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Abstract

For the last two decades the immunotherapy of patients with solid and hematopoietic tumors 

has met with variable success. We have reviewed the field of tumor vaccines to examine what 

has worked and what has not, why this has been the case, how the anti-tumor responses were 

examined, and how we can make tumor immunity successful for the majority of individuals rather 

than for the exceptional patients who currently show successful immune responses against their 

tumors.
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Introduction

To combat invading pathogens the adaptive immune system mobilizes antigen-presenting 

cells (APC), CD4+ and CD8+ T cells to attack the intruder, and B cells to make antibodies. 

Tumors developing within the body pose a different challenge because they are usually 

slowly developing (1) and originate from ‘self’. Tumors arise as a consequence of acquired 

and inherited genetic aberrations in oncogenes and tumor suppressor genes, resulting in 

uncontrolled growth of what is often considered a clonal initiator population (2–4) that 

accumulates a concatenation of further genetic lesions during the progression from benign 

to malignant (5). Loss of genetic and genomic control appears to be responsible for at 

least some of the process of tumorigenesis (6,7). There is ample evidence that the immune 

system plays a prominent role in preventing tumor development: patients with immune 

deficiencies such as human immunodeficiency virus (HIV)/acquired immunodeficiency 

syndrome (AIDS) have tumor types such as Kaposi sarcoma (8,9) and other malignancies 

(10,11) that rarely occur in healthy individuals. Tumor phenotypes are sculpted by the 

immune system, leading to escape from immune surveillance (12). In allogeneic stem cell 

transplants where leukemia patients receive T cells from human leukocyte antigen (HLA) 

haplotype-mismatched donors, the recipient’s leukemia may down-regulate the mismatched 

major histocompatibility antigen (MHC) molecules (13). A similar phenomenon has been 

described in a melanoma patient who developed melanoma subclones resistant to lysis by in 
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vivo emergent autologous anti-melanoma CD8+ T-cell clones (12). Sometimes patients may 

possess pre-existing anti-tumor immunity that is ineffective but can be amplified by T-cell 

growth factors (12,14). Clearly immune control of malignancies is not perfect, and various 

strategies are being explored to boost immunity. Vaccination of the tumor-bearing host with 

tumor-associated antigen (TAA)-derived peptides is one such strategy. Another approach 

is to target polymorphic minor histocompatibility (mH) antigens that are differentially 

expressed by the tumor (see below). Such antigens, originally described in the allogeneic, 

HLA-identical transplant setting, can exhibit both broad and restricted tissue expression, 

and are usually targeted by T cells specific for the polymorphic epitope. As mH-specific T 

cells are likely to have a high avidity to the antigen, they may represent a more powerful 

alternative to monomorphic tumor antigens. EXcellent reviews list the large repertoire of 

TAA and mH antigens now identified (15–21).

We have focused on the progress made in vaccine therapies, strategies to monitor T-cell 

responses against the vaccine and the tumor, and the prospects for exploiting the knowledge 

gained from detailed studies on anti-tumor immunity to improve the efficiency of tumor 

vaccine therapy in the management of solid and hematopoietic malignancies.

Tumor and mH antigens

Researchers have identified a large array of tumor antigens targeted by autologous CD8+ 

T cells derived from the peripheral blood or tumor-infiltrating lymphocytes (TIL). These 

epitopes can be categorized broadly into antigens that are: (a) selectively or uniquely 

expressed in the tumor; (b) derived from tumor-specific mutations; (c) differentiation 

antigens; and (d) antigens overexpressed in the tumor (20,22). We and others have shown 

that proteins overexpressed in myeloid malignancies, such as proteinase 3 (PRTN3), 

neutrophil elastase (ELA2) and Wilms tumor-1 (WT1), are targeted by T cells. The 

primary granule proteins human ELA2 and PRTN3 are serine proteases expressed in normal 

myeloid cells but overexpressed in myeloid malignancies (23,24). Both contain a nonamer 

(VLQELNVTV) that is presented in the context of HLA-A*0201 (23,25). Leukemic cells 

presenting this epitope are effectively lysed by CD8+ T cells, while healthy myeloid cells 

are not (23–26). Under certain circumstances, such as interferon (IFN) therapy (27) and 

allogeneic hematopoietic stem cell transplantation (HSCT) (27,28), increased frequencies 

of PRTN3/ELA2-derived peptide antigen (PR1)-specific CD8+ T cells have been detected 

in these patients. We recently demonstrated that such T cells reside predominantly in the 

bone marrow, and that they recognize their target antigen with high avidity (28), suggesting 

a contribution of PR1-specific CD8+ T cells to the eradication of myeloid leukemia cells 

following allogeneic HSCT. Using a platform of HLA tetramers that allowed differential 

detection of high- and low-avidity PR1-specific CD8+ T cells, we demonstrated persistence 

of low-avidity and loss of high-avidity TAA-specific CD8+ T cells in the bone marrow prior 

to transplant (29), consistent with in vitro findings by Molldrem et al. (30) that suggested 

that leukemic cells evade immune surveillance by specifically depleting T cells with high 

avidity for the leukemia antigen.

WT1 is a zinc finger transcription factor overexpressed in various malignancies, including 

leukemias (31–33). WT1 fulfills an important criterion in immunotherapy: appearing to be 
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essential for pathogenesis (34–36). Nevertheless the picture is not entirely clear, as WT1 

mutations occur in approXimately 10% of leukemias (37–39) and are associated with poor 

clinical prognosis (37,39–41), suggesting that wild-type WT1 might in some circumstances 

regulate tumor progression. Patients with WT1 mutations have significantly higher WT1 

gene expression levels (42), suggesting that these patients might be especially suitable for 

immunotherapy using WT1-specific T cells.

Minor histocompatibility antigens were first discovered in patients who developed severe 

graft-versus-host-disease (GvHD) after HSCT despite a full molecular match at the MHC 

class I and II loci, and thus the term mH antigen was used. An mH antigen arises from 

a genetic difference between donor and recipient that results in the presentation of an 

antigenic peptide (43). Many such HLA class I- and II-restricted mH antigens have been 

discovered over the past 15 years, and some display tissue-restricted expression, such 

as HA-1(44) and −2 (45), HB-1 (46), LRH-1 (47), CD19 (48) and the more recently 

characterized mH antigen HEATR (49). Obviously the strengths of these antigens lie in 

the high avidity with which the T cells target such antigens. Until recently, mH antigens 

were identified in the allogeneic HSCT setting in patients who mounted an anti-leukemia 

response in the absence of GvHD. However, the Riddell laboratory induced and selected 

T-cell responses against mH antigens with hematopoiesis-restricted expression for adoptive 

transfer prior to the transplant (49). Although this strategy is likely to target unidentified, 

useful mH antigens, some characteristics of these antigens have discouraged researchers 

from exploiting their use in immunotherapy. First, mH antigen responses can only be elicited 

if the donor and patient are discordant for such polymorphisms. Thus, even if the donor and 

patient express a highly prevalent HLA allele, for example HLA-B*0801, and the population 

frequency of the mH antigen is c. 50%, this relatively favorable mH antigen can elicit a 

response in only in 5.5% of donor–patient pairs expressing this HLA allele. Second, it is 

unclear whether such a response is uni- or bidirectional, i.e. whether the alternative allele 

can also yield a peptide that is presented in the same HLA allele and may be seen by T cells 

in the other direction. From studies on HA-1 is has become clear that only the product from 

one locus is presented in HLA (44), possibly because of unfavorable binding characteristics 

of the non-immunogenic variant (50). Third, none of the thus far characterized mH antigens 

are presented in the context of HLA class I as well as class II (21), which may negatively 

affect the long-term persistence of CD8 T-cell responses in the absence of a CD4 component 

(see below). Thus, despite the high likelihood that mH antigen responses will elicit a higher 

quality T-cell response than the monomorphic TAA, many more mH antigens will have to be 

characterized to allow their targeting in a vaccine setting.

A third type of tumor antigen was recently reported by Childs et al. (51), where they 

identified an endogenous retroviral envelope-derived epitope as the target of CD8 T cells 

in clear cell renal cell carcinoma (RCC). About 8% of the human genome consists of 

retroviral elements, most of which are no longer transcriptionally or translationally active 

(52). In RCC, however, the human endogenous retrovirus (HERV) E is reactivated and 

thereby yields HLA class I-presented epitopes that are new to the immune system and 

targeted with high efficiency (51). These data suggest that HERV can be reactivated in some 

tumors and targeted by the immune system. What is unclear at this moment is whether such 
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HERV-specific T-cell responses can be elicited in the autologous T-cell pool of the patient 

via vaccination, and whether epitopes are presented in HLA class II.

The significance of CD4+ T cells

WT1 (and other TAA) has been targeted by various investigators using a short synthetic 

HLA class I binding peptide vaccine to treat patients with leukemias (53–55). However, it 

is likely that such responses are not maintained in the absence of a CD4+ T-cell response, 

and that the stimulation of CD8+ T cells in the absence of helper cell engagement results 

in a functionally defective population often referred to as ‘helpless T cells’ (56–61). CD4+ 

T cells, on the other hand, can do more than just provide help: numerous studies have 

demonstrated their cytotoXic potential (62–70). Additionally, it has been shown that CD4+ T 

cells can be directly cytotoXic but also amplify a CD8+ T-cell response in the patient (71). 

Thus, aside from the fact that CD4+ T cells can regulate their own proliferation and that of 

CD8+ T cells by autocrine stimulation via interleukin (IL)-2 production, these cells can also 

be very effective at eradicating target cells. Clinical evidence for a role for allogeneic CD4+ 

T cells in tumor eradication comes from the HSCT setting, where CD4+ T-cell infusions 

have led to achievement of full remission in a number of clinical trials (72,73).

Immunotherapy of cancer

The concept of immune therapy of cancer is well established (reviewed in 74,75). Various 

immunotherapy strategies have been developed: monotherapies with cytokines, antibodies, 

autologous and allogeneic tumor vaccines; peptides, proteins, DNA, RNA and antigen-

loaded APC; adoptively transferred lymphokine-activated killer cells, T cells and natural 

killer (NK) cells; allogeneic HSCT with or without delayed add-back of donor lymphocytes; 

any combination of the above. The molecular identification of antigens recognized by 

autologous tumor-specific CD8+ T cells since the early 1990s (19,20) has sparked an interest 

in using such peptides to more specifically direct the immune response against such antigens 

and to boost such responses in vivo or in vitro. In some studies dendritic cells (DC) have 

been pulsed with the antigenic peptide prior to administration to the patient, whereas in other 

studies a viral vector has been used to deliver the epitope to APC in the patient. A low 

percentage of melanoma patients vaccinated with these CD8 epitopes demonstrated tumor 

regression, and this regression appeared to correlate with frequencies of anti-TAA CD8+ 

T-cell responses (76). In the course of these studies it became clear that an effective CD8+ 

T-cell response against the tumor using peptide antigens would require help from CD4+ T 

cells or, as an alternative, the administration of IL-2. However, the lack of CD4 help cannot 

be used as the sole argument for why tumor immunotherapy fails in patients, because there 

are a multitude of explanations. Seven are given below.

a. Tumors are hierarchically organized and originate from a dormant pool of tumor 

stem cells (77–79) that may give rise to rapidly cycling progeny (reviewed in 

80). It has been demonstrated that such quiescent tumor cells are resistant to 

T-cell attack. Lymphocyte infusion from an HLA-identical donor into leukemia 

patients post-HSCT has been used as immunotherapy of leukemia for two 

decades (81,82). In one study, however, it was found that while donor T cells 
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isolated from the bone marrow of patients post-donor lymphocyte infusion 

recognized mature myeloid cells well, immature hematopoietic progenitor cells 

were resistant to lysis in the assays employed (83), suggesting that quiescent 

hematopoietic progenitor cells are not recognized by these T-cell clones. This 

suggests that additional strategies may be needed to revive the quiescent tumor, 

for example DNA demethylating agents or type I interferon (84). Alternatively, 

the establishment of a memory anti-tumor T-cell pool would allow the pruning of 

cycling tumor progeny by such cells, effectively containing the tumor within its 

small stem cell pool and preventing relapse.

b. Vaccine induction of suppressor T cells (85–90): Francois et al. (87) vaccinated 

melanoma patients with MAGE-A3 HLA-DP4-binding peptides and found 

that a significant proportion of clonally expanded antigen-specific CD4 T-cell 

clones suppressed the proliferation of MAGE-A3-specific CD4+ T-cell clones. 

Recently, Jandus et al. (88) identified FOXP3-expressing CD4+ T cells following 

vaccination of patients with a Melan-A vaccine using HLA-DQ tetramers, 

suggesting that the vaccine induced both effector and regulatory T cells. 

Increases in TAA-specific regulatory T cells have also been described in other 

settings (89). Bonertz et al. (90) analyzed the antigen specificity of some tumor-

infiltrating regulatory T cells in patients with colorectal cancer. By priming 

regulatory T cells with synthetic peptides and incubating these cells with 

polyclonally stimulated control cells, they demonstrated that regulatory T cells 

primed with some tumor antigens inhibited the proliferation of non-specifically 

activated regulatory T-cell depleted peripheral blood mononuclear cells (PBMC). 

The authors showed furthermore that the regulatory T cells recognized fewer 

antigens than the effector T cells. Given that regulatory T cells suppress a 

T-cell response non-specifically, the data suggest that, even though the tumor 

microenvironment contains regulatory T cells with fewer antigen specificities, 

they can still suppress effector T cells via a bystander mechanism.

c. Rather than eradicating the tumor, TAA-specific T cells may instead support 

tumor growth via the production of cytokines (65,91). The T-cell clones 

recognize the tumor but instead of destroying tumor cells they provide help to the 

malignancy (91).

d. It has been shown that T cells infiltrating the tumor microenvironment are 

functionally inert or anergic, a state that can be reversed by the administration of 

IL-2 (92–94).

e. The tumor may express indoleamine 2,3-dioxygenase (IDO), which catabolizes 

tryptophan along the kynurenine pathway. IDO is expressed constitutively by 

certain tumors or induced by IFN-γ (95,96) or reverse signaling through 

cytotoXic T-lymphocyte antigen-4 (CTLA-4) and CD40 ligands (97,98). T-cell 

proliferation is inhibited by IDO-expressing cells (99) via either depletion of 

local tryptophan levels (100) or the apoptosis-inducing effect of its metabolites 

(101). Clinical evidence for the relevance of IDO-expressing DC comes from 

melanoma, where the presence of IDO-expressing DC in tumor draining lymph 
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nodes is associated with a poor clinical outcome (102), thereby effectively 

depleting an essential amino acid from the milieu and suppressing a T-cell 

response by amino acid starvation. IDO has been demonstrated to be critical for 

maintenance of maternal tolerance to the fetus (103) and inhibiting anti-tumor 

responses (104). Furthermore, IDO gene and protein expression as well as 

functional activity occurs in acute myeloid leukemia (105).

f. A variety of myeloid cells has been identified in the tumor environment and 

thought to play a role in tumorigenesis (106). One prominent yet heterogeneous 

group of myeloid cells is the myeloid-derived suppressor cells (MDSC), which 

have been detected in patients with various malignancies but not found in healthy 

donors (107). MDSC are the progeny of bone marrow-resident progenitor 

cells and express CD11b, CD33, CD34 and CD15 (106,108), have low or no 

expression of HLA-DR (109) and in some instances have been reported to 

express CD14 (110,111) and intracellular arginase I (112–114). MDSC have 

been found in patients with tumors such as RCC (109,112–114), prostate 

cancer (115), hepatocellular carcinoma (110), colon carcinoma (116), non-small 

cell lung cancer (117) and melanoma (107,116,118), all with slightly distinct 

phenotypes but similar functions, i.e. the suppression of T cells (118) and 

NK cells (111). How these cells suppress immune responses has not been 

fully elucidated, but may involve the secretion of transforming growth factor 

(TGF)-β (107) and arginase (110) by MDSC, which suppresses proliferation 

(113,116,118), cytokine production (113,118), CD3ζ chain expression level 

(117) and direct effector functions of lymphocytes (111,118).

g. T cells responding to antigen stimulation will do so via the ligation of 

their antigen receptor with peptide-major histocompatibility complex (pMHC) 

complexes, and CD28 with CD80/CD86 on the target cells. However, during the 

response negative regulatory mechanisms are activated that significantly dampen 

the response, which include the alternative CD80/CD86 ligand CTLA-4 (119) 

and the PD-L1/PD-L2 ligand PD-1 (120). Some tumors (121–125) are known 

to overexpress these ligands, which hampers the success of tumor immunity. It 

therefore makes good sense to target the various inhibitory pathways exploited 

by malignancies using pharmacologic inhibitors (126), or blocking antibodies 

(127) in combination with immunotherapy (114,128–130).

Intriguingly, despite the many failed attempts to control the tumor via vaccine therapies, 

some patients do respond to this treatment by mounting either a T-cell response against the 

vaccine or against the antigens expressed by the tumor. Careful observational studies such as 

those reported by Coulie,Van der Bruggen (20) and others at the Ludwig Institute for Cancer 

Research (LICR; Brussels, Belgium) may help to extend successful anti-tumor immunity 

to patients who are currently unresponsive. Furthermore, the implementation of large-scale 

mH antigen discovery technologies (131) will greatly expand the repertoire of such antigens 

for vaccination and other forms of immunotherapies. Central to improving the efficacy of 

immunotherapy is the implementation of immune and tumor monitoring as described below.
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Monitoring anti-tumor responses: how and when

Depending on the frequencies of responder cells, availability of reagents and antigen used to 

stimulate the responder T cells, prior in vitro amplification of the anti-tumor response may 

be necessary to allow the characterization of such responses. This has been the strategy used 

most often by laboratories such as the LICR. The LICR has mainly generated T-cell clones 

from peripheral blood or from metastases and tested them for tumor reactivity in classic 

cytotoXicT lymphocyte (CTL) assays and by cytokine production (132,133), or by culture 

of PBMC with peptide under limiting dilution conditions, followed by tetramer-guided 

sorting of clones (134–136). This approach gives a frequency of anti-TAA responses based 

on very limited CD8+ or CD4+ T-cell numbers capable of sustained in vitro proliferation 

and may not be truly representative of the in vivo situation. However, the advantage of 

this methodology is that it yields T-cell clones that can be examined in greater detail than 

otherwise possible, for example the analysis of antigen recognition, functional avidity and 

composition of the T-cell receptor (TCR); recognition of tumor cells from the same or 

different types; design of clonotype-specific polymerase chain reaction (PCR) primers for 

the ex vivo analysis of localization and frequency prior to and following immunotherapy; 

correlations with effective versus failing immune control; behavior in tumor metastases, etc.

The peripheral blood is most often sampled to examine the anti-tumor response; however, 

tumor-reactive T cells may accumulate at or near to the tumor site. Our studies have 

demonstrated that in patients following allogeneic HSCT from their related HLA-matched 

donors, anti-TAA CD8+ T-cell responses can be identified almost exclusively in the bone 

marrow and the site of the malignancy (28), suggesting that the monitoring of an anti-tumor 

response may miss the anti-tumor response if the wrong compartment is sampled. Similarly 

higher frequencies of anti-tumor T cells were found within the melanoma by Mazzocchi et 
al. (137) and Carrasco et al. (133). Carrasco et al. (133) identified anti- melanoma antigen 

(MAGE) CD4+ and CD8+ T cells in the peripheral blood and slightly enriched in slowly 

progressing metastases. The most interesting finding was that a T-cell response against a 

non-vaccine antigen, MAGE C2, was detected following vaccination and enriched by over 

three logs in metastases relative to blood, suggesting that effective anti-tumor responses 

preferentially localized to the tumor. Mazzocchi et al. (137) similarly demonstrated a 

higher preponderance of anti-tumor T cells at the site of the tumor than in the peripheral 

blood. This phenomenon of determinant spreading, possibly mediated via the generation 

of an inflammatory environment by some tumor-reactive T cells, which induces apoptosis 

of tumor cells followed by cross-presentation of tumor-derived antigens, has also been 

observed in other vaccine settings (138–140) and may be an important mechanism of 

vaccine-associated anti-tumor immunity. Thus the question why the same vaccine works in 

some patients and not in others could be related to whether or not the patient can mount a 

T-cell response to antigens presented by the same tumor (12). Therefore, in the monitoring 

of vaccine therapies, ideally the response of a patient’s T cells against the vaccine but also 

the tumor itself should be analyzed.

In situations where the frequency of tumor-reactive T cells is higher (above 0.1%), 

other methodologies for direct ex vivo analysis that are less time consuming and more 

informative can be employed. The days where we would enumerate antigen-specific helper 
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and cytotoXic precursor frequencies using limiting dilution assays have largely been replaced 

by polychromatic flow cytometry assays that quantify the frequencies, phenotypes and 

an array of functions of antigen-responsive T cells (28,141). With the introduction of 

soluble HLA class I (142) and class II (143) multimers, antigen-specific T cells can be 

examined directly and isolated for further analyzes, for example molecular analysis of the 

T-cell repertoire (144–146). Obviously, the flow cytometry-based functional and phenotypic 

characterization of anti-tumor responses is preferable above other methodologies for the ex 
vivo monitoring of pre-existing anti-tumor responses and the effect vaccination and HSCT 

have on the quality and quantity of anti-TAA and virus responses (28,147), but the molecular 

characterization of TAA-specific CD4+ and CD8+ T cells could bring us one step closer to a 

better understanding of T-cell clones that may have contributed to TAA recognition (88,148–

150) and tumor eradication. An example where clonotype analysis has provided insight into 

features of protective immunity has recently been uncovered in a non-human primate model 

of human HIV infection, where the expansion of CD8+ T cells with a particular TCR-β 
sequence appeared to correlate with protection; these findings where then confirmed in a 

vaccine setting in the same model (151).

How can we generalize the success of tumor vaccine therapy?

Currently in any immunotherapy study only a few patients show a response. However, 

detailed study of responders may open the way to generalizing treatment strategies to 

make them effective for the majority of patients. Coulie et al. (12) described three patients 

vaccinated with autologous melanoma clones who had unusually favorable clinical courses 

that may have been the result of either the antigenicity of their tumors, their susceptibility 

to lysis by their autologous T-cell clones, or specifics of the responder population that 

made their efficacy so high. It seems unlikely that the antigenicity could have explained 

the favorable clinical progression, as the antigens identified in these three patients were 

expressed by a large number of melanomas. Rather, the immune response seems to have 

displayed qualities that allowed the eradication of initial and subsequent melanoma clones: 

all three patients had CTL targeting at least five distinct antigens. Thus the molecular 

characterization of the TCR of these cells could hint at a strategy that might provide a novel 

treatment modality in other patients harboring melanomas with similar HLA constitution 

but less efficient induction of a T-cell response against their autologous tumors. Rather than 

having to rely on their immune efficacy, one could simply target their malignancies with a 

multitude of distinct TCR.

To exploit fully the success of immunotherapy, mH antigen and TAA-specific T-cell clones 

will have to be generated to identify the TCR α- and β-chains and, via gene transfer studies, 

define their role in tumor eradication (see below). Antigen-specific T cells can be isolated 

from peripheral blood, bone marrow, tumors and other compartments by electronic sorting 

of T cells with defined specificities using HLA class I or II tetramers or, if the antigen 

is unknown, via the isolation of T cells that up-regulate CD40 ligand (152,153), CD107a 

(154) and CD137 (155) upon antigen recognition. Such cells can be sorted as lines and 

expanded by one stimulation with the selecting antigen source. The T-cell lines could then 

be examined for clonotype composition, and cloned to allow detailed functional analyzes 

and characterization of the TCRαβ pairs per clone. Clonotype analysis may identify T-
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cell clones with potential clinical relevance. With the rapid improvements in the ectopic 

expression of TCR (156–161), this antigen specificity can be transferred to non-expressing 

cells, thereby conferring the therapeutic potential of the original T-cell clone onto new 

cells (162,163). Pre-clinical studies in animal models could help identify TCRαβ that could 

control and eradicate human tumor tissue. Such studies could help select TCR with the 

greatest potential, which could subsequently be used in phase I trials.

Conclusion

Studies on the interaction between tumors and the immune system have led to the 

identification of many TAA in the autologous setting and mH antigens in the HLA-matched 

sibling transplant settings. These studies have not only proved that various classes of tumor 

antigens are targeted by the immune system, but also that tumors escape by changing 

their phenotype (clonal evolution) and modifying the tumor environment. The molecular 

characterization of TAA brought the promise that antigens could be used in vaccine trials to 

boost an existing immune response to the malignancy. Tumor immunotherapy still has far 

to go to be universally successful, but we are making progress. Vaccines have great appeal 

in their relative simplicity; however, this approach depends mainly on how well a patient 

can mount an affective immune response to the vaccine or other tumor antigens. Through 

detailed immunologic studies we can define the criteria for a successful T-cell response. 

TCR gene transfer now provides the opportunity to exploit these molecularly characterized 

successful anti-tumor T-cell clones in the treatment of other patients.
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