Table 5.
The quantitative evaluation results of the above network.
| Method | Backbone | AP | AP50 | AP75 | APS | APM | APL |
|---|---|---|---|---|---|---|---|
| Mask R-CNN | Res-101-FPN | 32.67 | 51.63 | 34.76 | — | 10.45 | 33.52 |
| MS R-CNN | Res-101-FPN | 35.21 | 55.76 | 38.43 | — | 11.55 | 32.51 |
| TensorMask | Res-101-FPN | 34.04 | 56.26 | 36.36 | — | 11.26 | 29.76 |
| PANet | Res-50-FPN | 33.54 | 54.93 | 36.21 | — | 11.26 | 31.23 |
| PolarMask | Res-101-FPN | 27.34 | 48.84 | 27.94 | — | 10.54 | 30.96 |
| YPLACT++ | Res-101-FPN | 31.53 | 50.74 | 33.84 | — | 14.90 | 33.23 |
| SOLOv2 | Res-101-FPN | 34.63 | 52.66 | 35.84 | — | 11.01 | 46.57 |
| Mask R-CNN (RFN) | Res-101-FPN | 37.81 | 61.51 | 38.54 | — | 13.20 | 39.41 |
| SOLOv2 (RFN) | Res-101-FPN | 38.77 | 62.77 | 42.14 | — | 16.44 | 49.52 |
| Mask R-CNN (∗) | Res-101-FPN | 37.97 | 61.46 | 39.05 | — | 15.20 | 52.70 |
| MSIS | Res-50-FPN | 40.06 | 63.26 | 45.62 | — | 17.61 | 62.37 |