Abstract
目的
利用RNA干扰技术分别沉默神经元中缺氧诱导因子1α(HIF-1α)和磷酸酶并和张力蛋白同源物(PTEN)基因,论证它们在神经元体外氧糖剥夺(OGD)损伤后的功能调控作用。
方法
构建并筛选靶向HIF-1α及PTEN基因的shRNA慢病毒载体;提取并将原代神经元分为4组:(1)NC组,仅加空载病毒;(2)NC+OGD组,加空载病毒后缺氧;(3)Si-hif-1α+OGD组,加Si-hif-1α病毒后缺氧;(4)Si-pten+OGD组,加Si-pten病毒后缺氧,均在培养第3天感染病毒,第7天OGD损伤模拟细胞缺氧。缺氧后24 h行荧光实时定量PCR(qRT-PCR)法检测干扰效率,行乳酸脱氢酶(LDH)检测及AnnexinV-FITC/PI检测神经元细胞损伤、凋亡变化,Western blot检测相应蛋白表达变化。
结果
慢病毒介导的shRNA能有效沉默目的基因mRNA的表达;HIF-1α沉默后,缺氧细胞的损伤及凋亡加重,PTEN蛋白的表达升高,p-PTEN、p-AKT、NR2A及VEGFa表达降低(P < 0.05);PTEN沉默后,缺氧细胞的损伤及凋亡有所减轻,p-PTEN、p-AKT表达升高(P < 0.05),HIF-1α、NR2A及VEGFa的表达无显著变化(P>0.05)。
结论
慢病毒介导的shRNA能有效沉默神经元HIF-1α及PTEN的表达,逆转神经元缺氧损伤中HIF-1α升高对PTEN活性的抑制,参与神经元损伤调控。
Keywords: 缺氧, HIF-1α, PTEN-PI3K/AKT信号通路, RNA干扰
Abstract
Objective
To observe the effects of lentivirus-mediated RNA interference (RNAi) of hypoxia-inducible factor 1α (HIF-1α) and phosphatase and tensin homolog on chromosome ten (PTEN) on oxygen-glucose deprivation (OGD) injury in primary cultured rat neurons.
Methods
Primary cultures of neonatal SD rat neurons were infected by lentiviral vectors carrying short hairpin RNA (shRNA) targeting HIF-1α or PTEN followed 4 days later by hypoxic exposure, and the control neurons were infected with the empty virus only with or without subsequent hypoxic exposure. Twenty-four hours after hypoxia, the interference efficiency was assessed with qRT-PCR, and lactate dehydrogenase (LDH) assay and AnnexinV-FITC/ PI assay were performed to detect neuronal damage and apoptosis. The expressions of the related proteins were determined with Western blotting.
Results
Lentivirus-mediated RNAi effectively silenced the mRNA expression of the target genes. HIF-1α silencing obviously aggravated the hypoxia-induced damage and apoptosis of the neurons, enhanced the expression of PTEN protein and significantly lowered the expressions of p-PTEN, p-AKT, NR2A and VEGFa (P < 0.05). PTEN silencing significantly alleviated hypoxia-induced damage and apoptosis of the neurons and increased the cellular expressions of p-PTEN and p-AKT (P < 0.05) without obviously affecting the expressions of HIF-1α, NR2A or VEGFa (P>0.05).
Conclusion
An up-regulated expression of HIF-1α causes down-regulation of PTEN expression to protect primary cultured rat neurons against OGD injury.
Keywords: hypoxia, hypoxia-inducible factor-1α, PTEN-PI3K/AKT signal path, RNA Interference
缺氧是机体循环障碍和代谢异常最常见的并发症之一,容易造成神经系统损伤。缺氧诱导因子1α(HIF-1α)是体内关键性的缺氧调节转录因子,在缺氧条件下,HIF-1α以异二聚体的形式与缺氧诱导因子β一起易位到细胞核并调控下游靶基因的表达[1, 2]。磷酸酶并和张力蛋白同源物(PTEN)广泛参与到细胞生长、分化、增殖和凋亡等生长发育的关键过程中,它和HIF-1α在许多生理病理过程中都相互关联,如血管生成和胶质母细胞瘤等[3, 4]。大量研究表明,随着HIF-1α的增加,PTEN表达水平降低,HIF-1α和PTEN的表达呈负相关[5-9];在我们前期不同缺氧模型研究中也发现二者呈负相关[10, 11],但在缺氧下HIF-1α与PTEN之间如何进行调控尚不清楚。本研究拟在神经元内针对性的沉默HIF-1α、PTEN以论证它们在缺氧条件下的调节机制,为临床治疗提供新思路。
1. 材料和方法
1.1. 主要材料
Si-hif-1α慢病毒、Si-pten慢病毒(和元生物公司);DMEM/F12培养基、neurobasal培养基、B27(Gibco),Medium 199培养基(Hyclone);胎牛血清(fetal bovine serum, FBS)(AusGeneX);Simply P总RNA提取试剂盒(莱博斯);RT-PCR、SYBR-Green Realtime-PCR(TaKaRa);Annexin V-FITC/PI细胞凋亡检测试剂盒、乳酸脱氢酶细胞毒性检测试剂盒(碧云天);全蛋白提取试剂盒(KeyGEN);HIF-1α抗体、PTEN抗体(Abcam);GAPDH抗体(正能生物)。
1.2. 方法
1.2.1. 大鼠原代神经元的培养
将6孔板用多聚赖氨酸铺板过夜晾干,取孕17~20 d SD大鼠(重庆医科大学实验动物中心提供)胎鼠,冰75%酒精消毒后断头取出大脑,分离皮层及海马,轻轻剔除脑膜及血管后剪成约1 mm3小块(以上操作在冰上进行)。加入0.125%的胰酶,于37 ℃孵箱中消化10 min,加入等体积含10% FBS的DMEM/F12培养基终止消化,轻轻吹打数次至均匀,200目不锈钢筛网过滤。1000 r/min,5 min离心后重悬,计数,以1.8×106/孔密度种植于包被过的多聚赖氨酸的6孔板内,置于37 ℃、5% CO2培养箱中培养。4~6 h后将培养液全部换成含0.5%青链霉素、0.5 mmol/L谷氨酰胺、2%B27的无血清neurobasal培养基,每3 d半量换液1次,倒置相差显微镜下观察细胞生长情况。
1.2.2. 慢病毒感染神经元
原代神经元培养第3天弃一半神经元培养基。取出慢病毒于4 ℃溶解后加入到相应培养皿中轻轻混匀,每孔加病毒量(μL)=MOIx感染时细胞数/滴度(TU/mL)×1000。培养过夜,将含有病毒的神经元培养基全部换成新鲜培养基。慢病毒带有增强的绿色荧光蛋白(EGFP),在感染72 h后可用倒置荧光显微镜激发EGEP,观察其在细胞中的表达强度。
我们将病毒以不同的感染复数(MOI)(1、2、5、10、20)值感染神经元,在感染72 h后观察荧光表达,以得到最佳MOI值。
1.2.3. 神经元OGD损伤
在神经元培养第7天弃去神经培养基,用PBS液洗细胞3次,换成M199培养基2 mL,置于孵箱中培养1.5 h,观察细胞形态,见胞体变圆,突起缩短,更换为新鲜Neurobasal培养基。对照组也换成新鲜培养基。
1.2.4. 实验分组
将提取的原代神经元分成4组:(1)NC组:仅加空载病毒;(2)NC+OGD组:加空载病毒后缺氧;(3)Si-hif-1α+OGD组:加Si-hif-1α病毒后缺氧;(4)Si-pten+OGD组:加Si-pten病毒后缺氧。细胞均在培养第3天感染病毒,第7天建立OGD损伤模拟细胞缺氧,缺氧后24 h用于实验。
1.2.5. Realtime-PCR检测各组神经元中HIF-1α、PTEN及VEGF的mRNA的表达
按Simply P总RNA提取试剂盒中的操作说明提取处理后的神经元总mRNA,进行去除基因组DNA及逆转录反应。使用TB Green Premix Ex Taq Ⅱ和CFX Connect Real-Time System以cDNA为模板进行实时定量聚合酶链反应,扩增条件:95 ℃×30 s,95 ℃×5 s,60 ℃×30 s,共40个循环,95 ℃×30 s。所得的数据用内参基因β-actin进行标准化后再进行比较分析。本实验所涉及的引物均由艾科瑞生物合成,基因的引物序列见表 1。
1.
Target gene | Sequence |
Hif-1α | |
Forward | 5'-GCGAGAACGAGAAGAAAAATAGG-3' |
Reverse | 5'-GTTGTGGGGAAGTGGCAA-3' |
PTEN | |
Forward | 5'-GGAAAGGACGGACTGGTGTA-3' |
Reverse | 5'-CGCCTCTGACTGGGAATAGT-3' |
VEGFA | |
Forward | 5'-GATCATGCGGATCAAACC-3' |
Reverse | 5'-CATTCACATCTGCTATGCT-3' |
β-actin | |
Forward | 5'-GGAGATTACTGCCCTGGCTCCTA-3' |
Reverse | 5'-GACTCATCGTACTCCTGCTTGCTG-3' |
病毒感染效率的检测分组如下:CT组(不做任何处理),NC组,NC+OGD组,Si-hif-1α+OGD组(Y13625 CCATGTGACCATGAGGAAA,Y13626 GCCAGCA AGTCCTTCTGAT和Y13627 GCTCATCCAAGGAG CCTTA)和Si-pten组(Y13628 GCTAAGTGAAGACG ACAAT,Y13629 GCCAGCTAAAGGTGAAGAT和Y13630 CCGATACTTCTCTCCAAAT)。来分别确定HIF-1α及PTEN沉默效率最佳的一条病毒。
1.2.6. 神经元细胞LDH测定和凋亡检测
LDH测定收集各组神经元培养基,离心弃沉淀后于-80 ℃密封冻存,临用前4 ℃溶解。按LDH试剂盒说明书要求取适量培养基加入试剂后摇床震荡混匀,避光孵育30 min,酶标仪(波长490 nm)测量各组吸光值A490 nm,并根据说明书计算。
凋亡检测根据Annexin V-FITC/PI试剂盒说明书,将390 μL Annexin V-FITC结合液、10 μL Annexin V-FITC和20 μL碘化丙啶染色液混匀后均匀覆盖到细胞表面,室温下避光静置反应15 min。将细胞于荧光显微镜下观察,在同一放大倍数、相同曝光条件下拍照,PI荧光信号呈红色。利用Image J软件计数并统计。
1.2.7. Western blot检测神经元中HIF-1α,PTEN、p-PTEN、AKT、p-AKT和NR2A蛋白表达情况
收集细胞,预冷的PBS洗3次,加入细胞裂解液(Lysis Buffer:磷酸酶抑制剂:蛋白酶抑制剂:PMSF=1000∶10∶1∶5),冰上裂解30 min,制备蛋白样品,BCA法检测各组样品蛋白浓度。取40 μg蛋白样品上样进行SDS-PAGE电泳分析,然后转膜至PVDF膜上,室温下快速封闭液封闭12 min,PBST洗膜3次后加入相应一抗4 ℃摇床孵育过夜。PBST洗膜5次,二抗封膜,室温摇床孵育1 h,再次洗膜5次。ECL化学发光法检测显影。使用ImageJ(NIH)对灰度图像进行定量分析,以GAPDH作为内部参考。
1.3. 统计分析
每组实验至少重复3次,使用的统计软件为GraphPad Prism 9.0,所有数据均用均数±标准差表示,多组样本间差异使用单因素方差分析比较,P < 0.05为差异具有统计学意义。
2. 结果
2.1. 慢病毒的感染复数和感染效果
空载病毒NC(GL404NC2)以不同MOI(1、2、5、10和20)感染神经元,细胞内的荧光表达强度是评估慢病毒感染效率的一项指标,在感染72 h后用倒置荧光显微镜激发细胞内的EGFP检测其荧光表达强度。可以看出在MOI≥5的时候荧光强度差异不大(图 1A、B)。因此,我们选择MOI=5用于后续的实验。
用qRT-PCR分别检测Si-hif-1α和Si-pten病毒的感染效率,可见Y13627和Y13630的沉默作用最显著(P < 0.001,图 1C、D),所以选择这两条病毒用于后续实验。并且,结果显示CT组和NC组的HIF-1α和PTEN mRNA表达没有显著差异(P=0.99,P=0.98)。
2.2. 分别沉默HIF-1α和PTEN后缺氧神经元的损伤及凋亡水平检测
结果显示NC+OGD组较NC组神经元凋亡的数量显著升高(P=0.02);而在沉默HIF-1α后再去缺氧,神经元凋亡程度进一步加重(P=0.03);沉默PTEN后OGD神经元凋亡水平降低(P=0.04,图 2A、B)。
神经元损伤与凋亡结果基本一致。缺氧后神经元的损伤加重(P < 0.001),沉默HIF-1α后缺氧,神经元损伤进一步加重(P=0.002),沉默PTEN后可减轻OGD神经元的损伤程度(P=0.001,图 2C)。
2.3. 神经元中HIF-1α、PTEN及p-PTEN蛋白水平检测
在缺氧条件下,神经元中HIF-1α、PTEN可被成功激活,量化分析结果具有统计学差异(P=0.004,P=0.046),沉默PTEN后,对HIF-1α的表达无显著影响(P>0.99,图 3A、B),而当HIF-1α被沉默后,PTEN较NC+OGD组再次增加且具有统计学差异(P=0.006,图 3A、B)。p-PTEN是PTEN的稳定形式,我们采用p-PTEN/PTEN的比值来分析p-PTEN的表达变化,可以看到,缺氧后p-PTEN明显降低(P=0.01),当HIF-1α被沉默时p-PTEN的表达进一步降低(P=0.02),在沉默PTEN后,p-PTEN显著升高(P < 0.001,图 3A、B)。
2.4. 神经元中NR2A、AKT及p-AKT蛋白水平检测
NR2A在缺氧后有明显的升高(P=0.02),沉默HIF- 1α后再缺氧,NR2A蛋白的表达又明显降低(P=0.04,图 4A、B)。磷酸化的AKT是活化形式,用p-AKT/AKT来表示AKT的活性。缺氧后AKT的活性明显降低(P < 0.001),PTEN被沉默后又出现明显升高(P=0.006,图 4A、B)。
2.5. 各组神经元中VEGFa mRNA水平检测
VEGFa在缺氧后有明显的升高,结果具有统计学意义(P < 0.001,图 5),当沉默HIF-1α后在再缺氧,VEGFa mRNA表达又明显降低,结果具有统计学意义(P=0.004),沉默PTEN下缺氧对VEGFa的mRNA表达则无明显影响(P=0.12)。
3. 讨论
3.1. 慢病毒介导的shRNA能感染SD大鼠原代神经元,并能有效沉默Hif-1α及PTEN的表达
RNA干扰能够特异性地、快速、高效地抑制靶基因的表达[12],以病毒为载体的shRNA可整合于靶细胞的目的基因而持久性的表达, 它有助于阐明包括原代细胞在内的多种细胞类型的基因功能[13]。本研究用慢病毒介导的shRNA感染原代神经元,病毒的EGFP荧光表达强度显示慢病毒介导的shRNA能够感染SD大鼠原代神经元。通过qRT-PCR检测病毒的感染效率,可见Y13627和Y13630的沉默作用最显著(P < 0.001),并且CT组和NC组的目的基因表达没有显著差异(P=0.99,P=0.98),证明慢病毒本身不会影响目的基因的表达,由于各组均有病毒的作用,因此我们实验设计用NC组作为阴性对照组。这部分结果也证明慢病毒质粒构建成功。
3.2. 缺氧条件下HIF-1α升高可保护OGD损伤后的神经元,降低神经元损伤及凋亡水平
HIF-1α在很多病理损伤及神经退行性疾病中可能发挥着重要的保护作用[14-18]。当机体处于正常的氧分压时,HIF-1α被脯氨酸羟化酶所羟基化后很容易被降解,而在缺氧状态下脯氨酸羟化酶的活性会受到抑制,聚集的HIF-1α进入细胞核与缺氧诱导因子β1相结合,形成具有活性的稳定型异源二聚体HIF- 1[19, 20],激活下游缺氧反应元件来介导细胞缺氧适应性反应[21]。我们课题组前期实验显示缺氧预处理可激活HIF-1α,促进细胞分泌神经营养和保护因子,从而有效修复缺氧缺血脑损伤新生大鼠认知功能[22],这与Xia等[23]的实验结果类似。本实验中也可以看到,缺氧后神经元细胞的损伤及凋亡情况均显著增加,此时有HIF-1α蛋白及保护因子VEGF mRNA的升高,所以我们进一步有针对性的沉默HIF-1α基因,结果显示缺氧细胞的凋亡及损伤明显增加。我们又将PTEN基因沉默,显示缺氧神经元的损伤及凋亡情况明显好转,就更加肯定的得出HIF-1α的升高以及PTEN的降低对缺氧神经元有保护作用,他们可以降低神经元损伤及凋亡水平。
3.3. 在神经元OGD损伤中HIF-1α的保护作用是通过抑制PTEN的活性来实现的
PTEN作为磷脂酰肌醇3激酶(PI3K)信号通路重要的负调控因子,广泛参与到细胞生长发育的关键过程中[24, 25],它可拮抗PI3K/AKT的信号传导通路[26-28]。本实验中,可以看到在缺氧条件下,神经元中HIF-1α及PTEN均可被成功激活,这与我们之前讨论的HIF-1α和PTEN的表达呈负相关相互矛盾。为了探究它们间的关系,我们在神经元内针对性的分别沉默这两个基因来探究它们的调节机制。研究发现当HIF-1α被沉默后,PTEN较仅缺氧时显著增加, 当PTEN沉默后,对HIF-1α的表达无显著影响,故证实在神经元OGD损伤中HIF‐1α对PTEN有抑制作用。并且,随着PTEN的升高及降低,p-PTEN及p-AKT的活性也出现相应变化。因而推测:在神经元OGD损伤中PTEN的活性被抑制可进一步激活PTEN-PI3K/AKT信号通路。
3.4. 在神经元OGD损伤中的保护作用有突触可塑性调控的参与
本课题组前期实验发现用缺氧细胞的培养基对HIBD模型大鼠进行脑室内灌注,能改善大鼠的空间学习记忆,并且AMPA的亚基GluR2有明显升高,表明HIF-1α参与了AMPA的突触可塑性调控[22]。有学者在研究中发现PTEN也参与了细胞突出可塑性的调节,并且这种调节作用是通过PI3K信号通路实现的[29, 30]。本实验结果显示在缺氧环境下,NMDA受体NR2A也被激活,并且随着HIF-1α的沉默而降低。我们推测HIF-1α可能通过调控突触相关蛋白的表达,而在缺氧神经元中发挥作用。
综上,缺氧神经元中,HIF-1α升高并且抑制PTEN来达到保护神经元的作用,这种保护作用中也有突触可塑性调控的参与。这将为缺氧导致的疾病的防治带来新的思路。
Biography
唐静华,在读硕士研究生,E-mail: 1093726555@qq.com
Funding Statement
国家自然科学基金(81672248)
Supported by National Natural Science Foundation of China (81672248)
Contributor Information
唐 静华 (Jinghua TANG), Email: 1093726555@qq.com.
代 英 (Ying DAI), Email: dai@hospital.cqmu.edu.cn.
References
- 1.李 荣森, 韦 建瑞, 张 少衡. 缺氧诱导因子-1α在缺血性心力衰竭中的作用研究进展. 医学综述. 2021;27(17):3351–6. doi: 10.3969/j.issn.1006-2084.2021.17.005. [李荣森, 韦建瑞, 张少衡. 缺氧诱导因子-1α在缺血性心力衰竭中的作用研究进展[J]. 医学综述, 2021, 27(17): 3351-6.] [DOI] [Google Scholar]
- 2.Westra J, Brouwer E, van Roosmalen IA, et al. Expression and regulation of HIF-1alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKⅡ inhibitor. BMC Musculoskelet Disord. 2010;11:61. doi: 10.1186/1471-2474-11-61. [Westra J, Brouwer E, van Roosmalen IA, et al. Expression and regulation of HIF-1alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKⅡ inhibitor[J]. BMC Musculoskelet Disord, 2010, 11: 61.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Muh CR, Joshi S, Singh AR, et al. PTEN status mediates 2ME2 anti-tumor efficacy in preclinical glioblastoma models: role of HIF1α suppression. J Neurooncol. 2014;116(1):89–97. doi: 10.1007/s11060-013-1283-3. [Muh CR, Joshi S, Singh AR, et al. PTEN status mediates 2ME2 anti-tumor efficacy in preclinical glioblastoma models: role of HIF1α suppression[J]. J Neurooncol, 2014, 116(1): 89-97.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Rodríguez-Escudero I, Oliver MD, Andrés-Pons A, et al. A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes. Hum Mol Genet. 2011;20(21):4132–42. doi: 10.1093/hmg/ddr337. [Rodríguez-Escudero I, Oliver MD, Andrés-Pons A, et al. A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes[J]. Hum Mol Genet, 2011, 20(21): 4132-42.] [DOI] [PubMed] [Google Scholar]
- 5.Wu L, Chen Y, Chen Y, et al. Effect of HIF-1α/miR-10b-5p/PTEN on hypoxia-induced cardiomyocyte apoptosis. http://www.ncbi.nlm.nih.gov/pubmed/31480879. J Am Heart Assoc. 2019;8(18):e011948. doi: 10.1161/JAHA.119.011948. [Wu L, Chen Y, Chen Y, et al. Effect of HIF-1α/miR-10b-5p/PTEN on hypoxia-induced cardiomyocyte apoptosis[J]. J Am Heart Assoc, 2019, 8(18): e011948.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Li AG, Murphy EC, Culhane AC, et al. BRCA1-IRIS promotes human tumor progression through PTEN blockade and HIF-1α activation. PNAS. 2018;115(41):E9600–9. doi: 10.1073/pnas.1807112115. [Li AG, Murphy EC, Culhane AC, et al. BRCA1-IRIS promotes human tumor progression through PTEN blockade and HIF-1α activation[J]. PNAS, 2018, 115(41): E9600-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.魏 福奎, 王 耀锋. 同源性磷酸酶-张力蛋白、缺氧诱导因子-1α在肾细胞癌组织中表达及与临床病理特征关系研究. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGZ201710027.htm. 临床军医杂志. 2017;45(10):1078–81. [魏福奎, 王耀锋. 同源性磷酸酶-张力蛋白、缺氧诱导因子-1α在肾细胞癌组织中表达及与临床病理特征关系研究[J]. 临床军医杂志, 2017, 45(10): 1078-81.] [Google Scholar]
- 8.苗 龙, 刘 洋, 刘 林, et al. 肾细胞癌组织中PTEN和HIF-1α的表达及临床意义. https://www.cnki.com.cn/Article/CJFDTOTAL-SWCX201706034.htm. 现代生物医学进展. 2017;17(6):1127–30. [苗龙, 刘洋, 刘林, 等. 肾细胞癌组织中PTEN和HIF-1α的表达及临床意义[J]. 现代生物医学进展, 2017, 17(6): 1127-30.] [Google Scholar]
- 9.李腾飞. HIF-1α和PTEN在骨肉瘤中的表达及其临床意义[D]. 衡阳: 南华大学, 2015.
- 10.Yang X, Zhong M, Chen J, et al. HIF-1α repression of PTEN transcription mediates protective effects of BMSCs on neurons during hypoxia. Neuroscience. 2018;392:57–65. doi: 10.1016/j.neuroscience.2018.09.024. [Yang X, Zhong M, Chen J, et al. HIF-1α repression of PTEN transcription mediates protective effects of BMSCs on neurons during hypoxia[J]. Neuroscience, 2018, 392: 57-65.] [DOI] [PubMed] [Google Scholar]
- 11.Weiyu Wang, Tang Jinghua, Zhong Min, et al. HIF-1 α may play a role in late pregnancy hypoxia-induced autism-like behaviors in offspring rats. Behav Brain Res. 2021;411:113373. doi: 10.1016/j.bbr.2021.113373. [Weiyu Wang, Tang Jinghua, Zhong Min, et al. HIF-1 α may play a role in late pregnancy hypoxia-induced autism-like behaviors in offspring rats[J]. Behav Brain Res, 2021, 411: 113373.] [DOI] [PubMed] [Google Scholar]
- 12.Oldham RA, Berinstein EM, Medin JA. Lentiviral vectors in cancer immunotherapy. Immunotherapy. 2015;7(3):271–84. doi: 10.2217/imt.14.108. [Oldham RA, Berinstein EM, Medin JA. Lentiviral vectors in cancer immunotherapy[J]. Immunotherapy, 2015, 7(3): 271-84.] [DOI] [PubMed] [Google Scholar]
- 13.Stewart SA, Dykxhoorn DM, Palliser D, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA. 2003;9(4):493–501. doi: 10.1261/rna.2192803. [Stewart SA, Dykxhoorn DM, Palliser D, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells[J]. RNA, 2003, 9 (4): 493-501.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Shay JE, Celeste Simon M. Hypoxia-inducible factors: crosstalk between inflammation and metabolism. Semin Cell Dev Biol. 2012;23(4):389–94. doi: 10.1016/j.semcdb.2012.04.004. [Shay JE, Celeste Simon M. Hypoxia-inducible factors: crosstalk between inflammation and metabolism[J]. Semin Cell Dev Biol, 2012, 23(4): 389-94.] [DOI] [PubMed] [Google Scholar]
- 15.Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33(4):207–14. doi: 10.1016/j.tips.2012.01.005. [Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy[J]. Trends Pharmacol Sci, 2012, 33(4): 207-14.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Schaible EV, Windschügl J, Bobkiewicz W, et al. 2-Methoxyestradiol confers neuroprotection and inhibits a maladaptive HIF-1α response after traumatic brain injury in mice. J Neurochem. 2014;129(6):940–54. doi: 10.1111/jnc.12708. [Schaible EV, Windschügl J, Bobkiewicz W, et al. 2-Methoxyestradiol confers neuroprotection and inhibits a maladaptive HIF-1α response after traumatic brain injury in mice[J]. J Neurochem, 2014, 129(6): 940-54.] [DOI] [PubMed] [Google Scholar]
- 17.Singh N, Sharma G, Mishra V. Hypoxia inducible factor-1: its potential role in cerebral ischemia. Cell Mol Neurobiol. 2012;32(4):491–507. doi: 10.1007/s10571-012-9803-9. [Singh N, Sharma G, Mishra V. Hypoxia inducible factor-1: its potential role in cerebral ischemia[J]. Cell Mol Neurobiol, 2012, 32 (4): 491-507.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Merelli A, Rodríguez JCG, Folch J, et al. Understanding the role of hypoxia inducible factor during neurodegeneration for new therapeutics opportunities. Curr Neuropharmacol. 2018;16(10):1484–98. doi: 10.2174/1570159X16666180110130253. [Merelli A, Rodríguez JCG, Folch J, et al. Understanding the role of hypoxia inducible factor during neurodegeneration for new therapeutics opportunities[J]. Curr Neuropharmacol, 2018, 16(10): 1484-98.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.李 昭, 王 学彬. 缺氧诱导因子-1α在风湿性疾病中的研究进展. 中华风湿病学杂志. 2018;22(1):54–7. doi: 10.3760/cma.j.issn.1007-7480.2018.01.018. [李昭, 王学彬. 缺氧诱导因子-1α在风湿性疾病中的研究进展[J]. 中华风湿病学杂志, 2018, 22(1): 54-7.] [DOI] [Google Scholar]
- 20.Berra E, Roux D, Richard DE, et al. Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Rep. 2001;2(7):615–20. doi: 10.1093/embo-reports/kve130. [Berra E, Roux D, Richard DE, et al. Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm[J]. EMBO Rep, 2001, 2(7): 615-20.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Wu D, Potluri N, Lu J, et al. Structural integration in hypoxia-inducible factors. Nature. 2015;524(7565):303–8. doi: 10.1038/nature14883. [Wu D, Potluri N, Lu J, et al. Structural integration in hypoxia-inducible factors[J]. Nature, 2015, 524(7565): 303-8.] [DOI] [PubMed] [Google Scholar]
- 22.Dai Y, Li W, Zhong M, et al. The paracrine effect of cobalt chloride on BMSCs during cognitive function rescue in the HIBD rat. Behav Brain Res. 2017;332:99–109. doi: 10.1016/j.bbr.2017.05.055. [Dai Y, Li W, Zhong M, et al. The paracrine effect of cobalt chloride on BMSCs during cognitive function rescue in the HIBD rat[J]. Behav Brain Res, 2017, 332: 99-109.] [DOI] [PubMed] [Google Scholar]
- 23.Xia T, Cheng H, Zhu Y. Knockdown of hypoxia-inducible factor-1 alpha reduces proliferation, induces apoptosis and attenuates the aggressive phenotype of retinoblastoma WERI-Rb-1 cells under hypoxic conditions. http://smartsearch.nstl.gov.cn/paper_detail.html?id=f69e184b202250c64f5d44c221dff944. Ann Clin Lab Sci. 2014;44(2):134–44. [Xia T, Cheng H, Zhu Y. Knockdown of hypoxia-inducible factor-1 alpha reduces proliferation, induces apoptosis and attenuates the aggressive phenotype of retinoblastoma WERI-Rb-1 cells under hypoxic conditions[J]. Ann Clin Lab Sci, 2014, 44(2): 134-44.] [PubMed] [Google Scholar]
- 24.黄 丽艳, 王 娜, 汤 黎明, et al. PTEN基因表达对EC9706细胞增殖、侵袭、凋亡能力的影响. 郑州大学学报: 医学版. 2013;48(1):16–20. doi: 10.3969/j.issn.1671-6825.2013.01.004. [黄丽艳, 王娜, 汤黎明, 等. PTEN基因表达对EC9706细胞增殖、侵袭、凋亡能力的影响[J]. 郑州大学学报: 医学版, 2013, 48(1): 16-20.] [DOI] [Google Scholar]
- 25.Cully M, You H, Levine AJ, et al. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 2006;6(3):184–92. doi: 10.1038/nrc1819. [Cully M, You H, Levine AJ, et al. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis[J]. Nat Rev Cancer, 2006, 6(3): 184-92.] [DOI] [PubMed] [Google Scholar]
- 26.Ciuffreda L, Falcone I, Incani UC, et al. PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting. Adv Biol Regul. 2014;56:66–80. doi: 10.1016/j.jbior.2014.07.002. [Ciuffreda L, Falcone I, Incani UC, et al. PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting[J]. Adv Biol Regul, 2014, 56: 66-80.] [DOI] [PubMed] [Google Scholar]
- 27.Laurent PA, Severin S, Gratacap MP, et al. Class I PI 3-kinases signaling in platelet activation and thrombosis: PDK1/Akt/GSK3 axis and impact of PTEN and SHIP1. Adv Biol Regul. 2014;54:162–74. doi: 10.1016/j.jbior.2013.09.006. [Laurent PA, Severin S, Gratacap MP, et al. Class I PI 3-kinases signaling in platelet activation and thrombosis: PDK1/Akt/GSK3 axis and impact of PTEN and SHIP1[J]. Adv Biol Regul, 2014, 54: 162-74.] [DOI] [PubMed] [Google Scholar]
- 28.Myers AP. New strategies in endometrial cancer: targeting the PI3K/ mTOR pathway: the devil is in the details. Clin Cancer Res. 2013;19(19):5264–74. doi: 10.1158/1078-0432.CCR-13-0615. [Myers AP. New strategies in endometrial cancer: targeting the PI3K/ mTOR pathway: the devil is in the details[J]. Clin Cancer Res, 2013, 19(19): 5264-74.] [DOI] [PubMed] [Google Scholar]
- 29.Shen W, Li HL, Liu L, et al. Expression levels of PTEN, HIF-1α, and VEGF as prognostic factors in ovarian cancer. http://www.europeanreview.org/wp/wp-content/uploads/2596-2603-Expression-levels-of-PTEN-HIF-1α-and-VEGF-as-prognostic-factors-in-ovarian-cancer.pdf. Eur Rev Med Pharmacol Sci. 2017;21(11):2596–603. [Shen W, Li HL, Liu L, et al. Expression levels of PTEN, HIF-1α, and VEGF as prognostic factors in ovarian cancer[J]. Eur Rev Med Pharmacol Sci, 2017, 21(11): 2596-603.] [PubMed] [Google Scholar]
- 30.Yang DJ, Wang XL, Ismail A, et al. PTEN regulates AMPA receptor-mediated cell viability in iPS-derived motor neurons. Cell Death Dis. 2014;5:e1096. doi: 10.1038/cddis.2014.55. [Yang DJ, Wang XL, Ismail A, et al. PTEN regulates AMPA receptor-mediated cell viability in iPS-derived motor neurons[J]. Cell Death Dis, 2014, 5: e1096.] [DOI] [PMC free article] [PubMed] [Google Scholar]