Skip to main content
. 2022 Jan 4;2022:2864717. doi: 10.1155/2022/2864717

Table 5.

The quantitative evaluation results of the above network.

Method Backbone AP AP50 AP75 APS APM APL
Mask R-CNN Res-101-FPN 32.67 51.63 34.76 10.45 33.52
MS R-CNN Res-101-FPN 35.21 55.76 38.43 11.55 32.51
TensorMask Res-101-FPN 34.04 56.26 36.36 11.26 29.76
PANet Res-50-FPN 33.54 54.93 36.21 11.26 31.23
PolarMask Res-101-FPN 27.34 48.84 27.94 10.54 30.96
YPLACT++ Res-101-FPN 31.53 50.74 33.84 14.90 33.23
SOLOv2 Res-101-FPN 34.63 52.66 35.84 11.01 46.57
Mask R-CNN (RFN) Res-101-FPN 37.81 61.51 38.54 13.20 39.41
SOLOv2 (RFN) Res-101-FPN 38.77 62.77 42.14 16.44 49.52
Mask R-CNN () Res-101-FPN 37.97 61.46 39.05 15.20 52.70
MSIS Res-50-FPN 40.06 63.26 45.62 17.61 62.37