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Abstract

Monte Carlo (MC) methods are important computational tools for molecular structure 

optimizations and predictions. When solvent effects are explicitly considered, MC methods 

become very expensive due to the large degree of freedom associated with the water molecules 

and mobile ions. Alternatively implicit-solvent MC can largely reduce the computational cost by 

applying a mean field approximation to solvent effects and meanwhile maintains the atomic detail 

of the target molecule. The two most popular implicit-solvent models are the Poisson-Boltzmann 

(PB) model and the Generalized Born (GB) model in a way such that the GB model is an 

approximation to the PB model but is much faster in simulation time. In this work, we develop 

a machine learning-based implicit-solvent Monte Carlo (MLIMC) method by combining the 

advantages of both implicit solvent models in accuracy and efficiency. Specifically, the MLIMC 

method uses a fast and accurate PB-based machine learning (PBML) scheme to compute the 

electrostatic solvation free energy at each step. We validate our MLIMC method by using a 

benzene-water system and a protein-water system. We show that the proposed MLIMC method 

has great advantages in speed and accuracy for molecular structure optimization and prediction.
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I. INTRODUCTION

The determination of protein structures is of paramount importance for structural biology 

and macromolecular study. However, not all protein structures can be determined with 

available experimental techniques due to various limitations. Computational methods offer 

important alternative approaches for structural determination and optimization [1]. Indeed, 

molecular force field models and molecular dynamics [2-4] can generate time-resolved 

trajectories of protein folding and protein-ligand binding predictions as well as structural 

ensemble simulations [5]. In these simulations, mathematical models and numerical 

algorithms are imperative for achieving computational accuracy and efficiency. A large 

number of advanced algorithms have been developed to reduce the computational cost and 

improve the accuracy for biomolecular simulations [6-9]. A major difficulty of molecular 

dynamics is the long timescales associated with real molecular processes taking place 

in nature. Therefore, ignoring the requirement of having time-resolved trajectories of the 

molecular processes will immediately remove the difficulty. Indeed, it is sufficient for most 

studies to have a predicted representative ensemble of structures for a given process. This 

representative prediction can be generated by Monte Carlo sampling [10].

Monte Carlo method is one of the most of popular approaches for biomolecular systems. 

Under physiological condition, biomolecules are immersed in and interact with surrounding 

water molecules and other possible co-factors. As such, Monte Carlo simulations of a 

biomolecule have to deal with a large number of solvent water molecules, which makes 

the simulations very expensive and sometimes, intractable. Additionally, in Monte Carlo 

simulations, the biomolecular conformation is subject to random perturbations [11]. These 

perturbations will inevitably result in the overlaps between the biomolecule and explicit 

solvent molecules, which leads to an unfavorable and non-representative structure. Implicit 

solvent models, such as Poisson-Boltzmann (PB) [12, 13], polarizable continuum [14, 15] 

and Generalized Born (GB) methods [16-19] are developed to overcome this challenge 

by taking a mean field approximation of water molecules and resulting in a dielectric 

continuum. The GB method is faster than PB methods but it only provides an approximation 

for electrostatic energies. PB methods, derived from fundamental physical theories [20, 21], 

offer more accurate electrostatic analysis. PB model has been applied to the calculations 

of protein-protein and protein-ligand binding energies [22], the pH value predictions of 

protonation and/or deprotonation states of titration sites [23], and drug design [24]. To seek 

for an accurate, efficient, and robust numerical solver, a large number of numerical methods 

have been developed for the PB model, including finite difference method (FDM) [25], finite 

element method (FEM) [26], and boundary element method (BEM) [7, 27]. Among this 

variety of numerical explorations, the FDM has the most enfranchisement such as Amber 

PBSA [28], Delphi [29], APBS [23, 26], MIBPB [6, 30-33], and CHARMM PBEQ [25]. 

Among them, MIBPB is the solely available secondorder accurate method and has been 

Chen et al. Page 2

Chi J Chem Phys. Author manuscript; available in PMC 2022 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



used to calibrate the GB method in Amber [34], where PB methods are generally very 

expensive. In addition, the molecular surface involved in all the aforementioned method with 

corresponding software developed, such as ESES [35], Nanoshaper [36], and MSMS [37].

Over the past a few years, machine learning, including deep learning, has had tremendous 

success in science and engineering. Especially, convolutional neural networks have proved 

their ability to automatically extract features and recognize patterns from relatively simple 

but large datasets. Deep learning has a growing dominance in important applications such 

as handwriting recognition, speech recognition, and drug discovery [38-40]. Aided by the 

availability of quality databases, new algorithms, graphics processing unit (GPU), and 

high-performance computers, various machine learning approaches have been established 

in many classical computational problems such as solvation free energies, protein-ligand 

binding affinities, mutation impacts, toxicity, partition coefficients, protein B-factors, etc. 
[41-50]. Additionally, deep learning neural networks are also applied in computational 

protein design [51], stability changes of protein induced by mutations [52, 53], and 

calculations of protein energy [54, 55].

Recently, we developed a Poisson-Boltzmann based machine learning (PBML) model, 

which can compute the solvation free energy of macromolecules in the solvent with the 

GB speed and the PB accuracy [56]. We assume that all of the macromolecular electrostatic 

solvation free energies follow a probability distribution, which can be sampled by the 

PB model. Our idea is based on a representability hypothesis and a learning hypothesis. 

The representability hypothesis states that the solvation free energy of a molecule can 

be described by the features of atom interactions and their geometric relations in the 

solvent. Thus, we can construct feature vectors to characterize the molecular electrostatic 

distribution. In our learning hypothesis, we assume that a machine learning model can be 

trained based on training labels and corresponding features for a sufficiently large training 

set of molecules. Additionally, advanced machine learning algorithms can give accurate 

predictions of the electrostatic potential for a new molecule which has the same probability 

distribution with the training set. In our approach, training labels are computed from MIBPB 

and features are generated using multiscale weighted colored subgraphs [47].

In the present work, we apply our newly developed PBML model to compute molecular 

solvation free energies in the implicit-solvent Monte Carlo simulations, which typically 

require millions of samplings. The new machine learning-based implicit-solvent Monte 

Carlo model can guarantee the accuracy of the implicit-solvent Monte Carlo model while 

dramatically speeding up existing implicit-solvent Monte Carlo algorithms.

This manuscript is organized as follows. Section II gives a brief introduction of molecular 

force fields, Monte Carlo methods, and implicit solvent models. The PBML model 

is introduced in this section as well, which includes the Poisson-Boltzmann equation, 

Generalized Born model, and multiscale weighted colored subgraphs. Section III presents 

the results of structural predictions of benzene and the human hyperplastic discs protein 

(PDB: 1i2t) [57] in water. We demonstrate that the PBML model is more accurate and faster 

than commonly used PB solvers and thus, can significantly reduce the computational time of 

implicit-solvent Monte Carlo simulations. A summary is given in Section IV.
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II. METHODS AND ALGORITHMS

In this section, we briefly review biomolecular force fields, the Monte Carlo methods, and 

implicit solvent models, followed by the Poisson-Boltzmann based machine learning model.

A. Biomolecular force fields

The quality of molecular simulations depends crucially on molecular force fields to offer a 

physical representation of molecular interactions and energy distributions. Molecular force 

fields typically describe molecular interactions in terms of classical molecular mechanics 

of atoms. The potential energies of atomic interactions are approximated by a set of 

mathematical functions, modeling the bonded and non-bonded components. These functions 

consist of a set of free coefficients, which are obtained by approximating either the results 

of elaborate quantum mechanical calculations, or experimental data. One of the advantages 

of biomolecular force field approach is its computational efficiency. The potential energy 

can be efficiently computed at the molecular level comparing to other methods, such as 

quantum mechanical approaches, which deal with electrons [58, 59]. Additionally, the forces 

in molecular dynamics can be evaluated analytically from molecular force fields.

A variety of molecular force fields have been developed for various purpose. In this work, 

we adopt the popular and simple Amber ff99SB force field [59]. The Amber force field for 

governing the potential energy consists of the following terms,

E = ∑
bonds

kb(r − r0)2 + ∑
angles

kθ(θ − θ0)2 + ∑
dihedrals

V n[1 + cos(nϕ − γ)]

+ ∑
i = 1

N − 1
∑

j = i + 1

N Aij
Rij

12 − Bij
Rij

6 + qiqj
ϵ1Rij

(1)

where kb, kθ, and Vn are force constants. Here, r, θ, and ϕ are bond length, angle, 

and dihedral angle with r0, θ0, and γ being optimal bond length, optimal angle, and 

proper dihedral angle, respectively. The first three terms in the energy expression describe 

the bonded energy of the molecular system. The last term represents the Lennard-Jones 

interactions and electrostatic interactions, where N is the number of atoms in the molecular 

system, Rij is the distance between ith and jth atoms, Aij and Bij are Lennard-Jones 

parameters, qi is the atom charge, and ϵ1 is the dielectric constant.

B. Monte Carlo methods

In this session, we provide a brief introduction of the molecular dynamics and the Monte 

Carlo method. We start from statistical mechanics and show that the calculation of the 

physical property of a solute-solvent system using molecular dynamics is computationally 

expensive or even intractable [10]. Then, we introduce Metropolis’s Monte Carlo method for 

biomolecular simulations [11].

The classical expression for the partition function Q of a solute-solvent system is

Q = c∫ drdp exp −ℋ(r, p)
kBT (2)
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where r={X, Y} stands for the atomic coordinates of a solute X and solvent Y, p stands for 

the corresponding momenta, c is a physical constant as specified below, kB is the Boltzmann 

constant and T is the temperature of the system. The function ℋ(r, p) is the Hamiltonian 

of the system. It describes the total energy of an individual system as summation of the 

kinetic energy K and the potential energy E: ℋ = K + E, where K is a quadratic function 

of the momenta. For a system of N identical atoms, one has c=1/(h3N N!) using the Planck 

constant h. Under the assumption that all of the other physical observables A of interest 

depend only on the positions, i.e., A=A(r), the integration over the momenta can be carried 

out analytically in a classical mechanical treatment. As a result, the expected value of a 

physical observable of interest is given by

〈A〉 = ∫ drA(r) exp[ − βE(r)]
∫ dr exp[ − βE(r)] (3)

where β=1/kBT. Evaluating ⟨A⟩ requires numerical techniques, such as quadrature rules 

for the integration. Since each particle moves in a three dimensional (3D) space, the total 

number of degrees of freedom is 3N for a system of N atoms. If each dimension is integrated 

with a mesh size of m points, the total number of points for the integration is m3N, which is 

computationally prohibitive.

The complexity in evaluating Eq.(3) can be significantly reduced by using the Monte Carlo 

sampling. Indeed, Metropolis et al. [11] suggested an efficient Monte Carlo scheme to 

approximate the ratio in Eq.(3). Let us denote the probability density function in finding a 

microstate in the canonical ensemble in a configuration r by

P(r) = exp[ − βE(r)]
∫ dr exp[ − βE(r)] (4)

According to this probability function, we can perturb randomly selected points in 

the configuration. Hence, the number of points ni generated per unit volume in the 

neighborhood of r is equal to Nmc×P (r) for the average of A(r), which is

〈A〉 ≈ 1
NMC

∑
i = 1

NMC
niA(ri) (5)

where NMC is the total number running in Monte Carlo simulations. Eq.(5) shows that all 

states of ensemble contribute to the average equally. Therefore, Metropolis Monte Carlo 

method starts at a given configuration r0={X0, Y0} and next perturbs the configuration by a 

defined transformation with a new configuration r1={X1, Y1}. The probability to accept the 

new configuration is

pacc = min{1, exp[ − β(E(r0) − E(r1))]} (6)

If the new configuration is rejected, the previous configuration is retained and the method 

repeats another random perturbation. This process iterates until the iteration number equals 
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to a fixed number. It is shown that the structure in the system will approach the Boltzmann 

distribution, if the perturbations satisfy the condition

π(ri)pij = π(rj)pji (7)

where π(ri) is the probability of the system in configuration ri and pij is the probability to 

perturb the configuration from state ri to state rj [11].

C. Implicit solvent models

Implicit solvent models are class of multiscale techniques for reducing the dimensionality 

of a solvent-solute system. They retain the crucial electrostatic interactions between a 

biomolecule and its solvent environment without modeling solvent molecules explicitly. 

A variety of two-scale implicit solvent models have been developed, such as the Poisson-

Boltzmann (PB) model [13] and the generalized Born (GB) model [16-19]. One desirable 

application of implicit solvent models is the Monte Carlo simulations of biomolecule in 

solvent, which is relatively easy to implement. The basic derivation for molecular implicit 

solvent models relies on statistical mechanics. For more detail, the reader is referred to the 

literature [60]. Essentially, the molecular solvation free energy can be given by

ΔGsolv = ΔGelec + ΔGnonpol (8)

where ΔGelec represents the electrostatic contribution of the solvent-solute interaction, and 

ΔGnonpol denotes the nonpolar energy in the reversible work needed to insert a fixed 

configuration molecule into the solvent with all solute charges set to zero. Here ΔGnonpol is 

proportional to the solvent accessible surface area. The molecular solvation free energy is 

used in our implicit-solvent Monte Carlo method to represent solvent-solute interactions.

D. Poisson-Boltzmann based machine learning (PBML) model

In this section, we briefly discuss the Poisson-Boltzmann based machine learning (PBML) 

model [56], which is applied to compute ΔGelec in Eq.(8). Our PBML model involves 

three major components, i.e., training labels, molecular features, and learning algorithms. 

Our training labels for a large training set of molecules are generated from solving the 

Poisson-Boltzmann (PB) equation. Our molecular features for both the training set and the 

test set constitute two parts, a GB part and a correction part. The latter is computed from 

multiscale weighted colored subgraphs [56].

1. The Poisson-Boltzmann (PB) model—The PB model considers the solute 

biomolecule with Nc fixed charges as the interior domain Ω1, and the solvent, including 

free ions, as the exterior domain Ω2. The interface Γ separates these two domains. The PB 

model is given as

− ∇ ⋅ ϵ(r)∇ϕ(r) + κ̄2(r)ϕ(r) = ∑
k = 1

Nc
qkδ(r − rk) (9)

For r ∈ ℝ3, ϕ(r) is the electrostatic potential, ϵ(r) dielectric constant is given by
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ϵ(r) =
ϵ1, r ∈ Ω1
ϵ2, r ∈ Ω2

(10)

In the PB model, κ̄ is the screening parameter with the relation κ̄2 = ϵ2κ2 where κ is the 

inverse Debye length measuring the ionic effective length. To ensure the continuity of 

electrostatic potential and flux density across the interface Γ, the PB equation is associated 

with following interface conditions

ϕ1(r) = ϕ2(r), ϵ1
∂ϕ1(r)

∂n = ϵ2
∂ϕ2(r)

∂n , r ∈ Γ (11)

where ϕ1 and ϕ2 are electrostatic potential from the solute domain Ω1 and the solvent domain 

Ω2, and n is the outward unit normal vector on Γ.

The solvation free energy can be obtained from the PB model by

ΔGelec
PB = 1

2 ∑
k = 1

Nc
qk(ϕ(rk) − ϕ0(rk)) (12)

where ϕ0(rk) is the free space solution to the PB equation assuming no solvent-solute 

interface. To solve the PB equation, we apply the accurate and robust 2nd order MIBPB 

solver [6, 32] developed in our group, which applies rigorous treatment on geometric 

complexity, interface condition, and charge singularity. The ΔGelec
PB  results generated 

by MIBPB solver for a set of macromolecules are used as the training labels in the 

representability hypothesis.

2. The Generalized Born (GB) model—Having described the labels for our machine 

learning training, we discuss the molecular feature construction for both machine learning 

training and test, which involves the GB model. As a fast approximation to the PB model, 

the GB model computes the electrostatic solvation free energy by

ΔGelec
GB ≈ ∑

i, j
ΔGij

GB = − 1
2

1
ϵ1

− 1
ϵ2

1
1 + αβ ∑

i, j
qiqj

1
fij(rij, Ri, Rj)

+ αβ
B (13)

where Ri is the effective Born radius for i-th atom, rij is the distance between atoms i and 

j, β=ϵ1/ϵ2, α=0.571412, and B is the electrostatic size of the molecule. The function fij is 

given as

fij = rij2 + RiRjexp −
rij2

4RiRj
(14)

The effective Born radii Ri is calculated by the following boundary integral
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Ri
−1 = − 1

4π∮Γ

r − ri
∣ r − ri ∣6

⋅ dS
1 ∕ 3

(15)

In Eq.(15), the MSMS package [61] is used to generate the triangulation discretization of the 

molecular surface for the numerical surface integral on Γ.

3. Multiscale weighted colored subgraphs—The weighted colored subgraph 

(WCS) use the notion G(V, E) with vertices V and edges E to describe the atomic 

interactions in a protein of N atoms. The vertices is defined as

V = {(ri, αi) ∣ ri ∈ ℝ3, αi ∈ C, i = 1, 2, …, N} (16)

where C = {C, N, O, S, H} contains all the commonly occurring element types in a protein. 

Each vertex is an atom labeled by both its position ri element type αi, for i=1, ⋯ N.

The edge E relates the pairwise interactions, which are defined as a colored set P = {αβ}
with α, β ∈ C. For C defined above, P = CC, CN, CO, CS, CH, NN, NO, NS, NH, OO, OS, 

OH, SS, SH, HH and we define the partition of P as Pk, k=1, 2,…, 15 such that P1 = {CC}, 

P2 = {CN} and so on. The set of involved vertices V Pk is a subset of V containing all atoms 

involved in forming the pair in Pk. For instance, P2 = {CN} contains all carbon-nitrogen 

atom pairs and V P2 contains all carbon and nitrogen atom vertices in the protein. Based on 

these configuration, all the edges for pairwise atomic interactions in the WCS description are 

defined by

EPk
σ, τ, ζ = {Φτ, ζ

σ (‖ri − rj‖) ∣ αiβj ∈ Pk; i = 1, 2, …, Nα, j = 1, 2, …, Nβ} (17)

where ∥ri – rj∥ defines the Euclidean distance between ith and jth atoms, Nα and Nβ are 

numbers of type α and β atoms, σ indicates the type of radial basic functions (e.g., σ=L for 

Lorentz kernel, σ=E for exponential kernel), τ is a scale distance factor between two atoms 

and ζ is a parameter of power in the kernel (i.e., ζ=κ for σ=E, ζ=ν for σ=L). In this model, 

we use generalized exponential functions

Φτ, κ
E = e−(‖ri − rj‖ ∕ τ(ri + rj))κ, κ > 0 (18)

and generalized Lorentz functions

Φτ, ν
L = (‖ri − rj‖) = 1

1 + (‖ri − rj‖ ∕ τ(ri + rj))ν ,

ν > 0
(19)

where ri and rj are, respectively, the van der Waals radius of the ith and jth atoms. 

Finally, the features for describing the electrostatics interactions and geometric properties 

are expressed as
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μk, σ, τ, ζ, w = ∑
i = 1

Nα
∑
j = 1

Nβ
wijΦτ, ζ

σ (‖ri − rj‖), αiβj ∈ Pk, (20)

where wij is a weight function assigned to each atomic pair with wij=1 for atomic rigidity 

or wij=qj for atomic charge. Since we have 15 options of the colored subsets Pk, we can 

obtain corresponding 15 subgraph centralities μk,σ,τ,ζ,w, for k=1,2,…, 15. By varying kernel 

parameters (σ, τ, ζ, w), one can achieve multiscale centralities for multiscale weighted 

colored subgraph (MWCS) [62], which can be the features.

With labels and features described above, we can construct the machine learning model to 

predict the solvation free energy of new macromolecules. Specifically, using MIBPB results 

as labels, and GB and MWCS results as features, we train gradient boosting decision trees 

(GBDTs) for the solvation free energy prediction.

III. RESULTS

In this section, we demonstrate the performance of the proposed MLIMC method 

numerically. First, we describe the Poisson-Boltzmann based machine learning (PBML) 

model for computing protein electrostatic solvation energies, followed by the illustration of 

the accuracy and efficiency of the model. The use of the PBML model for electrostatic 

interactions in the MC simulations is introduced. Our main idea is to replace time-

consuming electrostatic calculations by using our PBML model. The efficiency of our new 

MLIMC model is also examined. Finally, we validate the proposed MLIMC method by two 

cases. Case one is a small molecule, benzene, with initial atom position randomly protruded. 

Our MLIMC method is used to reconstruct the benzene molecule in solvent. Case two is 

a relatively larger molecule, protein (PDB: 1i2t) with 61 amino acid residues. In this case, 

we stretch the last two residues of 1i2t using steered molecular dynamics and then we 

try to restore the equilibrium configuration by using the proposed MLIMC method. Both 

simulations are carried out at temperature of 27 °C, the dielectric constants are ϵ1=1 in 

the molecule and ϵ2=80 in the solvent, the MSMS [61] mesh density is set as 2, and the 

Debye-Huckel constant is set as κ=0.1257 Å−1. There are three kernels used to generate 

features for machine learning, which are (E, 0.3, 2, 1), (E, 4.7, 2, qj), and (L, 4.2, 5, 1).

To measure the performance, we use the root-mean-square deviation (RMSD) of atomic 

positions in length units (Å), defined as

RMSD(v, w) = 1
N ∑

i = 1

N
(vi, x − wix)2 + (viy − wiy)2 + (viz − wiz)2 (21)

where v, w ∈ ℝN × 3 are vectors of positions of the N atoms at two different MC samplings. 

Moreover, we also present relative errors of the total energy measured by comparing the 

energy for a MC sampling EMC, and the energy for the equilibrium state ESS as

Chen et al. Page 9

Chi J Chem Phys. Author manuscript; available in PMC 2022 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ettl = ∣ ESS − EMC ∣
∣ ESS ∣ × 100 % (22)

We compute the RMSD and errors between Monte Carlo sampling results and the original 

molecular structure for every 100 Monte Carlo steps for both cases. The core code was 

written in C/C++ and a cython wrapper calling the core code for performing adds-on 

functions and applications. Our simulations are produced on a desktop with an i5 7500 CPU 

and 16GB memory.

A. PBML model

The MLPB model used in Monte Carlo simulation is a pre-trained model. The training 

set includes 3706 protein structures from the PDBbind v2015 refined set [63]. This 

refined set was selected from a general set of 14,620 protein-ligand complexes. A data 

pre-processing (i.e. adding force field parameters) is required before a PB solver can be used 

for electrostatics calculations. Though the PDBbind refined set consists of protein-ligand 

complexes, only protein structures are applied for calculations. These protein structures are 

adjusted by the protein preparation wizard utility of the Schrodinger 2015-2 Suite [64] with 

default parameters unless filling the missing side chains is required.

The training set covers a wide range of proteins in different sizes with atom numbers from 

997 to 27,713. The current training set can be expanded to an even larger group of proteins. 

However, from our test, we conclude that expanding training set will not significantly 

improve the trained model, thus the size of the current training set is sufficiently large.

The purpose of PBML is to implement a machine learning predictor of PB electrostatic 

solvation free energies for various proteins efficiently and accurately without explicitly 

solving the PB equation. Gradient boosting decision tree method is selected for this 

supervised learning task because of its efficiency. The accuracy of the PBML model is 

maintained by the accurate electrostatic free energy of solvation as the label calculated by 

the MIBPB solver. Once a trained PBML model is obtained, the MIBPB solver will not be 

called anymore. Using the learned PBML model only requires calculating features on the 

prediction of electrostatic solvation free energies for new compounds, which is rapid.

B. Efficiency of the PBML model

FIG. 1 shows the results for computing solvation energy on 195 proteins from PDBbind 

v2015 core set [63] using PBML, Amber, and Dephi. The results are shown in terms of the 

average CPU time per protein versus the mean absolute percentage errors. From FIG. 1(a), 

we can see PBML is more accurate and much faster than standard PB solvers such as DelPhi 

and Amber PB. FIG. 1(b) gives more details by zooming into the region where CPU time is 

small to distinct the CPU time used by the PBML using different MSMS density.

We here add a few notes about how we improve the PBML model in addition to machine 

learning. We notice that in the energy and feature calculations, every term has a degree of 

freedom associated with the number of atoms, except the computation of the effective Born 
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radii Ri in Eq.(15), which depends on the number of surface triangles M. Since M≫N, faster 

evaluating of Eq.(15) can significantly accelerate the entire Monte Carlo process. In our 

present implementation, instead of taking the integral in Eq.(15) on each triangle, we take 

the integral on a neighborhood of each vertex. This treatment nearly doubled the efficiency 

of the GB method since number of vertices is about half of number of triangles on the 

surface. In addition, applying a cut-off can also further improve the GB method.

C. MLIMC model

The assembling of MLIMC includes the implementation of empirical potential energy 

functions (except electrostatics) and the prediction of electrostatics for each step on Monte 

Carlo simulations. The conformation of the target protein is perturbed randomly on each 

step. The new conformation is directly accepted if it shows a lower energy or is accepted 

with a probability determined by the Boltzmann distribution if it shows a higher energy. As 

the MLPB model is pre-trained before simulations, the Monte Carlo simulation does not 

include the time for solving the PB equation, resulting in much reduced time for MLIMC 

simulations.

D. Efficiency of the MLIMC model

We show that the high efficiency of the MLPB model will significantly improve the 

efficiency of the MLIMC model.

Table I shows the mean CPU time of one Monte Carlo step and the mean absolute 

percentage errors of Amber, DelPhi and PBML predictions of the electrostatic solvation free 

energies of the 195 proteins. The mean CPU time for each protein includes the computations 

for the total energies, in which computing electrostatic is the dominant component.

Clearly, the machine learning method has the highest accuracy but the lowest CPU time. For 

the same accuracy level (<1%), the estimation of the mean CPU time for a one-million-step 

Monte Carlo simulation is 6.136×108 s, 1.621×108 s, and 2.5×106 s for using Amber, DelPhi 

and PBML, respectively. Even with compromised accuracy for DelPhi and Amber at gird 

size of 0.5 Å, the MLIMC with PBML will be 47 times faster than that with Amber and 8 

times faster than that with DelPhi. Next we show some MC simulation results using MLIMC 

on the benzene molecule and the human hyperplastic discs protein (PDB:1i2t).

E. Test case one: benzene molecule

Our first case is a Benzene molecule with some atomic position randomly perturbed. In 

detail, we fixed three atoms at equilibrium positions in order to have the prediction and the 

comparison structure in the same plane, and perturb the coordinates of the remained nine 

atoms in (ρ, θ, ϕ) directions by uniformly distributed random numbers in ([0, 10], [0, 2π], 

[0,π]). The initial RMSD is 6.42 Å as compared with the equilibrium position. We will try to 

perform a MC simulation on this perturbed molecule to see if the original steady status can 

be obtained. FIG. 2(a) shows the total energy and RMSD vs. MC steps, from which we can 

see that the total energy of benzene in solvent starts at 349123.61 kcal/mol and converges 

to the range of 5–15 kcal/mol after the first 20,000 MC steps. It stays in a convergent range 

for the rest MC steps. The RMSD initially is 6.42 Å and ends around 0.15 Å. It decreases 
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rapidly as the total energy for the first 20,000 steps. After 20,000 steps, the total energy 

converges with only slightly oscillation, and the RMSD keeps the decreasing trend until it 

reaches around 0.15 Å when MC steps are greater than 70,000.

FIG. 2(b) shows errors and RMSD versus MC steps. Here we set ESS in Eq.(22) to be 10.60 

kcal/mol as the steady state energy for reference. The plot shows that the errors of total 

energy are very small for our MC simulation after 10,000 iterations. When the simulation 

structure is close to that of its equilibrium state, the RMSD is smaller than 1 Å and the 

errors stay in between 1% and 100%. Note since the total energy is a small number, a tiny 

perturbation causes a large error changing.

Qualitatively, FIG. 3(a) shows that the benzene molecule with its initial perturbed structure 

is in blue and the equilibrium structure is in green. After the MC simulation, we receive the 

predicted structure in red as compared with the steady state structure in green as shown in 

FIG. 3(b). The total CPU time for 100,000 Monte Carlo steps is 643 s.

F. Test case two: protein (PDB: 1i2t)

The second MC test is on the human hyperplastic discs protein (PDB: 1i2t) with 61 residues. 

We first stretch the last two residues of the original protein by a steered molecular dynamics. 

As a result, the stretched molecule has an initial RMSD of 8.14 Å. We apply our MLIMC 

for 100,000 steps, which takes 16,684 s in CPU time. FIG. 4(a) shows that the total energy 

of 7260.90 kcal/mol initially decays rapidly within the first 5000 Monte Carlo steps, then 

oscillates around −2070.00 kcal/mol. In the same plot, we can see the RMSD drops quickly 

in the first 10,000 MC steps, after then decays slowly with fluctuation for the next 40,000 

MC steps, then decays steadily after 45,000 MC steps, and finally oscillates slightly around 

2.2 Å after 60,000 MC steps. For the energy errors shown in FIG. 4(b), relative to the total 

energy in the equilibrium of −2068.13 kcal/mol, the errors rapidly decays in the first 20,000 

MC steps and then oscillate within 10% after that.

Similar to the benzene case, FIG. 5(a) qualitatively shows the perturbed structure in blue 

against the steady state structure in green for the first two residues and FIG. 5(b) shows that 

the MLIMC structural prediction in red color after the MC simulation, which is very close to 

the steady state structure in green.

IV. CONCLUSION

Monte Carlo simulations are widely used in science and engineering for molecular structure 

optimization and prediction. In many situations, particularly biomolecular systems, the 

solute molecule is immersed in a water solvent and the full-scale explicit solvent Monte 

Carlo simulations are very expensive. Alternatively, implicit solvent Monte Carlo methods 

using either Poisson-Boltzmann (PB) model or generalized Born (GB) model for computing 

electrostatics can greatly reduce the degree of freedom. However, the accuracy reduction in 

GB model or the efficiency concerns in PB model hinders the wide application of implicit 

solvent Monte Carlo simulation. In this work, we introduce a machine learning-based 

implicit-solvent Monte Carlo (MLIMC) method for molecular structure optimization and 

prediction. A vital component of our MLIMC is the newly developed Poisson-Boltzmann 
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based machine learning (PBML) model, which maintains the PB accuracy at the GB 

cost. We validate the proposed MLIMC method by simulating two molecular systems, 

randomly perturbed benzene structure and protein (PDB: 1i2t) structures modified by a 

steered molecular dynamics. Numerical experiments demonstrate that proposed MLIMC is 

efficient in predicting molecular structures at equilibrium. In a comparative analysis, we 

show that the MLIMC model has a great advantage on CPU time and accuracy over DelPhi 

and Amber PB based Monte Carlo methods. We believe this innovated PBML method 

can also disruptively change the current status of PB based molecular simulation involving 

molecular dynamics [66] and Monte Carlo. MLIMC provides accurate electrostatic solvation 

energy at each configuration of the target protein thus can be helpful in searching protein 

folding states as intermediate or final using MC based simulation. The resulting machine 

learning-based implicit molecular dynamics (MLIMD), together with the present MLIMC 

model, will have a vast variety of applications in molecular science, including drug design.
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FIG. 1. 
Comparison of the mean CPU time (in unit of s) per protein and the mean absolute 

percentage errors of Amber, DelPhi and machine learning predictions of the electrostatic 

solvation free energies using the test set of 195 proteins. (a) Results of Amber and DelPhi 

were obtained at ten different mesh sizes from 0.2 Åto 1.1 Å; Results of PBML were 

obtained at four MSMS densities (number of vertices per Å2) at 15, 2, 1, and 0.5. (b) A 

zoom-in plot of the left plot for small CPU time.
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FIG. 2. 
MLIMC simulation of benzene in solvent. (a) The red curve is the total energy calculated by 

our implicit-solvent Monte Carlo model and the blue curve is the root mean square deviation 

of the atomic positions on each Monte Carlo step to the non-protruded one. (b) The red 

curve is the error of total energies ettl defined by Eq.(22) and the blue curve is the same 

RMSD as the left figure.
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FIG. 3. 
Illustration of MLIMC simulations of a benzene molecular in solvent. (a) the blue structure 

is the randomly perturbed atom positions and the green one is the benzene structure in 

steady state. (b) the red one is the benzene structure after MLIMC sampling compared with 

the equilibrium structure in green. Pictures are produced with VMD [65].
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FIG. 4. 
MLIMC simulation of the protein (PDB: 1i2t) in solvent. (a) The red curve is the total 

energy calculated by implicit-solvent Monte Carlo model, the blue curve is the root mean 

square deviation of the atomic positions on each Monte Carlo step to the non-protruded one. 

(b) The red curve is the error of total energies ettl defined by Eq. 22, the blue curve is the 

same RMSD as the left figure.
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FIG. 5. 
Illustration of MLIMC simulations of the protein (PDB: 1i2t) [57] in solvent. (a) The blue 

structure is the perturbed protein structure generated with steered molecular dynamics and 

the green one is the original structure at the equilibrium state in solvent. (b) The red one is 

the predicted structure after MLIMC sampling compared with the original structure in green. 

Pictures are produced with VMD [65].
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TABLE I

Average CPU time for one step MLIMC simulation using Amber, DelPhi and PBML for electrostatic solvation 

free energy on the 195 protein dataset. Results of Amber and DelPhi were obtained at 0.2 Å and 0.5 Å mesh 

sizes, and that from PBML uses mesh density 2. The average CPU time includes all computations needed for 

Monte Carlo evaluations. The PB error is obtained relative to the electrostatic solvation energy computed from 

MIBPB solver with grid size h=0.2 Å.

PB solver CPU time/s PB error/%

h=0.2 Å h=0.5Å h=0.2 Å h=0.5Å

Amber 6136 1177 0.618 1.271

DelPhi 1621 214 0.819 1.552

PBML
a 25 0.484

a
PBML uses mesh density of 2.
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