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Abstract

Isotope-shift spectroscopy with narrow optical transitions provides a benchmark for atomic 

structure calculations and has also been proposed as a way to constrain theories predicting physics 

beyond the standard model. Here we measure frequency shifts of the 1S0 → 3P1 and 1S0 → 3P0 

transitions between 84Sr,86Sr, and 87Sr, relative to 88Sr. Using the isotope-shift measurements of 

the two transitions, a King plot analysis is performed, revealing a nonlinearity in the measured 

values.

I. INTRODUCTION

Isotope shifts of atomic transition frequencies arise due to the difference in neutron numbers 

for different isotopes with the same atomic number. For a given element, these shifts can 

be systematically analyzed using a King plot, which elucidates the contributions of the field 

and mass shifts [1]. The King plot is typically expected to be linear, and the experimentally 

determined value of the slope provides a good benchmark for theoretical predictions [2]. 

Any deviations from linearity as was observed in Sm [3] and Ba [4], or between predicted 

and experimentally measured values of the slope as was observed in Ca+ [5], are important 

for refining atomic structure calculations [6]. Furthermore, recent theoretical proposals have 

suggested that linearity in King plots could be used to put constraints on higher-order 

effects on isotope shifts or on physics beyond the standard model [7,8]. Strontium has many 

favorable properties for studying isotope shifts, including an abundance of stable isotopes 

and very narrow optical transitions [9]. In addition, prior theoretical work has proposed the 

measurement of strontium isotope shifts as a promising probe of new physics [7,8].

Strontium has four stable isotopes: three bosons (88Sr, 86Sr, and 84Sr) and one fermion 

(87Sr). Mixing between the singlet and triplet fine-structure manifolds leads to narrow-

linewidth optical transitions, and these transitions have found use in both strontium and 

other alkaline-earth-(like)-atom experiments [10,11]. In particular for strontium, the 1S0 

→ 3P1 intercombination-line transition at 689 nm (linewidth Γ/2π = 7.4 kHz) is used 

during laser cooling to operate a narrow-line magneto-optical trap (MOT) [9,12], and the 

even narrower 1S0 → 3P0 clock transition at 698 nm (/2π ∼ mHz) is the foundation for 

state-of-the-art optical clocks operating at a precision at the 10−18 level [13–15]. The clock 

transition is strictly forbidden by angular momentum considerations, but becomes weakly 
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allowed via hyperfine mixing in 87Sr or by application of an external field for the bosonic 

isotopes [16].

While the 1S0 → 3P0 clock transition has been extensively studied in 87Sr and 88Sr [13–20], 

previous measurements of the transition in either 86Sr or 84Sr are lacking [21]. Here we 

report isotope-shift spectroscopy measurements of the clock transition for both 84Sr and 86Sr 

relative to the most abundant isotope 88Sr. Furthermore, we measure all isotope shifts of the 
1S0 → 3P1 intercombination-line transition relative to 88Sr, permitting a King plot analysis 

of strontium for these two transitions. Given the very narrow linewidths involved, extensions 

of this work could place stringent experimental constraints on the King linearity, ruling out 

candidate theories for physics beyond the standard model or benchmarking state-of-the-art 

atomic structure calculations.

II. EXPERIMENTAL PROCEDURE

All of the isotope-shift spectroscopy was performed using laser-cooled strontium atoms 

at temperatures of a few μK, held in an optical dipole trap (ODT). After applying the 

spectroscopy light, we monitored atom loss by performing absorption imaging.

The laser lights used for spectroscopy of both the 1S0 → 3P1 and 1S0 → 3P0 lines were 

generated using two home-built external-cavity diode lasers based on the design in Ref. 

[22]. The frequency of the 689-nm laser was stabilized via an optical phase-locked loop 

[23] to the master laser of the 689-nm narrow-line MOT system. The master 689-nm laser 

was locked using the Pound-Drever-Hall (PDH) method [24,25] to a cavity constructed from 

ultralow expansion (ULE) glass and housed in a temperature-stabilized vacuum chamber. To 

stabilize the frequency of the 698-nm laser, we passed a few percent of the light through 

a wide bandwidth electro-optic modulator and locked the first phase-modulated sideband 

via the PDH method to a second, independent ULE cavity [26]. This cavity was housed 

in a separate temperature-stabilized, acoustically isolated vacuum chamber. These locking 

schemes for both lasers allowed us the flexibility to shift the frequency of either laser to 

span the isotope shifts of its respective transition. For both the 689- and 698-nm lasers, the 

light was referenced to a frequency comb (Menlo System FC1500–250-ULN) to account 

for long-term drift and provide a frequency reference. Fine frequency control of each laser 

beam was achieved by adjusting the drive of an acousto-optic modulator, which was also 

used to stabilize the intensity of the spectroscopy pulse. The spectroscopy laser linewidth 

was characterized by locking independent 689-nm lasers to each ULE cavity. A heterodyne 

beat note at 689 nm between the two separate lasers was measured to be approximately 200 

Hz wide, which bounds the expected spectral performance of both systems.

The remainder of the apparatus used for the spectroscopy has been described in detail 

previously [27]. Laser cooling of all isotopes proceeds according to well-established 

techniques [9], with a MOT first operating on the broad 1S0 → 1P1 transition at 461 nm, 

followed by a narrow-line MOT operating on the 689-nm intercombination-line transition 
1S0 → 3P1. For all isotopes, temperatures in the narrow-line MOT are typically a few μK, 

low enough to efficiently transfer the atoms into a single-beam far-detuned ODT at 1064 nm. 

Typical temperatures in the ODT are {2.9, 2.2, 1.1, 2.7 μK} and typical atom numbers are 
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{1, 0.1, 0.5, 0.2} × 106 for {88Sr, 87Sr, 86Sr, 84Sr}, respectively, with trap frequencies {ωx, 

ωy, ωz}/2π = {50, 4, 495} Hz in the horizontal, axial, and vertical directions, respectively. 

For the bosons, the variation in atom number is mostly due to the difference in the natural 

abundance of each isotope, whereas for the fermionic isotope the atom number is also 

limited by the additional complexity of the narrow-line MOT [28].

III. MEASUREMENT OF THE 1S0 → 3P1 ISOTOPE SHIFTS

After loading the atoms into the ODT, the magnetic field was set to 0.05 mT (0.5 G) to 

resolve the 3P1(m = 0) state for the even (bosonic) isotopes. For the odd (fermionic) isotope, 

which has hyperfine structure, the magnetic field was set to zero, meaning that the Zeeman 

splitting was not detectable within the line shape. The strength of the magnetic field was 

calibrated by addressing the 1S0(m=0) → 3P1(m′ = 1) transition of 88Sr, for which the 

Zeeman shift is known [12]. To eliminate the effect of AC Stark shifts from the ODT we 

implemented a stroboscopic procedure, where, with a typical period of 500 μs, the ODT 

was turned on and off with a duty cycle of 50% (duration of 250 μs), and applied the 

689-nm probe laser when the ODT was off, similar to the procedure used in Refs. [29,30]. 

The spectroscopy light was used to induce atom loss from the trap through light scattering 

and subsequent recoil, which is primarily an incoherent process where there is an absence 

of coherence between the pulses of the stroboscopic method with the switching of the 

ODT. The 689-nm spectroscopy beam was aligned at an angle of approximately 45° with 

respect to the ODT, both in the horizontal plane. The spectroscopy beam was collimated 

with a 1/e2 beam waist of 1.25 mm in the horizontal direction and 1.71 mm in the vertical 

direction at the position of the atoms. The polarization of the spectroscopy beam was set 

to be linear along the direction of the magnetic field. The total illumination duration used 

for spectroscopy was set to between 1 and 15 ms, corresponding to multiple stroboscopic 

pulses, and the peak optical intensity was at most 0.1 mW/cm2 (Isat = 3 μW/cm2). These 

values were chosen to ensure atom loss of approximately 50%. After the spectroscopy 

pulse was completed, the atoms were released from the ODT and we performed absorption 

imaging on the 1S0 → 1P1 transition to measure atom loss as a function of the spectroscopy 

laser frequency.

For all four isotopes, data were taken across several days and referenced to the frequency 

comb. Then the frequencies were averaged to obtain a single line center for each isotope. 

A final isotope shift was found by subtracting the measured absolute frequencies relative to 
88Sr, and the total errors were added in quadrature. For the 87Sr isotope shift, we weight 

the measurements of each excited-state hyperfine manifold F′ ∈ {11/2, 9/2, 7/2} to find the 

nominally unshifted line center in the absence of the hyperfine interaction [31]. However, 

it is important to note that this model fits three parameters (hyperfine A and B coefficients 

and an unshifted line center) from three isotope shifts and thus is completely determined by 

the available data.1 A more accurate theory of higher-order shifts from other fine-structure 

levels will be necessary to assign a more accurate isotope shift for 87Sr. This is currently an 

area of ongoing theoretical research [33].

1We determined |A| = 260085 ± 2 kHz and |B| = 35667 ± 21 kHz, consistent with previous results [32].
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To calculate the final value for the isotope shift, we also evaluated systematic effects, 

as summarized in Table I. Since many of the systematic effects are common to both 

isotopes and the isotope shift is found from a difference in those frequencies, many potential 

systematic effects are common mode and cancel to a high degree. This is particularly true 

for the even isotopes, where there is no hyperfine structure. For example, even though a 

magnetic field is applied during the spectroscopy pulse for the even isotopes, the Zeeman 

shift is identical to within our experimental uncertainties and does not lead to a correction to 

the final isotope shift. Therefore, as shown in Table I, the remaining systematic effects are 

those that are not common mode: the density shift and recoil shift.

The density shift arises due to the different scattering lengths and atom numbers between 

different isotopes in our experiment. The cumulative effect is a nonzero differential density 

shift to the final isotope-shift value. We experimentally determined this density shift for 

each isotope by measuring the line center at different atom numbers while keeping all other 

parameters the same. A linear fit allowed us to extrapolate from our operating atom number 

to a nominal zero-density frequency, yielding the systematic density shift shown in Table I. 

The photon recoil shift [34] was also accounted for and was calculated from known physical 

quantities.

To first order, the 1S0 → 3P1 transition is magnetic field insensitive, and our measurements 

were performed at a low magnetic field of 0.05 mT (0.5 G) for the bosons and zero magnetic 

field for the fermion. Therefore, both the first- and second-order Zeeman shifts were 

negligible at our level of accuracy. The stroboscopic procedure described above removed 

any AC Stark shifts due to the 1064-nm trapping beam. Finally, since the intensity in the 

689-nm spectroscopy pulse was low (at most 0.1 mW/cm2) and the probe times were short 

(a few ms), systematic shifts from the probe pulse were below our experimental uncertainty.

After applying corrections for the systematic effects, the final values for 1S0 → 3P1 isotope 

shifts are shown in Table II. The total systematic uncertainties are determined by adding 

the individual systematic uncertainties for each isotope in Table I in quadrature. Our results 

are consistent with a previous measurement of the 88Sr-86Sr isotope shift, which reported a 

value of 163 817.4 ± 0.2 kHz [35].

IV. MEASUREMENT OF THE 1S0 → 3P0 ISOTOPE SHIFTS

The procedure for measuring the 698-nm transition differed from the measurement of the 
1S0 → 3P1 intercombination-line transition in several key ways. Since the clock transition 

is strictly forbidden by angular momentum considerations for the bosonic isotopes, a much 

larger field was necessary to induce a transition in these isotopes. For 88Sr and 86Sr a 

magnetic field of 10.96 ± 0.02 mT (109.6 ± 0.2G) was used, and 19.79 ± 0.05 mT 

(197.9 ± 0.5G) was used for 84Sr. For measurements of 87Sr, which is weakly allowed 

due to hyperfine mixing, we applied zero magnetic field. For all isotopes, the 698-nm 

spectroscopy pulse was applied for 2 s with typical peak intensities of 0.87 W/cm2 for 

the even isotopes and 0.12 W/cm2 for the odd isotope (Isat ≈ 0.4 pW/cm2). These values 

were chosen to ensure approximately 50% atom loss. Atom loss was induced by the light 
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scattering and subsequent recoil of the 698-nm light, which ejected the atoms out of the trap. 

Representative line shapes for the 1S0 → 3P0 transitions are show in Fig. 1 for each isotope.

The spectroscopy beam was aligned in the horizontal plane at an angle of approximately 45° 

with respect to the ODT and was focused onto the atoms with a 1/e2 waist of 330 μm in the 

horizontal direction and 460 μm in the vertical direction. The beam was linearly polarized 

parallel to the magnetic field. Finally, because of the long interrogation time needed for 

sufficient atom loss (and therefore sufficient signal-to-noise ratio), we were unable to apply 

the stroboscopic procedure used to measure the 1S0 → 3P1 transitions, resulting in large AC 

Stark shifts from the trapping beam. Due to the modified experimental procedure for the 

clock transition, additional systematic shifts included thermal shifts, second-order Zeeman 

shifts, and spectroscopy pulse shifts.

For the 1S0 → 3P0 transition, the dominant systematic effects were the AC Stark shift and 

what we call the thermal shift. The AC Stark shift arises from the differential polarizability 

of the 1S0 and 3P0 states at 1064 nm. The thermal shift arises from the inhomogeneous 

broadening and shift from the thermal motion in the intensity distribution of the ODT. 

Experimentally, the AC Stark shift was determined by measuring the resonance frequency as 

a function of the ODT intensity. However, varying the intensity of the ODT also varied the 

trap depth, which in turn varied the temperature of the atomic cloud. This led to additional 

shifts in the resonance frequency due to both the Doppler shift and the inhomogeneous 

differential AC Stark shift. To distinguish the effects of the AC Stark shifts from the thermal 

shifts, we took the thermal average using the Maxwell-Boltzmann distribution and modeled 

the scattering process from the spectroscopy pulse [29,36] (see the Appendix). As shown in 

Table III, the experimentally determined values for the AC Stark shift for each isotope agree 

with each other within the uncertainty. Therefore, the AC stark shift is common mode and 

cancels to a high degree.

For even isotopes, the systematic shift for the first-order Zeeman effect is zero since we 

probe a J = 0 → J′ = 0 transition with no hyperfine structure. To determine the second-

order Zeeman shifts for the 1S0 → 3P0 transitions, we used our calibrated magnetic field 

measurements and the known second-order Zeeman shifts [16], which are identical for 

all even isotopes. Spectroscopy of 87Sr was performed at zero magnetic field, and so the 

Zeeman shift was well below other systematic effects [37].

The last systematic effects evaluated for the clock transition were related to the spectroscopy 

laser, occurring due to the relatively long probe time (2 s) and high peak intensities (0.87 

W/cm2). To measure these systematics, the transition frequency was measured as a function 

of both pulse power and duration, and the shift was extrapolated to zero. Finally, the density 

shift and recoil shift were obtained using the same procedure as described for the 1S0 → 3P1 

transition.

The final values for the isotope shift of the clock transition, including systematic corrections, 

are shown in Table II. The systematic shifts are summarized in Table III. The total 

systematic uncertainties for the clock transitions in Table II are determined by adding the 

individual systematic uncertainties for each isotope in Table III in quadrature. Comparing 
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to prior measurements of the 88Sr-87Sr isotope shift, which were all approximately 62188 ± 

(<1) kHz [17,18,20], our result of 62171 ± 24 kHz is consistent to well within one standard 

deviation.

V. KING PLOT ANALYSIS

We performed a King plot analysis using our measured values of the isotope shifts, including 

the measurements of the 88Sr-86Sr and 88Sr-84Sr isotope shifts for the clock transition. A 

King plot analysis is a systematic approach to quantitatively and visually analyze isotope 

shifts of different atomic transitions referenced to the same isotope by relating the isotope 

shifts between different transitions [1]. This is a function of the mass and field shift 

constants, which are independent of the isotopes and depend only on the transitions under 

consideration [38]. Specifically, the isotope shifts between isotopes of mass numbers A and 

A′ on two transitions i and j can be written

μA, A′δvi
A, A′ = Ki − Fi

Fj
Kj + Fi

Fj
μA, A′δvj

A, A′, (1)

where 1/μA, A′ = 1/mA′ − 1/mA is the inverse mass constant, mA is the mass of isotope A 

[39], Ki is a constant associated with the mass shift of transition i, Fi is the field shift 

constant for transition i, and δvi
A, A′ = viA′ − viA is the isotope shift between isotopes A and 

A′ on transition i [1,5]. For our particular analysis, we have A = 88, and A′ ∈ {87, 86, 84}, 

i ≡  1 S0  3 P0 at 698 nm, and j ≡  1 S0  3 P1 at 689 nm. An important point to note is 

that Eq. (1) describes a linear relationship between isotope shifts of different transitions.

The King plot for our measured isotope shifts is shown in Fig. 2. A linear fit to all 

three points weighted by their uncertainties leads to a field shift constant ratio of F698/

F689 = 0.987 ± 0.008 and K698 −
F698
F689

K689 = 5.20 ± 5.31 GHz amu, where the statistical 

and systematic uncertainties are added in quadrature. We have also performed a linear fit 

by replacing our measurement of the 88Sr-87Sr 698-nm transition isotope shift with the 

more precise value from Ref. [20]. This leads to values of F698/F689 = 0.981 ± 0.005 and 

K698 −
F698
F689

K689 = 8.56 ± 3.45 GHz amu, which are consistent with values obtained using 

our measurement of the 88Sr-87Sr 698-nm transition isotope shift.

Since there is some uncertainty in deriving the frequency for 87Sr due to the hyperfine 

structure, we also fit the data after excluding this point to obtain a field shift constant 

ratio of F698/F689 = 0.998 ± 0.002 and K698 −
F698
F689

K689 = − 1.87 ± 1.03 GHz amu where the 

uncertainties are propagated from the uncertainties of each point for both axes. Compared 

to this two-point linear fit, the 88Sr-87Sr 689-nm isotope shift we determined would have 

to increase by 136.2 kHz to become consistent with a linear King plot. Given that our data 

points with their uncertainties lie well outside of the straight line fit to all three points, 

the results in Fig. 2 suggest a possible nonlinear contribution to Eq. (1) or may indicate 

significant uncertainties in the determination of the center of mass of the 87Sr 3P1 hyperfine 
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structure. In particular, our data indicate a nonlinearity using the nonlinearity measure 

defined in Ref. [8]. Future theoretical and experimental studies should help to explain our 

observations, including better calculations of the hyperfine mixing within the 3P states and a 

prediction of the King plot slope.

VI. CONCLUSION

In summary, we have presented the spectroscopy of the 1S0 → 3P0 clock transition in 86Sr 

and 84Sr and reported their isotope shifts relative to 88Sr. In conjunction with improved 

measurements of the intercombination line isotope shifts, we performed a King plot analysis 

and extracted constants related to the field and mass shifts. Hyperfine effects in 87Sr 

complicate this analysis, but the experimental precision permitted by these two narrow 

optical transitions make it a rich test bed to benchmark state-of-the-art theory. Furthermore, 

it has been suggested that a comparison of isotope shifts between neutral and ionic strontium 

could set stringent limits on new physics [7,8]. However, an improved theory, accounting 

for our observed nonlinearity, would be essential. Alternatively, one could also perform this 

measurement with the radioactive bosonic isotope 90Sr (half-life of approximately 29 years 

[40]) to avoid complications due to the hyperfine structure.

Future improvements on the measured frequencies will be possible by applying techniques 

successfully used with state-of-the-art strontium optical clocks, such as the use of magic-

wavelength dipole traps to minimize the differential AC stark shift [41,42] and optical 

lattices to suppress motional broadening and recoil shifts [34]. These advances should 

further suppress statistical and systematic errors in both transitions, allowing measurements 

with fractional uncertainties down to the level of 10−18 [13–15]. Our results, combined with 

other recent measurements of isotope shifts in Ca+ [43] and Sr+ [44], will further help to 

refine atomic structure calculations and constrain new physics.
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APPENDIX: MODELING INHOMOGENEOUS BROADENING OF THE CLOCK 

TRANSITION

In general, the AC Stark shift is different for different atomic states due to state-dependent 

polarizabilities. The exception to this is if one operates the dipole trap at specific laser 

wavelengths typically referred to as the magic wavelength where the ground and excited 

states experience the same AC Stark shifts. For strontium atoms, the magic wavelength 

is 813 nm for the 698-nm clock transition and 914 nm for the 689-nm intercombination 

transition [13,45]. In our experiment, the optical dipole trap uses 1064-nm laser light, a 

wavelength where the two states 1S0 and 3P0, have different polarizabilities. This leads to 

inhomogeneous broadening which must be accounted for. The resulting line shape is further 

complicated by the temperature of our atomic samples. Here we describe our method for 
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modeling and accounting for this inhomogeneous broadening due to both the differential AC 

Stark shift and the thermal shift.

We model the inhomogeneous broadening process using a semiclassical treatment of atom 

loss from the trap due to the spectroscopy pulse [36]. We can model the atom loss from 

the spectroscopy pulse after some probe time, by calculating the loss rate coefficient K. The 

time-dependent atom number in the presence of the spectroscopy pulse is governed by the 

differential equation

dN
dt = − K δω, I, T , Utrap N, (A1)

where the loss rate coefficient K is a function of the laser detuning δω = ωlaser − ω0 (ωlaser is 

the frequency of the probe laser and ω0 is the bare atomic resonance frequency), the probe 

laser intensity I, the atomic cloud temperature T, and the dipole trap potential Utrap. The 

loss rate is modeled to be proportional to an ensemble average of the scattering rate over all 

atoms in the trap.

The scattering rate can be written [46]

Γscat = Γ
2

s0
1 + s0 + (2Δ/Γ)2 , (A2)

where Γ is the transition linewidth, Δ is the effective detuning from resonance, s0 ≡ I/Isat
is the on-resonance saturation parameter, I is the excitation laser intensity, and Isat is the 

saturation intensity. We rearrange this expression, pulling out constant terms to write

Γscat ∝ 1
Γ′/2 2 + Δ2 , (A3)

where Γ′ = Γ 1 + s0 is the saturation-broadened linewidth. For a thermal atom in a far-

detuned optical dipole trap with a given phase-space coordinate (r, p), Δ can be written

Δ = δω − p ⋅ k
m − Ue(r) − Ug(r) , (A4)

where the term δω − p ⋅ k/m is the Doppler-shifted laser frequency, p is the atomic 

momentum vector, k is the probe laser wave vector, m is the atomic mass, and Ue(r) − Ug(r)
is the differential AC Stark shift which arises from different polarizabilities between the 

states e and g. Note that in the treatment here we neglect all other systematic frequency 

offsets which do not depend on position, since these appear simply as frequency offsets and 

do not cause any inhomogeneous effects. We also neglect gravity in our model since the 

atoms are tightly confined in this direction. We can approximate the trapping potential for 

the far-detuned optical trap as a parabola and write
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Ue(r) − Ug(r) = Ue, 0 + 1
2mωe

2r2 − Ug, 0 − 1
2mωg

2r2 (A5)

= Ue, 0 − Ug, 0 + 1
2m ωe

2 − ωg
2 r2 (A6)

= Ue, 0 − Ug, 0 + 1
2mωg

2r2 ωe
2

ωg
2 − 1 (A7)

= ΔU0 + ΔUtrap(r), (A8)

where ωg (ωe) is the geometric mean of the ground (excited) state trap frequencies in all 

three dimensions and the trap is effectively spherical in these coordinates. Since ωi ∝ αi, 

where αi is the AC polarizability of state i ∈ g, e , we find

ΔUtrap(r) = Utrap(r) αe
αg

− 1 , (A9)

where Utrap = mωg2r2/2. For 1064-nm light, with g the 1S0 state and e the 3P0 state, we 

compute αe/αg ≈ 0.7. This can also be written as a rescaling of the trap potential such that

ΔUtrap(r) = αUtrap(r), (A10)

with α = αe/αg − 1 ≈ − 0.295. Note that operating the dipole trap at the magic wavelength 

would lead to αe = αg, which means α = 0, and therefore the spatial dependence would drop 

out of Eq. (A4).

We now turn our attention to solving for the loss rate coefficient K by taking an ensemble 

average over the scattering rate expressed in Eq. (A3) using the detuning defined in Eq. 

(A4). Because we are interested in deriving a line-shape function which can be fit to 

experimentally measured atom loss data, we ignore normalization and overall constant terms 

which can be condensed into a single fit parameter. Taking the ensemble average of Eq. (A3) 

leads to

K ∝ ∫ d3re−Utrap(r)/kBT∫ d3pe−p2/2mkBT

× 1
Γ′/2 2 + δω − ΔU0 − p ⋅ k/m − αUtrap(r) 2 ,

(A11)

where we have taken an integral over phase space (r, p) weighted by the Boltzmann factor. 

Here kB is the Boltzmann constant.
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We wish to make this dimensionless to easily work in a numerical fitting routine with 

experimental data. Focusing on the integral d3p = dpxdpydpz first, we can choose pz to point 

along k. Thus, p ⋅ k = pzk, and the Boltzmann factor can be rewritten

e−p2/2mkBT = e− px2 + py2 /2mkBTe−pz2/2mkBT . (A12)

The integral over px and py now factors out and can be brought into an overall scale 

factor. We define the dimensionless variable y ≡ pz/ 2mkBT . After defining β ≡ k 2kBT /m, 

this becomes pzk/m = βy. In convenient units, for 88Sr and 2π/k = 698 nm, we get 

β/2π = 19.7 kHz × T , with T measured in μK. This parametrization of y serves to scale 

the momentum pz to the most probable momentum at a given temperature.

Putting it all together, the integral from Eq. (A11) becomes

K ∝ ∫ d3re−Utrap(r)/kBT∫ dy e−y2

× 1
Γ′/2 2 + δω − ΔU0 − βy − αUtrap(r) 2 .

(A13)

With regard to the integral over r, since we have scaled the trap to be effectively spherical, 

we can write Utrap(r) = f r2 . Thus, we can pull the angular integral from d3r ≡ r2sinθdrdθdϕ
into an overall constant, leaving just the integral in r given by

K ∝ ∫ r2dr e−r2mωg2/2kBT∫ dy e−y2

× 1
Γ′/2 2 + δω − ΔU0 − βy − αmωg

2r2/2 2 ,
(A14)

where we replaced Utrap(r) with its explicit form mωg2r2/2.

Defining the dimensionless variable x ≡ r mωg2/2kBT = r ωgk/β , which scales r by the ratio 

of the trap potential energy to the thermal energy kBT, we can rewrite the integral as

K ∝ ∫ dx x2e−x2∫ dy e−y2

× 1

Γ′/2 2 + δω − ΔU0 − βy − αm
2k2 β2x2 2 ,

(A15)

where for our system αm/2k2 ≈ − 2.52 × 10−6s.

Returning to Eq. (A1), we use our expression (A15) for K to solve for atom number and 

obtain
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N(τ)
N(0) = e−Kτ, (A16)

which can be used as an integral function to fit the four parameters 

a, ω0 + ΔU0 Itrap , Γ′, β , where a is an overall normalization factor for K, in a least-squares 

minimization routine. We keep the ΔU0 Itrap  term explicit and highlight its dependence on 

the optical dipole trap laser intensity Itrap. We use this expression to extract the AC Stark 

shift systematic correction.

Note that in theory, the integral in Eq. (A15) ranges over the entire real line. In our 

numerical implementation, we truncate these integrals at finite values. In our experiment, 

we typically have Utrap ∼ 160 kHz, and so Utrap/kBT ∼ 8 and we take the position integral 

out to five times the thermal energy scale. Since the integrand is convolved by a Gaussian, 

continuing the integration further in the wings contributes only marginally to the final 

value, and the truncation does not change the result above other uncertainties. The ratio 

Utrap/kBT ∼ 8 also allows us to approximate the trap as harmonic.

As an example, we perform a fit using Eq. (A16) to the loss spectra shown in Fig. 3. It is 

difficult to visually differentiate the quality of the fit between the full integral line shape 

and a simple Gaussian model, but there is a non-negligible thermal line shift from a full 

accounting of the line shape as is evident in the fit parameters. To account for this systematic 

shift, we numerically simulate the systematic Gaussian fit offset as a function of temperature 

and find it to be −7.6 ± 0.3 kHz/μK, as shown in Fig. 4. With this result and measured 

temperatures of 2.9, 2.2, 1.1, and 2.7 μK, we obtain systematic frequency shifts of −22 ± 4, 

−17 ± 4, −8 ± 4, and −21 ± 4 for 88Sr, 86Sr, 84Sr, and 84Sr, respectively.
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FIG. 1. 
Spectroscopy of the 1S0 → 3P0 transition for each strontium isotope. The normalized atom 

number is shown as a function of the laser detuning. The solid line is a Gaussian fit to the 

data.
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FIG. 2. 
King plot of the measured strontium isotope shifts. (a) Linear fit to the three points derived 

from the six isotope-shift measurements. The solid black line is a fit using all six of our 

measured isotope shifts and the dashed gray line is a fit by replacing our measured 88Sr-87Sr 

698-nm transition isotope shift with the value from Ref. [20], which is more precise than 

our measurement. The black points are derived from our measurements and the gray point is 

using the 88Sr-87Sr 698-nm transition isotope shift from Ref. [20]. The fits are weighted by 

the uncertainties of each point. Error bars and the difference between the 87Sr points derived 

from our measurement and from Ref. [20] are not visible at this scale. (b)–(d) Close-up of 

each point in (a) with error bars shown.
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FIG. 3. 
Line-shape curves for the 698-nm clock transition. The curves include a Gaussian model 

(dashed line) and a full line-shape model (solid line) fit to the averaged data points (circle 

points). In both cases, the fit error on the centroid is roughly 1 kHz; however, the full 

line-shape model fits a different ω0 which varies as a function of temperature and has a 

lower frequency compared to the Gaussian line center by up to 20 kHz. This is attributable 

to the thermal distribution of atoms in a dipole trap with inhomogeneous AC Stark shifts.
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FIG. 4. 
Effects of thermal line shift on the clock transition. (a) Line-shape simulations as a function 

of temperature with 0.79 μK (solid line), 1.6 μK (dashed line), 2.7 μK (dash-dotted line), 

and 4.1 μK (dotted line). (b) Systematic offset to the Gaussian fitted center as a function of 

temperature and a linear fit to the data extracted from the simulation in (a).
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TABLE II.

Measured isotope shifts relative to 88Sr. For 87Sr (1S0 → 3P1), contributions from the three excited-state 

hyperfine manifolds are weighted to establish the fine-structure line center. Uncertainties are one standard 

deviation and indicate statistical and systematic uncertainties.

Isotope shift (kHz) 1S0 → 3P1
1S0 → 3P0

88–84 351495.8 ± 0.3 ± 4.6 349656 ± 1 ± 10

88–86 163818.7 ± 0.3 ± 3.8 162939 ± 2 ± 11

88–87 62186.5 ± 0.6 ± 11.7 62171 ± 1 ± 23

88–87 (F′ = 7/2) −1351933.1 ± 2.1 ± 14.6

88–87 (F′ = 9/2) −221676.6 ± 0.4 ± 26.9

88–87 (F′ = 11/2) 1241485.8 ± 0.3 ± 15.7
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