC TCGA cases (~90% p53mut), respect-
ively [15].
In EC, there are very few cell lines derived from UCS

and serous ECs. Multiple cell lines from endometrioid
ECs carry TP53 mutations; however, all of these cell
lines are also MMRd and show a high TMB, suggesting
that TP53 mutations are acquired through culturing.
Therefore, these cell lines are unsuitable as models for
the poor prognosis CN-high/p53mut subtype. Identifica-
tion of effective therapies and predictive biomarkers for
CN-high/p53mut ECs requires well-characterized pre-
clinical models that recapitulate this molecular subtype.
Patient-derived xenografts (PDX) have been previously
demonstrated as reliable pre-clinical models for asses-
sing treatment responses, if carefully characterized. In
this study, we performed in-depth genomic
characterization of EC PDX models to define their suit-
ability as pre-clinical models and predict HR deficiency
status by assessing genomic scars. Here, we report
in vivo responses to the potent PARPi talazoparib in a
panel of PDX models representing the CN-high/p53mut
and MMRd subtypes and correlate these responses with
genomic features.

Methods
Patient samples
In this study, fresh surgical samples were obtained from
54 patients undergoing surgery for EC at the Mater pub-
lic and private hospitals (n=49), Queensland, Australia,
or the Wesley Private Hospital (n=5), Queensland,
Australia, between May 2015 and February 2018. All pa-
tients provided written informed consent. The study has
human ethics approval from the Mater Health Services
Human Research Ethics Committee (HREC/15/MHS/
127), UnitingCare Health Human Research Ethics Com-
mittee (1116), Queensland University of Technology
(1500000169, 1500000323), and QIMR Berghofer
(P3478, P2095). Clinical data including tumor stage,
grade, chemotherapy treatment, and survival status was
collected (Additional File 1: Table S1). The cohort had a
median age of 70 years (range 43–86 years). Fresh tissue
was obtained at surgery and transported to the labora-
tory on ice in RPMI, 10% FBS. The remainder was fixed
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in formalin and embedded in paraffin (FFPE). Where
possible, a blood sample was also obtained for sequen-
cing analysis. Outcome analysis was performed using
date of initial diagnosis of primary disease and date of
death due to EC.

Mouse PDX models
PDX establishment and passaging was performed ac-
cording to animal ethics approvals at TRI (TRI/021/19)
and QUT (1900000701). Fresh primary tumors (n=33)
were transplanted into immunocompromised Nod Scid
Gamma (NSG) mice within 4 h of surgery. When trans-
plantation could not be performed immediately (due to
unavailability of mice or surgery occurring late in the
day), tumors were either stored at 4 °C overnight in
transport media (n=9) or viably frozen in 90% FBS and
10% DMSO (n=11). Each sample was cut into approxi-
mately 1–2 mm3 pieces and placed on ice in a 1:1 solu-
tion of RPMI:Matrigel. Mice were anaesthetized with
isofluorane (induction 4%, maintenance 1.5%) and a sin-
gle tumor piece was inserted subcutaneously in the sub-
scapular region (2–4 mice). Mice were injected (26-G
needle) prior to surgery with 0.075mg/kg Buprenorphine
for pain management. PDX engraftment was then
assessed weekly using micro-calipers. Once a tumor
reached a volume of ~750–1000mm3, mice were eutha-
nized using CO2 and several 1–2-mm3 fragments were
transplanted subcutaneously into the next generation of
mice. Mice were housed up to five/cage and standard la-
boratory chow was provided ad libitum. At passaging, a
slice of each PDX was preserved as FFPE, as well as fro-
zen for DNA extraction. Hematoxylin and eosin (H&E)
slides were examined by an anatomical pathologist to
determine the histology of each PDX passage and ori-
ginal patient tumor.

In vivo drug testing
In vivo drug studies were performed according to animal
ethics approvals at TRI and QUT (QUT/275/17 and
1700000755). Mice were implanted with PDX fragments
from 6 to 10 weeks of age. Once tumors reached ~150–
350 mm3 (faster models started drug between 150 and
250 mm3 and slower models between 250 and 350
mm3), mice were randomized into treatment groups and
treated for 28 days via oral gavage. Final tumor volume
was measured on day 29, 24 h after last dose. Drugging
of each PDX model occurred over 2–3 passages with a
similar number of mice in each arm from each passage.
Average starting tumor volumes in vehicle and
talazoparib-treated arms were similar and are listed
below: PDX03, 275mm3 in both arms; PDX12, 167 and
163mm3, respectively; PDX23, 199 and 184mm3, re-
spectively; PDX53, 205 and 223mm3, respectively;
PDX49, 271 and 242mm3, respectively; and PDX56, 222

and 268mm3, respectively. Mice were drugged 6 days
on/1 day off with vehicle (20% Tween 20, 20% DMSO)
or talazoparib (0.33mg/kg) as previously reported [16].

DNA extraction and quality control
DNA was extracted from patient blood samples as well
as patient and related PDX tumor samples, using
DNeasy Blood & Tissue Kits (Qiagen, Germantown,
MD, USA). The purity of DNA was assessed using
NanoDrop and quantified using the Qubit dsDNA BR
assay (Thermo Fisher Scientific, MA, USA). DNA sam-
ples were assayed with the Omni 2.5-8, V1.0 and V1.1
Illumina BeadChip as per the manufacturer’s instruc-
tions (Illumina, San Diego, CA, USA). SNP array analysis
was performed to confirm sample identity and tumor
content of DNA samples [17] for subsequent sequen-
cing, and is described in detail in the Additional File 1:
Supplementary Material.

Whole exome and whole genome sequencing
Eight PDX models underwent whole-exome sequencing
(WES) and three p53-mutant PDX models underwent
whole-genome sequencing (WGS). The WES libraries
were prepared from 1 μg of genomic DNA using the
SureSelect capture V5+UTR kit (Agilent, Santa Clara,
CA, USA) and sequenced with 100bp paired-end se-
quencing on a HiSeq 2500/4000 (Illumina) to a targeted
100-fold read depth. The WGS libraries were prepared
from 2 μg of genomic DNA using the TruSeq Nano kit
(Illumina) and sequenced with 150bp paired-end se-
quencing on a HiSeq X Ten (Illumina) at Macrogen
(Geumcheon-gu, Seoul, South Korea) with targeted
mean read depth of 60-fold for primary tumor samples
and 30-fold for matched PDX and normal samples.

Sequencing data analysis
Cutadapt (v1.18) [18] was used to trim low-quality 3′
bases (“-q 20”) and remove adapters before alignment to
a combined human/mouse (GRCh37/GRCm38 Nodshiltj
background) reference using BWA-mem (v0.7.15) [19],
and sorted and indexed using SAMtools (v1.9) [20]. Du-
plicate reads were marked using Picard MarkDuplicates
(v1.97). Human mutation calling process used only read-
pairs aligned to the human sequences with a mapping
quality score of 60. Quality assessment and coverage es-
timation was carried out by in-house developed tools,
qProfiler and qCoverage. Downstream analysis included
variant calling, copy number alteration (CNA) and struc-
tural variant (SV) detection [21–23], heterogeneity ana-
lysis [24, 25], microsatellite instability (MSI) and HR
deficiency (HRD) status assessment [26–28], and signa-
ture analysis [29, 30], described in detail in the Add-
itional File 1: Supplementary Material.
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Publicly available datasets (TCGA uterine corpus
endometrial carcinoma (UCEC) and TCGA-UCS) were
processed using a similar approach, without the initial
human/mouse alignment and filtering step. For TCGA-
UCEC and TCGA-UCS, only samples with >50 somatic
substitutions were selected for the analysis (n=591; 5
samples excluded) to ensure accurate estimation of mu-
tational signatures.

Statistical analysis and data visualization
Statistical analysis and data visualization was performed
in R 3.5.1, using ggplot2 and ComplexHeatmap pack-
ages, and using Circos. Final figure formatting was done
with Illustrator (Adobe).

Results
Established PDX models represent four histological
subtypes
Of 32 EC tumors implanted fresh, we generated 13 EC
PDXs which were confirmed as EC models by a special-
ized anatomical pathologist. Successful engraftment rates
were only obtained for histological grade 2 and 3 tumors
implanted fresh (33 and 61%, respectively); none of
grade 1 tumors engrafted (0/8) (Additional File 1: Table
S2). We were also able to obtain 5 EC PDX models from
an additional 22 EC tumors after storage at −80 °C or 4
°C overnight (Additional File 1: Table S2). In addition to
the 18 successful EC PDXs mentioned above, seven pa-
tient tumor transplants showed in vivo growth; however,
these were confirmed to be lymphomas based on posi-
tive leukocyte common antigen staining. The lymph-
omas occurred more often from grade 1 tumors (3/14,
21%) than grade 3 ECs (3/29, 10%) with an overall rate
of 13% (7/54). The ability to develop a PDX model from
engrafted tumors was significantly associated with
shorter disease specific survival (p < 0.02) (Additional
File 1: Fig. S1). This study reports detailed genomics data
for 11 of these 18 EC PDX models based on the avail-
ability of DNA from matched blood and multiple pas-
sages at study commencement.
The 11 PDX models were from EC of patients with

a mean age of 70 (range 43–86 years, Additional File
1: Table S1) who represented a wide range of EC dis-
ease with varying histologies and stages (IA to IIIB).
Histologic diagnoses included carcinosarcoma (n=3),
mixed endometrioid and serous (n=2), mixed endo-
metrioid and clear cell (n=1), and endometrioid (n=5,
of which 4 were FIGO grade 3 and 1 FIGO grade 2).
Nine patients received radiation or chemoradiation
and six patients recurred, five of which have subse-
quently died. In all models, the tissue architecture,
the epithelial compartment and the global histological
classification features were preserved in the corre-
sponding F0 to F2 PDXs (Fig. 1).

Genomics of EC PDX models
Sequencing and SNP array analysis was performed to
molecularly classify the 11 EC PDX models. The mo-
lecular classification was adapted from the TCGA endo-
metrial and UCS studies and was based on five aspects
(Fig. 2A, Additional File 1: Fig. S2): commonly mutated
genes (Additional File 1: Table S3, Additional File 2:
Table S4), TMB, MSI score (Additional File 1: Fig. S3),
extent of genomic CNA (Fig. 2B, Additional File 1: Fig.
S4), and mutational signatures (Additional File 1: Fig.
S5). Four molecular subtypes were represented in the
generated PDX models (Fig. 2A, Additional File 1: Fig.
S6). One PDX model was POLE-mutated. It contained
p.Pro286Arg POLE mutation in the exonuclease domain,
previously reported in EC and shown to lead to a par-
ticularly strong mutator phenotype [31]. This PDX was
characterized by an ultra-high TMB (>600 Mutations/
Mb), a CNA stable genome, low MSI score (<3%), and a
POLE-associated mutational signature, consistent with
genomic profiles reported for POLE-mutated EC cases
[3]. One PDX model was classified as CN-low p53 wild-
type, since it lacked TP53 or POLE mutations, had a low
number of CNA segments, and was MSI-stable. It was
characterized by a relatively low TMB, and moderately
stable genome. Five PDX models were classified as
MMRd, based on a high TMB (>20 Mutations/Mb), high
MSI scores (≥3%), and MMRd-associated mutational sig-
natures. One MMRd model (PDX12) had a significantly
higher somatic mutation rate of >200 Mutations/Mb
and was found to have two distinct MMR-associated
mutational signatures compared with other MMRd
models: Signature 20 and 14. Signature 14 is commonly
found in cancers with ultra-high mutation rate and has
been associated with concurrent MMRd and POLE mu-
tations. A somatic POLE mutation p.Tyr956His (n=5 in
COSMIC) was identified in PDX12, albeit not in the
exonuclease domain.
Four PDX models were classified as CN-high/

p53mut. This included PDX23 with mixed serous
histology and three UCS models. PDX23 was charac-
terized as TP53 wild-type, whereas the UCS models
all had TP53 mutations. In the original TCGA study,
55/60 (92%) CN-high ECs carried mutations in TP53
[3] and in the larger pan-cancer TCGA cohort, 142/
163 (87%) CN-high ECs carried mutations in TP53
[32]. Despite the difference in TP53 mutation status,
they all shared low TMB (≤10 Mutations/Mb), high
degree of genomic instability (>25% of genome with
CNAs and >15 CN segments), and low MSI scores,
suggesting microsatellite stability. The UCS models
had no dominant signature detected (<30% of somatic
mutations attributed to a single signature; Additional
File 1: Fig. S5), whereas the serous model had a dom-
inant APOBEC signature.
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Fig. 1 Histopathology assessment of the primary and PDX tumor samples. Pt, primary tumor. PDX F0, 1st tumor obtained from the mouse
transplant. PDX F1, PDX F2, subsequent transplants. F0 picture for PDX12 is missing as no FFPE sample was available for this lineage. Scale bars
denote 50 μm, except for PDX24 Pt – 20 μm
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Fig. 2 (See legend on next page.)
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Molecular subtyping of the other model with serous
histology revealed it was MMRd (PDX53), which was
consistent with a germline MSH6 mutation (p.Tyr214*)
in the patient and the finding that 13% of patients with
germline MMR mutations have mixed serous histology
[33]. Somatic frameshift mutations in MSH6 were de-
tected in three of five MMRd models, including PDX53,
which also carried a germline MSH6 mutation. Somatic
mutations detected in the other genes were consistent
with TCGA findings. Protein-altering somatic variants
were commonly detected in PTEN, ARID1A, PIK3CA,
KRAS and RPL22 genes. All MMRd models contained
somatic PTEN and ARID1A mutations, and four of five
contained RPL22, most of which were inactivating
frameshift or nonsense mutations (Fig. 2A, Additional
File 2: Table S4). Mutations in RPL22 occur at an A8 ho-
mopolymer and have been detected in 51/148 MSI ECs
(35%, TCGA pan-cancer cBioportal analysis) [32], as
well as 12/23 (52%) MSI ECs [34] and 17/34 MSI EC
[35]. Recent functional studies suggest RPL22 acts as a
haploinsufficient tumor suppressor involved in inducing
senescence through CDK4 inhibition [36].

Variable intra-tumor heterogeneity observed in MMRd
PDX models
To study the intra-tumor heterogeneity and to evaluate
how well the PDX models recapitulate primary tumors,
we focused in detail on four of five MMRd models
(where matched primary tumor sample was available) as
these might be expected to accumulate changes during
passaging based on their defective DNA mismatch re-
pair. We observed CNA and LOH differences in PDX12
and PDX58 (Fig. 3A, Additional File 1: Fig. S7a), but the
overall genome-wide levels of CNA and LOH remained
low in both primary and PDX tumor samples (Add-
itional File 1: Fig. S7b). To investigate the distinct CNAs,
we looked at additional PDX samples assessed with SNP
arrays. For PDX12 model, we detected chr1q gain in pri-
mary tumor and lineage C PDX samples but not in line-
ages A or B, whereas lineage A PDX samples
consistently had chr4p16-15.1 single copy loss that was
not detected in the tested primary tumor or other PDX
lineages (Additional File 1: Fig. S8). These lineage differ-
ences were observed from early passages (passage 1),

suggestive of pre-existing subclonal events. We also de-
tected chr4q31.3-35.2 single copy loss in the lineage A
passage 4 sample that could have been PDX-acquired or
in a rare pre-existing subclone. For PDX58, we similarly
detected likely pre-existing subclonal events. Lineage A
had distinct CNA profile from passage 0 compared to
primary tumor and lineage B PDX (full chr8 gain and no
chr8p LOH), whereas lineage B had the same CNA
events as the primary tumor (Additional File 1: Fig. S9).
The TMB for primary tumor and PDX models was

stable across different passages of PDX samples (pas-
sages 0–4); however, we observed a substantially higher
number of mutations in PDX samples compared with
matched primary samples in three PDX models (Fig.
3B). This was likely due to lower tumor purity observed
in the primary samples compared with PDX samples
(Additional File 1: Fig. S10). Indeed, PDX59 with the
highest tumor purity (83% compared to 20–46% for
other primary samples) had the most comparable num-
ber of somatic mutations to the matched PDX samples.
For three of four models, 83–99% of the somatic substi-
tutions in the primary tumor were also detected in all
tested PDX samples, with only limited heterogeneity ob-
served between different lineages of the PDX (Fig. 3C
and Additional File 1: Fig. S11). In PDX58, however, we
observed that one lineage of the established PDX shared
only a third of its somatic substitutions with the primary
tumor sample (Fig. 3D). A clonality analysis of PDX58
using PyClone identified two distinct mutational clones
(PDX lineages A and B) that likely diverged early in the
tumor evolution and were unintentionally selected dur-
ing the initial tumor fragment transplantation (Fig. 3E,
F). Mutations unique to lineage A included an activating
KRAS mutation (p.Gly12Asp) and a hotspot TP53 muta-
tion (p.Arg273His). Mutations found only in primary
tumor and lineage B included truncating ARHGAP35
(p.Asn1028fs) and ARID1A mutations (p.Gly1848fs), al-
beit additional truncating ARID1A mutations were de-
tected in lineage A sample and in all PDX58 samples
(Additional File 1: Table S4). This clonality analysis was
consistent with the distinct CNA profile detected in
lineage A samples compared to the primary tumor and
lineage B, which were more similar (Additional File 1:
Fig. S9). Overall, since the greatest variability was

(See figure on previous page.)
Fig. 2 The four molecular subtypes are represented in PDX models. A Genomic characteristics of endometrial carcinoma and carcinosarcoma
PDX models. PDX models are grouped by the four molecular subtypes: POLE, CN-low, MMRd, and CN-high/p53mut. Tumor mutation burden is
shown by gray bars, as mutations per Mb using a log10 scale. Somatic mutations and CNA events, which were detected in PDX samples in MMR
genes and genes relevant to endometrial carcinomas and carcinosarcomas (Additional File 1: Table S3, Additional File 2: Table S4), are shown.
Only consensus variants detected in all sequenced PDX tumor samples were included in this figure. MSI score was assessed by MSISensor
(Additional File 1: Fig. S3). Percentage of genome with CNA and the number of CNA segments were determined from SNP arrays or WGS data
(Additional File 1: Fig. S4). Only the dominant mutational signature etiology is shown. B Representative B-allele frequency plots of CN-low and
CN-high PDX models
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observed between different lineages of the established
PDX models and not between the passages, we con-
cluded that this was likely due to spatial heterogeneity
present in the original patient tumor.
For the PDX models where DNA from the primary

tumor sample failed quality control for WES, we
assessed the heterogeneity within the PDX samples. We
observed minimal mutational heterogeneity in non-
MMRd models (PDX24, PDX21 and PDX23) and some
heterogeneity in MMRd model PDX53, particularly in
two different lineages (Additional File 1: Fig. S12).

Variable intra-tumor heterogeneity observed in p53mut
uterine carcinosarcoma PDX models
To capture the genome instability and heterogeneity ob-
served in the CN-high/p53mut UCS models, we per-
formed WGS in three models to examine CNA changes
in more detail. The overall genome-wide levels of CNA
and LOH were comparable between the primary and
matched PDX samples, with the exception of PDX03
model (Fig. 4A, Additional File 1: Fig. S13), which har-
bored a whole-genome duplication (WGD) not detected
in the primary tumor. By examining CNA profiles of the
additional PDX samples assessed by SNP arrays for
models PDX49 and PDX56, we also observed a number
of CNAs that appeared subclonal either in the primary
sample or in the PDX samples. For PDX49 these in-
cluded single copy loss of chr1p36 (primary tumor only),
chr15 (subclonal in primary), chr21 (subclonal in pas-
sage 0 and enriched in passage 1), and chr22 and gain
on chr8 (Additional File 1: Fig. S14), while for PDX56
these were gains on chr1, chr2, chr10, and chr12 (Add-
itional File 1: Fig. S15). Importantly, we did not observe
reoccurring CNAs that were enriched in PDX samples
(i.e., PDX-passage specific) across the assessed models as
had been previously reported for PDXs representing
other tumor types [37]. The total number of somatic
mutations detected across the whole genome for each
UCS model was consistent between the primary tumor
and the matched PDX samples, with no increase in mu-
tation number detected with passaging (Fig. 4B).
For PDX03, which contained a WGD in the PDX and

not the matched primary tumor, PyClone clonality ana-
lysis revealed a high degree of heterogeneity in the

model, with five major different mutational clones de-
tected (Fig. 4C-E) that were associated with multiple
samples in PDX lineages A and B. Clone 2 was the pre-
dominant clone in the primary tumor sample (predicted
in around 80% of tumor cells), but was detected at only
around 15% in lineage A, and was absent in lineage B.
Interestingly, using Battenberg we identified a CNA sub-
clone in lineage A with a similar copy number profile to
the primary tumor (Additional File 1: Fig. S16a-d). In
support of this, the ploidy estimated from SNP array
analysis of the additional PDX samples identified two
early lineage samples (passage 0 and 1) from lineage A
that had estimated ploidy of 2, same as the primary
tumor sample (Additional File 1: Fig. S16e). We there-
fore concluded that the WGD event was already present
in a subclone of the primary tumor, although not de-
tected in the sample taken for WGS analysis. In the
other two carcinosarcoma models, clonality analysis also
revealed heterogeneity, although not to the same extent
as seen in the PDX03 model (Additional File 1: Fig. S17-
18).

Assessment of PARPi responses and HR status in PDX
models
Since the established PDX models were found to reflect
the primary tumors, we evaluated their use for testing
molecularly-targeted treatments. Potential therapeutic
options for all 11 PDX models were identified using
their genomic profiles and Cancer Genome Interpreter
analysis (Additional File 1: Fig. S19). Multiple thera-
peutic options were identified, with three or more op-
tions detected per PDX model. PARP, mTOR, and PI3K
pathway inhibitors, as well as PD1 inhibitors, were iden-
tified among the most common potential treatment op-
tions. A large number of therapeutic agents were
identified for tumors with a high TMB (POLE/MMRd);
thus, functional testing is required to determine whether
these models are responsive, given many of the muta-
tions could be passenger events.
PARPi has been previously identified as a promising

therapeutic strategy for EC. Therefore, we evaluated
PARPi responses in a subset of the established PDX
models. Highly potent PARPi talazoparib was selected
due to its significantly higher PARP trapping ability [38]

(See figure on previous page.)
Fig. 3 Intra-tumor heterogeneity observed in the MMRd EC PDX models. A Somatic genome-wide levels of CNA and B total somatic mutation
count in the four MMRd models, where primary tumor sample was analyzed by WES and by SNP arrays. Tumor purity was estimated from the
mode of somatic variant allele frequencies (Additional File 1: Fig. S10). Varying degrees of mutational heterogeneity visualized by Euler diagrams
of somatic substitutions called by qBasepileup in C PDX59 and D PDX58 MMRd models. E Cellular prevalence and F the clonal evolution tree of
the top three mutational clusters (with ≥5% of all somatic substitutions) detected in the PDX58 model by PyClone. Values shown above boxplots
represent the number of substitutions contributing to each cluster. Length of branches is proportional to the number of substitutions attributed
to that clone. Tumor samples are grouped by patient ID. PDX samples are labeled by passage number (F0—1st transplant, F1—2nd transplant,
F2—3rd transplant, etc.) and lineage in brackets (A, B). DEL, deletion; DNP, double nucleotide polymorphism; INS, insertion; SNP, single nucleotide
polymorphism; Hom Del, homozygous deletion
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and was used to treat the four CN-high PDX models
and two MMRd models in vivo (Fig. 5). PDX03 and
PDX49 showed the most sensitivity, with average tumor
growth inhibition (TGI) showing the equivalent of stable
disease by Response Evaluation Criteria In Solid Tumors
(RECIST). PDX56 and PDX23 showed significant TGI,
albeit this would translate to progressive disease by
RECIST. No effect of talazoparib was seen in the MMRd
models with multiple heterozygous missense mutations
and/or LOH in DNA repair genes (PDX12 and PDX53).
Interestingly, the in vivo validation of in silico PARPi re-
sponse predictions was quite poor. Only two of six PDX
models were predicted to respond correctly—PDX23
was predicted to respond and showed TGI in vivo, and
PDX12 was predicted to not respond.
Due to the limited responses to single agent PARPi

observed in vivo, we characterized the PDX HR status in
detail. We firstly estimated the HRD scores for the pri-
mary and matched PDX samples with WGS or SNP
array-estimated CNA data. All of the primary tumor
samples had HRD scores below the threshold of ≥42, a
previously defined cut-off for HRD breast and ovarian
cancers [39, 40]. Two of three CN-high carcinosarcoma
models had some F1 or F2 PDX samples with HRD
scores just over the threshold (Fig. 6A).
We then assessed the mutational signatures, specific-

ally contribution of COSMIC Signature 3, an alternative
marker of HRD. Three CN-high carcinosarcoma models
had low mutational contribution of Signature 3, between
20 and 30%, while the other models had no Signature 3
contribution (Fig. 6A). However, rearrangement signa-
ture analysis on the three carcinosarcoma models did
not detect BRCA1/2-associated signatures (Additional
File 1: Fig. S20). For carcinosarcomas that were se-
quenced with WGS, we also utilized a weighed combina-
torial approach for HRD prediction, HRDetect [28],
which takes into consideration mutational and structural
variant signatures, microhomology indels, and HRD
scores described above. All three models had HRDetect
probability scores well below the HRD threshold of 0.7,
established and tested in breast, ovarian, and pancreatic
cancer (mean scores of 0.02, 0.03, and 0.34 for PDX03,
PDX49, and PDX56, respectively) [28]. Finally, we
looked for the presence of pathogenic or presumed

pathogenic germline and somatic mutations in the HR-
associated genes (Additional File 1: Table S5) and som-
atic mutations in PTEN and ARID1A, since mutations in
these genes have been associated with PARPi sensitivity
in the pre-clinical setting [10, 13]. Apart from recurrent
presumed pathogenic mutations in PTEN and ARID1A,
we did not detect any clear driver mutations in HR-
genes with evidence of enrichment or LOH in CN-high/
p53mut models. We did detect a large number of likely
passenger mutations in hypermutated models (MMRd/
POLE; Fig. 6A; Additional File 2: Table S6). The gen-
omic characterization and the lack of in vivo tumor re-
gressions in response to PARPi suggested that all models
were HR proficient.

HR deficiency is predicted to be a rare event in UCEC and
UCS
Since we did not observe clear evidence of HRD in the
PDX models, we wanted to estimate the rate of HRD in
a larger cohort of unselected UCEC and UCS patients.
We assessed HR status in the expanded TCGA cohort of
534 endometrial carcinomas (TCGA-UCEC: n=393
endometrioid EC and n=141 non-endometrioid EC) and
57 uterine carcinosarcomas (TCGA-UCS). De novo de-
tection of mutational signatures identified six signatures
associated with age, APOBEC, MMR, and POLE, but not
HRD-associated Signature 3 in either of the datasets
(Additional File 1: Fig. S21). We then applied the same
approach that was used for the PDX models — assigning
known COSMIC signatures (including HRD Signature 3)
to the mutational profiles of each sample. Using this ap-
proach, we predicted that only 6.4% (38 of 591) of all an-
alyzed samples had Signature 3 detected, using 15%
minimum signature contribution cut-off to avoid overfit-
ting (Fig. 6B). Signature 3 was detected in 11.4% (16/
141) of non-endometrioid EC, 3.8% (15/393) of endome-
trioid EC and 12.3% (7/57) of UCS cases.
We also looked for germline and somatic variants in

HR genes in these 591 samples (Fig. 6C, Additional File
2: Table S7). Only 2.5% (15/591) cases were found to
harbor germline pathogenic or presumed pathogenic HR
gene variants: 3.5% (5/141) of non-endometrioid, 2.3%
(9/393) of endometrioid, and 1.8% (1/57) of UCS cases.
Seven variants in BRCA1, PALB2, RAD51C, and

(See figure on previous page.)
Fig. 4 Intra-tumor heterogeneity and clonal evolution observed in p53mut UCS PDX models. A Somatic genome-wide levels of CNA and B total
somatic mutation count in the three UCS models. Tumor purity was estimated by ascatNgs. C Cellular prevalence of the top five mutational
clusters with ≥5% of all somatic substitutions detected in the PDX03 model by PyClone. Values shown above boxplots represent the number of
substitutions contributing to each cluster. D Fish plots and E cellular population depictions of the top five mutational clusters detected in the
PDX03 carcinosarcoma model. Percentages shown in the fish plots are the estimated proportions of cells containing that mutational cluster. F
The clonal evolution tree inferred by ClonEvol, where length of branches is proportional to the number of substitutions attributed to that clone.
Tumor samples are grouped by patient ID. PDX samples are labeled by passage number (F0—1st transplant, F1—2nd transplant, F2—3rd

transplant, etc.) and lineage in brackets (A, B). TNP, triple nucleotide polymorphism
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RAD51D genes were concurrent with the presence of
mutational Signature 3, whereas the variants in BRIP1,
NBN, MRE11A, and CHEK2, as well as one variant in
RAD51B, were detected in cases without Signature 3.
This finding was in line with a previous report in breast
cancer, where mutations in DNA-damage signaling path-
way genes, such as ATM and CHEK2, were not associ-
ated with increased Signature 3 [41]. Somatic mutation
analysis was restricted to 38 cases with detected Signa-
ture 3. Only one somatic pathogenic variant in BRCA1
was detected in endometrioid cancer.

Discussion
In this study, we aimed to generate and characterize mul-
tiple PDX models of EC to assess their suitability as pre-
clinical models for studying the disease. The highest en-
graftment rate was achieved for tumors of grade 2 or 3
histology and fresh tumor material (15/25; 60%). This is
comparable with the 60% engraftment rate previously re-
ported for EC [42] and 62% for leiomyosarcomas and car-
cinosarcomas [43]. Engraftment was less successful after
storage at −80 °C or overnight at 4 °C. We also observed
an incidence of lymphoma formation (13%) similar to that
previously reported in ovarian cancer (11%), which in fu-
ture studies can be reduced by the addition of rituximab
during implantation [44]. The proportion of the molecular
subtypes in this study differs from that seen in primary tu-
mors reported by TCGA [3], as the process of PDX en-
graftment selects for more aggressive subtypes. Little data
exists on the frequency of these subtypes in metastatic EC;
however long-term follow-up is available for several large
population-based cohorts. As expected, the proportion of
patients with the p53mut EC subtype increases between
patients diagnosed with low/intermediate risk EC (9%) [2]
and those diagnosed with high risk EC (23%) [45]. Simi-
larly, in the combined ProMisE cohorts the p53mut sub-
type comprises 18% of patients initially diagnosed but 48%
of patients that die due to EC [4–6]. Although the propor-
tion of MSI cases remains similar between patients diag-
nosed and those that die of EC (23%), in the combined
ProMisE cohorts, the CN-low ECs comprise 47% of those
diagnosed, but only 22% of EC specific deaths [4–6]. This
explains in part the number of CN-high/p53mut and

MMRd PDX models compared to POLE and CN-low
PDX models in our cohort.
To understand the suitability of pre-clinical PDXs

models to study EC, we undertook an in-depth genomic
characterization of patient primary and matched serial
PDX tumor samples of EC. Immunohistochemistry stud-
ies in small panels of EC PDX models have been reported
previously [46, 47]; however, no molecular or genomic
analysis of these models was included. The Amant labora-
tory has reported some molecular characterization of EC
PDXs (e.g., microsatellite stability versus instability) with
WES reported for four models [42]. They have also re-
ported copy number changes in two PDXs from one
lineage in a panel of sarcomas and carcinosarcomas with
WES reported in one model [43]. To the best of our
knowledge, our report is the first to describe de novo mu-
tational signature and copy number analysis across a panel
of EC PDXs. The established PDX models recapitulated
key morphological and genomic features present in the
molecular subtypes [3]. Interestingly, no distinct PDX-
specific mutational signatures were found using de novo
signature analysis, and the overall mutational profiles were
very similar between the primary and matched PDX sam-
ples. We also did not observe an accumulation of PDX-
specific CNA events in these PDX models, as was previ-
ously reported in PDX models of breast, brain, lung,
colon, and pancreatic cancers [37]. In keeping with the
earlier study [37], we observed that the CNA dynamics
were likely driven by the selection of pre-existing sub-
clones, as most of the CNA differences were observed be-
tween PDX lineages and not between passages. Taken
together, these results suggest that recurring PDX-specific
evolution is minimal in these models, and these models
reliably represent the driver events and molecular sub-
types of the primary tumors.

Intra-tumor heterogeneity
EC tumors are composed of multiple complex sub-clonal
cell populations resulting in intra-tumor heterogeneity
[48, 49]. Maximum tolerated dose chemotherapy regimens
aim to eradicate the entire tumor but rarely achieve it,
often leaving resistant sub-clones that possess a growth
advantage and are free to expand. Hence, genomic intra-
tumor heterogeneity has clinical implications for EC and

(See figure on previous page.)
Fig. 5 Talazoparib responses in EC and UCS PDX models. Talazoparib responses in A PDX03 — CN-high/p53mut UCS; B PDX49 — CN-high/
p53mut UCS; C PDX56 — CN-high/p53mut UCS with somatic ARID1A deletion; D PDX23 — CN-high EC; E PDX12 — MMRd EC with somatic
PTEN, BRCA2, ATM, and PALB2 mutations; F PDX53 — MMRd EC with somatic PTEN, ATM, BRCA1, and MRE11A mutations. Recipient mice bearing
PDX at starting volume of ~150–350 mm3 were randomized to treatment with vehicle or talazoparib (0.33mg/kg) for 28 days (6 days on, one day
off) via oral gavage. Analysis for significance between treatment groups was performed using a repeated mixed effects analysis (which can
account for random missing measurements) on the day the first mouse was sacrificed based on tumor size (e.g., 17, 22, and 24 days), except for
PDX53 where 2 vehicle mice were sacrificed early and excluded. n.s, not significant; *, significant difference (p-value shown)
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needs to be characterized to enable precision medicine. In
this study, we transplanted undisturbed tumor fragments
rather than minced tumor cells which allowed us to ob-
serve great variation in the intra-tumor heterogeneity
among different PDX lineages and passages.
In two of four models, where multiple lineages were

sequenced, we detected high levels of intra-tumor het-
erogeneity that could have a potential impact on treat-
ment responses. The greatest variability was observed
between the different lineages (detected in early pas-
sages) and not between the passages, indicating that this
heterogeneity was pre-existing in the primary tumor, al-
though it is unclear whether the subclones were selected
due to chance or due to a selective advantage in the
PDX. In the absence of much deeper sequencing for de-
tection of rare subclones, we were unable to determine
the full degree of intra-tumor heterogeneity in the pri-
mary tumor samples due to lower tumor purity and dif-
ferent tissue fragments used for the initial transplant and
DNA extraction. In the MMR-deficient model (PDX58),
one of the established lineages was enriched for a sub-
clone with hotspot KRAS and TP53 mutations and over
50% private mutations, suggesting that this subclone had
diverged early on in the tumor evolution. KRAS muta-
tions have been linked to drug resistance in multiple
cancers [50, 51], and TP53 mutations are associated with
poor prognosis in EC [3]. In the TP53-mutant UCS
model (PDX03), one of the lineages had a WGD event
together with other subclonal mutations. WGDs are fre-
quently detected in UCS (90%) [9] compared with epi-
thelial EC, as well as in metastatic cancers across
multiple cancer types [52] and have been associated with
poor prognosis [53]. PDX models that capture pre-
existing intra-tumor heterogeneity such as described
here make a perfect tool for studying the effects of indi-
vidual genomic events on tumor evolution, progression,
and drug responses and should be explored further.
However, the extensive spatial heterogeneity reported
here can also result in challenges for predicting treat-
ment responses based on molecular profiling of clinical
tumor samples, as typically only a small tumor fragment
is sequenced and key mutations can be missed. As such,
liquid biopsies or representative sequencing techniques

[54] may provide less biased molecular profiling results
for recommending patient treatment options.

PARP inhibitors in EC
PARPi sensitivity has previously been reported in EC, al-
though to date the work has been performed in cell
lines, which do not faithfully represent all of the EC mo-
lecular subtypes [10, 12]. The proposed biomarkers of
PARPi response in EC are diverse and include PTEN,
ARID1A or MRE11A loss [10, 12, 13], TP53 mutations,
and cumulative effect of multiple somatic hits in HR
genes in hypermutated MMRd EC [55]. Our PDX EC
cohort had a representation of all of these events, so we
could investigate their effect on PARPi response in vivo.
By performing HRD scarring and mutational signature
assessment, commonly used for classifying HRD-ness in
ovarian and breast cancers [56], we determined that our
EC models were all likely HR-proficient. Interestingly,
three UCS models with mutated TP53 had intermediate
HRD scores and some of the somatic mutations were at-
tributed to Signature 3, although the HRDetect scores
were well below the HRD threshold. Two UCS models
showed disease stabilization in response to the potent
PARPi talazoparib in vivo, whereas the CN-high serous
and third UCS model showed significant TGI. This ob-
servation is consistent with an earlier study of PARPi
niraparib in ovarian TP53-mutant PDX models, where
some HR competent models showed disease stabilization
or TGI, while HRD models showed much more pro-
nounced responses with tumor regression [57]. The
PDX models representing MMRd ECs were chosen as
they contained damaging mutations in canonical HR
genes and mutations in PTEN and ARID1A; however,
talazoparib had no effect on TGI. It should be noted that
although these PDX models harbored multiple damaging
mutations in canonical HR genes none showed consist-
ent enrichment in tumors. This data indicates that loss
of PTEN or ARID1A or multiple heterozygous muta-
tions in HR genes in MMRd ECs are not associated with
response to PARPi as proposed [58].
It has been recently reported that up to half of non-

endometrioid EC (predominantly p53mut) can harbor
BRCA-associated genomic scars compared with only 12%

(See figure on previous page.)
Fig. 6 Genomic HRD assessment in EC PDX models and public data. A HRD assessment in PDX models. Somatic substitutions, indels, CNAs and
SVs are shown for DNA repair related genes, including PTEN and ARID1A (Additional File 1: Table S5, Additional File 2: Table S6). HR-related genes
are highlighted in bold. No pathogenic or likely pathogenic germline substitution and indel variants in these genes were detected. HRD sum
scores were determined using scarHRD from SNP arrays and WGS data, where available (unable to calculate scores for PDX21 F1 and F2 samples
and PDX23 F1 and F4 samples due to noisy arrays). Percentage of Signature 3 was determined with deconstructSigs using COSMIC v2 signatures.
Only WGS data is shown for PDX03 and PDX49, where WES and WGS was performed. HRDetect scores were determined only for samples with
WGS data. B Mutational signature assignment for TCGA-UCEC and TCGA-UCS cohorts (n=591). Signature assignment was performed using
deconstructSigs with 15% minimum signature cut-off. c TCGA-UCEC and TCGA-UCS cases with possible HRD. Cases with pathogenic or likely
pathogenic variants in HR-related genes (Additional File 1: Table S5, Additional File 2: Table S7) or cases with Signature 3 detected are included
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of endometrioid ECs (CN-low/MMRd) [15]. Since our
PDX cohort did not have a large representation of non-
endometrioid EC (five of 11 models), it was possible that
we missed the HRD cases by chance. However, our ex-
ploration of TCGA UCEC and UCS datasets also showed
that HRD is likely rare in EC. We saw much lower rates of
Signature 3, both in general (6.8%), and in the non-
endometrioid cancers (12%) compared to the previous re-
port [15]. This was likely due to a more conservative sig-
nature assignment approach used in our study. The
mutational signature analysis approach can have a great
influence on the identification of signatures, especially sig-
natures with flat profiles (Signature 3, 5, and 8) [59]. Our
rates of Signature 3 were more in line with a recent ana-
lysis of a smaller cohort of TCGA UCEC and UCS cases
[60]. Furthermore, the rates of damaging mutations in HR
genes were quite rare (1.6–3.6% depending on the histo-
logical subtype), consistent with another study looking at
bi-allelic alterations in HR genes [14]. In this study, we fo-
cused on somatic HR mutations that were predicted to be
damaging and only in cases with detected Signature 3, to
avoid inclusion of possible passenger mutations in hyper-
mutated MMRd and POLE cases. These factors could ex-
plain why we detected lower rates of HR mutations in EC
compared to some other reports [61, 62].
The lack of tumor regressions in our EC PDX models

in response to PARPi talazoparib and the infrequent
HRD events in EC public datasets indicate that PARPi
may not be sufficient as a single agent therapy in an un-
selected EC patient population. Nonetheless, PARPi may
still have an important role to play in the management
of EC and should be further investigated in combination
with other treatments. Several PARPis including talazo-
parib have been shown to have strong PARP trapping ef-
fect [38], leading to replication stalling. This opens up
the possibility to combine PARPi with other therapies
for an enhanced anti-tumor activity, including cell cycle
checkpoint inhibition, PI3K pathway inhibition, RNA
Pol1 inhibition [63], or ICIs. Genomically characterized
patient-derived organoids [64, 65] or explant models
[66] would be more time and cost efficient than PDX
models for assessing which PARPi combination/s have
the best efficacy in a panel of CN-high EC. Genomically
characterized PDX models, such as ours, will also be
useful to perform pre-clinical assessment of PARPi and
immunotherapy combinations in humanized PDX
models, as performed in other cancers [67], to support
the design of new clinical trials.
The limitations of this study include the absence of pri-

mary tumor samples for four models limiting the intra-
tumor heterogeneity studies that could be performed,
in vivo talazoparib responses for only six models, and a
lack of in vivo sensitivity data for additional anti-cancer
agents implicated by the Cancer Genome Interpreter data.

In the future, more detailed studies on intra-tumor het-
erogeneity could employ single cell analysis.

Conclusions
Although some EC subtypes are represented by only one
to three PDX models, somewhat limiting the conclusions
that can be drawn, we have shown that EC PDX models
can capture intra-tumor heterogeneity, which should be
accounted for and explored to improve treatment re-
sponses and patient outcomes. By combining genomic
characterization and in vivo treatments, we also showed
that PARPi talazoparib had some disease stabilization ac-
tivity in CN-high/p53mut EC, which can potentially be
enhanced by combination therapies.
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