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Abstract

Calcium is one of the most important second messengers in cells. The uptake and release of 

calcium ions are conducted by channels and transporters. Inside a eukaryotic cell, calcium is 

stored in intracellular organelles including the endoplasmic reticulum (ER), mitochondrion, and 

lysosome. Lysosomes are acid membrane-bounded organelles serving as the crucial degradation 

and recycling center of the cell. Lysosomes involve in multiple important signaling events, 

including nutrient sensing, lipid metabolism, and trafficking. Hitherto, two lysosomal cation 

channel families have been suggested to function as calcium release channels, namely the Two-

pore Channel (TPC) family, and the Transient Receptor Potential Channel Mucolipin (TRPML) 

family. Additionally, a few plasma membrane calcium channels have also been found in the 

lysosomal membrane under certain circumstances. In this review, we will discuss the structural 

mechanism of the cation channels that may be important for lysosomal calcium release, primarily 

focusing on the TPCs and TRPMLs.

1. Introduction

Ca2+ is an important second messenger in cells that regulates many central cellular activities, 

including cell mobility, enzyme activity, ion channel regulation, and gene expression1-4. 

The cytosolic Ca2+ concentration is around 100 nM under resting conditions, which is 

thousands of fold lower than that of the extracellular environment1. The intracellular 

concentration of Ca2+ is tightly regulated by various mechanisms, including its storage 

inside and release from intracellular organelles such as the endoplasmic reticulum (ER), 

mitochondrion, and lysosome5. Nicotinic acid adenine dinucleotide phosphate (NAADP), 

inositol 1,4,5-trisphosphate (IP3), and cyclic adenosine diphosphate ribose (cADPR) are 
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the three major intracellular Ca2+ mobilizing messengers2. Among them, NAADP is an 

endogenous metabolite of β-NADP and is regarded as the most potent Ca2+-releasing 

second messenger known to date6,7. While IP3 and cADPR trigger the Ca2+ release from 

ER, NAADP specifically induces Ca2+ release from lysosomes. In animals, lysosomes are 

acidic organelles containing over 60 different types of hydrolases serving as the center for 

recycling and degradation of biological materials such as proteins and lipids. Furthermore, 

lysosomes participate in multiple key cellular activities including autophagy, endocytosis, 

exocytosis, nutrient sensing8-12. Dysfunction of lysosomes could cause numerous diseases, 

such as type IV mucolipidosis (ML-IV), Parkinson's, Alzheimer's, and Huntington's 

diseases12-14. In fungal and plant cells, vacuoles are the counterparts of lysosomes and 

serve as the main Ca2+ stores15.

Ca2+ homeostasis plays an important role in maintaining the normal function of lysosomes. 

The luminal Ca2+ concentration of a lysosome is approximately 0.5 mM, about five 

thousand-fold higher than that in the cytosol16,17. The lysosomal Ca2+ uptake and release are 

mediated by multiple lysosomal membrane-localized channels and transporters. Two-pore 

channels (TPCs) and transient receptor potential mucolipin channels (TRPMLs) are the 

two major lysosome-specific cation channel families that are suggested to be important for 

lysosomal Ca2+ release18,19. In addition, multiple plasma membrane channels have also 

been observed in lysosomal membranes and may conduct Ca2+ under certain conditions3. 

These include the purinergic receptor X4 (P2X4)20,21, the transient receptor potential cation 

channel subfamily M member 2 (TRPM2)22, the transient receptor potential ankyrin 1 

(TRPA1)23, and the P/Q-type voltage-gated Ca2+ channel (Cav2.1)24. In this review, we will 

primarily focus on the structures and functions of TPCs and TRPMLs, including the plant 

TPC1 from Arabidopsis thaliana (AtTPC1)25,26, mammalian TPCs from Mus musculus and 

Homo sapiens (MmTPC1 and HsTPC2)27,28, and mammalian TRPML129,30.

2. Two-pore channels (TPCs)

TPCs belong to the voltage-gated ion channel superfamily31 and are ubiquitously expressed 

in organelles of animals and plants32,33. The plant TPC channel (TPC1) is localized to the 

vacuolar membrane33,34. The Mammalian TPC family consists of three isoforms, TPC1, 

TPC2, and TPC3. TPC1 and 2 are localized to the endolysosomal membrane. They are 

widely expressed and have been extensively studied18,35-42. TPC3 is only present in some 

mammals and is not expressed in humans. TPC3 has been localized to the lysosomal 

membrane in chicken and rabbits but the plasma membrane in zebrafish and its functions 

are not well defined18,39,43. TPCs function as a homodimer with each subunit containing 

12 transmembrane (TM) segments that can be divided into two homologous copies of 

the Shaker-like 6-TM domain. Thus, TPCs are believed to be evolutionary intermediates 

between tetrameric voltage-gated K+ channels and the four-domain single subunit voltage-

gated Na+/Ca2+ channels44. Plant TPC1 is responsible for generating the slow vacuolar 

(SV) current observed long before its molecular identification, therefore, plant TPC1 is also 

called SV channel33,34,45. Plant TPC1 is involved in various cellular processes, such as 

germination and stomatal opening46, jasmonate biosynthesis47,48, and long-distance Ca2+ 

wave propagation induced by high salt concentrations49. Mammalian TPC1 and TPC2 play 

critical roles in regulating the physiological functions of lysosomes12,50,51. The functions 
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of mammalian TPCs are implicated in various physiological processes including nutrient 

sensing38, autophagy52,53, lipid metabolism54, pigmentation55-57, blood vessel formation58, 

and acrosome reaction in sperm59. A recent study also indicated that TPCs play an important 

role in controlling Ebola virus trafficking in host cell60. Surprisingly, no TPC mutation has 

yet been identified to be directly associated with severe human disease12.

3. Structure and function of the plant TPC1 from Arabidopsis thaliana

TPC1 from Arabidopsis thaliana (AtTPC1) has been used as the model system for plant TPC 

and its structures in the closed state were first determined by protein crystallography25,26. 

AtTPC1 is a non-selective cation channel, permeable to various monovalent and divalent 

cations with a slight preference for Ca2+ 61. The channel is voltage-gated and its activation 

also requires cytosolic Ca2+. The luminal Ca2+, on the other hand, can inhibit the channel by 

modulating its voltage gating62,63. Each AtTPC1 subunit contains two 6-TM domains (6-TM 

I and 6-TM II) that are linked by a cytosolic EF-hand domain (Fig. 1A). Two subunits 

assemble into a rectangle-shaped functional channel equivalent to a tetrameric voltage-gated 

channel (Fig. 1B). The S1-S4 segment of each 6-TM domain forms the voltage-sensing 

domain (VSD) at the peripheral of the channel whereas the S5-S6 segment forms the 

pore domain at the center with S6 lining the ion conduction pathway. Like most classical 

voltage-gated tetrameric cation channels, the TM region of AtTPC1 is domain swapped with 

the S1-S4 VSD of one 6-TM interacting with the S5-S6 pore domain of the other 6-TM. The 

cytosolic EF-hand domain contains two tandem EF-hand motifs and is positioned below the 

VSD1 from 6-TM I 25,26.

4. Ion conduction pore

Each pore domain (PD 1 and PD 2) contains the outer (S5) and inner (S6) helices and the 

two pore helices (P1, P2) between them, which is distinct from K+ channels but similar 

to Na+ and Ca2+ channels64-66. In the closed pore of AtTPC1, the four pore-lining S6s 

(two IS6s and two IIS6s) form a bundle crossing at the cytosolic side with multiple narrow 

constriction points, preventing the passage of hydrated cations (Fig. 1C). Those constriction-

forming residues include L301s and Y305s from IS6 with the narrowest diagonal distance 

(atom-to-atom) of about 5.3 Å, and V668s, L672s, and F676s from IIS6 with the narrowest 

diagonal distance of about 4.2 Å. Different from the K+ channel whose filter forms a long 

narrow ion pathway with four well-defined ion binding sites for dehydrated K+, AtTPC1 

has a much shorter and wider selectivity filter formed by residues 263TTS265 in filter 1 and 

629MGN631 in filter 2, allowing ions to cross the filter in a hydrated or partially hydrated 

state25,26.

5. Voltage-sensing domain

The two VSDs (VSD1 and VSD2) in each AtTPC1 subunit adopt different structures. A few 

key features important for voltage-dependent gating in canonical voltage-gated channels 

are present in VSD2 but absent in VSD1 of AtTPC1. These include the presence of 

multiple gating charge arginines in S4 at every third position separated by two hydrophobic 

residues between them (537RMLRLIR543 in the VSD2 of AtTPC1)25,26,67, the formation 
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of a 310-helix in part of S465,68,69, and the charge transfer center formed of conserved 

acidic and aromatic residues in S2 and a conserved acidic residue in S3 (Y475 and E478 

in S2 and D500 in S3 of AtTPC1) (Fig. 1D) 60,70. Therefore, only VSD2 contributes to 

the voltage-dependent gating of AtTPC126,28. Because luminal Ca2+ or Ba2+ can inhibit the 

channel activity by stabilizing the voltage sensor in the resting state and Ba2+ was present in 

the crystallization conditions, the VSD2 in the AtTPC1 structure was captured in a resting 

state, providing crucial insight into the voltage-gating mechanism. In an activated VSD as 

observed in most structures of voltage-gated channels at the time, the S4 helix tends to be 

positioned with the side chain of its last gating charge arginine housed in the charge transfer 

center. In the resting VSD2 of AtTPC1, on contrary, it is the first gating charge arginine 

(R537) positioned in the gating charge transfer center and this resting state S4 is stabilized 

directly by a bound luminal divalent ion as described below25,26 (Fig. 1D). The structural 

comparison between the activated and resting VSDs suggests that the S4 helix undergoes up 

and down translational movement in voltage gating and this movement is likely coupled to 

the pore-lining S6 helix through the linker helix between S4 and S5 (S4-S5 linker)25,28.

6. Ca2+ activation and inhibition

Cytosolic Ca2+ potentiates voltage activation of AtTPC1 by binding to the EF-hand domain 

which contains two EF-hand motifs (EF-1 and 2). In the AtTPC1 structure, the EF-1 motif 

adopts a canonical Ca2+-bound EF-hand structure but EF-2 is in a Ca2+-free, apo state25 

(Fig. 1E). Interestingly, only the Ca2+-binding at EF-2 plays the determinant role in Ca2+ 

activation whereas Ca2+-binding at EF-1 is dispensable25,71. Thus, the structure of the 

EF-hand domain likely represents a deactivated state, despite the presence of Ca2+ in the 

EF-1 motif. Another interesting feature of the EF-hand domain is that its E1 helix comes 

from the C-terminal part of the exceptionally long S6 helix (IS6) of 6-TM I, allowing the 

Ca2+-induced conformational change in the EF-hand domain to be directly coupled to the 

pore-lining IS6 upon Ca2+ activation.

Luminal Ca2+ inhibits AtTPC1 by stabilizing the VSD2 in the resting state, thereby shifting 

the voltage dependence towards positive membrane potentials. Chelated by D454 from IIS1, 

E528 from IIS4, and D240 from IS5 of the neighboring subunit, the luminal Ca2+ tethers the 

mobile voltage sensing IIS4 to the static IIS1 and the pore-forming IS5 of the neighboring 

subunit, and thereby hinders IIS4 movement in response to voltage change25 (Fig. 1F). 

Consistent with structural observation, one of the key Ca2+ coordinating residues, D454, 

was previously identified to be important for luminal Ca2+ binding from a gain-of-function 

mutant fou247,48,63.

7. Recent update on AtTPC1 structures

Cryo-EM structures of AtTPC1 in a closed conformation with deactivated EF-hand domain 

and resting VSD2 and in a partially open conformation with Ca2+-bound EF-hand domain 

and activated VSD2 were determined recently, revealing the structural basis of voltage 

gating and cytosolic Ca2+ activation of AtTPC172 (Fig. 1G-I). In the Ca2+-activated EF-hand 

domain, its conformational change upon Ca2+ binding is directly coupled to the pair of 

pore-lining IS6 helices, resulting in a wider distance between IS6s at the bundle crossing. 
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In addition to EF-1 and EF-2 sites, a third Ca2+ site important for the Ca2+ activation of the 

channel was also identified in the structure of the Ca2+-bound EF-hand domain. Ca2+ at this 

site is chelated by the side chains of D39 and D43 and several backbone carbonyls at the 

C-terminal end of the H1 helix (Fig. 1H).

In the activated VSD2 structure, it is the third gating charge arginine (R543) positioned 

in the gating charge transfer center, confirming the previous suggestion that the IIS4 

helix undergoes simple upward translational movement upon voltage activation (Fig. 1I). 

Intriguingly, in addition to the local IIS4 translation, the entire VSD2 also undergoes a 

lateral rotation movement around the central pore upon voltage activation. This lateral 

rotation movement of VSD2 also induces a global rotation of the EF-hand domain which in 

turn changes the accessibility of the two Ca2+ activation sites (EF-2 and the third newly 

identified Ca2+ site). In other words, the voltage activation of VSD2 appears to be a 

prerequisite for the Ca2+ activation at the EF-hand domain.

8. Structures and functions of Mammalian TPCs

Animal TPCs (TPC1 and TPC2) were initially suggested to mediate NAADP-dependent 

Ca2+ release from lysosomes18,35,36. However, several recent electrophysiological 

recordings demonstrate that animal TPCs are Na+-selective channels that can be 

activated by lysosome-specific phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) rather than 

NAADP37,38. Debate still lingers on whether TPC1 and TPC2 are directly responsible 

for NAADP-induced lysosomal Ca2+ release. Several recent studies have identified small 

soluble NAADP-binding proteins that may directly mediate the NAADP-evoked, TPC-

dependent Ca2+ signaling73-75. The activation of TPC1 but not TPC2 is voltage-dependent. 

TPC3 is also voltage-gated and its voltage gating can be modulated by phosphoinositides 

such as PI(3,4)P2 and PI(3,5)P2, but not PI(4,5)P2
76. Different from TPC1, TPC3 is only 

activated at extreme membrane depolarization and is probably responsible for generating 

or maintaining ultra-long action potentials39,77,78. The structure of TPC3 from zebrafish 

has also been determined recently78. As TPC3 is not present in humans and has been less 

studied, it will not be further discussed in this review. The following discussion about 

mammalian TPCs will be focused on the structures of mouse TPC1 (MmTPC1) and human 

TPC2 (HsTPC2).

Despite low sequence identity between them, mammalian TPCs share a similar overall 

structure to the plant TPC125-28 (Fig. 2A&B). Similar to AtTPC1, the two homologous 

6-TM domains of mammalian TPCs are also connected by an EF-hand domain (Fig. 2A-B). 

However, the EF-hand domain lacks the essential Ca2+ chelating acidic residues and the 

mammalian TPC channels are not Ca2+ activated. One unique feature of mammalian TPC1 

is that its C-terminal region adopts a horseshoe-shaped structure with four α-helices and two 

β-strands and wraps tightly around the EF-hand domain (Fig. 2C). It is unclear whether this 

unique structure feature at the C-terminus plays any functional role28.
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9. Ion conduction pore

Similar to plant TPC1, each pore domain of the mammalian TPCs consists of S5, S6, and 

two pore helices. In a functional channel dimer, the ion conduction pore consists of two pairs 

of the pore domains, the IS5-IS6 pair from 6-TM I and the IIS5-IIS6 pair from 6-TM II. 

The structures of mammalian TPCs were determined in both open and closed conformations, 

allowing us to visualize the pore opening mechanics27,28 (Fig. 2D). In the closed structure, 

the four pore-lining S6 helices form a bundle-crossing at the cytosolic side with narrow 

hydrophobic constrictions (L317 and F321 in IS6 and V684 and L688 in IIS6) that form the 

intracellular gate and prevent the passage of hydrated cations. In the open structure, the S6 

helices undergo outward movement along with rotational motion, resulting in a much wider 

opening at the intracellular gate (Fig. 2E). This pore opening is driven by PI(3,5)P2-binding 

at 6-TM I and the ensued conformational change at the pair of IS6 helices, as will be 

discussed later27,28.

Mammalian TPCs have virtually identical sequences and similar structures at the selectivity 

filter27,28. One key difference between mammalian TPCs and plant TPC1 that differentiates 

their selectivity property lies in the filter (filter 2) from the 2nd 6-TM domain. As in the 

example of MmTPC1, its filter 2 has a sequence of 647VNN649, whereas the equivalent filter 

2 in AtTPC1 is 629MGN631. The side chain of N648 generates a much narrower constriction 

at the center of the MmTPC1 filter28 (Fig. 2D). The equivalent residue in plant TPC1 is 

a glycine (G630 in AtTPC1), yielding a wider ion pathway in the filter (Fig. 1C)28. The 

formation of the narrow point along the filter pathway by a conserved asparagine renders 

the MmTPC1, as well as other mammalian TPCs, highly Na+ selective, and its mutation, 

can result in a complete loss of Na+ selectivity27,28. Conversely, replacing G630 with Asn in 

AtTPC1 can convert the channel to be more Na+ selective61.

10. Voltage-sensing domain

Like AtTPC1, MmTPC1 is voltage-gated with its VSD2 contributing to the voltage 

activation of the channel28. Interestingly, the VSD2 of MmTPC1 adopts an activated 

conformation in both the apo closed and PI(3,5)P2-bound open structures (Fig. 2F), 

suggesting that the voltage sensor of MmTPC1 can be activated without opening the channel 

and PI(3,5)P2 binding is the driving force for channel activation28. Although not directly 

coupled to the pore opening, VSD2 activation appears to be required before PI(3,5)P2-driven 

channel opening can occur28. The VSD2 of MmTPC1 contains only two gating charge 

arginines with a sequence of 540RPLQLLR546 at its gating charge region where the middle 

Arg present in AtTPC1 becomes a Gln in MmTPC125,28 (Fig. 1D and Fig. 2F). In the 

structure of the activated MmTPC1 VSD2, it is the last Arg (R546) positioned in the gating 

charge transfer center. Interestingly, replacing the first arginine (R540) with Gln or Ile yields 

a mutant channel analogous to TPC2 which is no longer voltage-gated and can be activated 

by PI(3,5)P2 alone39. This R540 mutation likely stabilizes the VSD2 in an activated state. 

Replacing the last Arg (R546) with Gln, on the other hand, yields a channel that can barely 

be activated by voltage even with the presence of high concentration PI(3,5)P2, as if the 

voltage sensor of the mutant is trapped in the resting state28. Structural comparison between 
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the activated VSD2 of MmTPC1 and the resting VSD2 of AtTPC1 reveals about 2-helical 

turn upward slide of the IIS4 upon voltage activation in TPC125,28.

Interestingly, the structure of VSD2 from HsTPC2 resembles that of MmTPC1 but the 

channel activation is not voltage dependent27,28. The gating charge region of HsTPC2 VSD2 

has a sequence of 551IVFRFLR557 with its first arginine placed in the middle position 

instead of the first position observed in MmTPC1 (Fig. 1D and Fig. 2G). The S4 of HsTPC2 

VSD2 is positioned with its middle arginine (R554) occupying the gating charge transfer 

center27. In most mammalian TPC2, there is an Ile instead of Arg at the beginning of the 

VSD2 gating charge region. When the first Ile (I551) is replaced with Arg in HsTPC2, 

the mutant channel becomes voltage-gated and requires both PI(3,5)P2 and voltage for its 

activation27. Thus, the presence or absence of the first Arg at the gating charge region 

appears to determine the voltage dependence of mammalian TPC channels.

11. PI(3,5)P2 binding

In mammalian TPCs, PI(3,5)P2 binds within the first 6-TM domain at the junction formed 

by IS3, IS4, and the IS4-S5 linker, and its inositol 1,3,5-trisphosphate (Ins(1,3,5)P3) 

head group involves in most of the ligand-protein interactions27,28. As in the example 

of PI(3,5)P2-bound MmTPC1 structure, the protein residues that participate in ligand 

interactions are predominantly basic (Fig. 2H). Some basic residues, including R220, R221, 

and R224 in the IS4-S5 linker and K331 on IS6, directly interact with the phosphate 

group on the C3 position of the lipid head group and play critical roles in PI(3,5)P2 

binding and channel activation28. The PI(3,5)P2 binding site in HsTPC2 is similar to that in 

MmTPC127. One notable difference between them is that most of the basic residues involved 

in ligand interactions, particularly those in the IS4-S5 linker, are predominantly lysines 

(K203, K204, and K207) in HsTPC2 rather than arginines (Fig. 2I). Mammalian TPCs have 

high ligand specificity and PI(4,5)P2 cannot activate the channel. Based on the PI(3,5)P2-

bound MmTPC1 structure, this can be explained by missing the C3-phosphate in PI(4,5)P2 

lipid that is central for ligand-protein interactions, and the proximity of protein residues 

(Asn85 and Lys87 in MmTPC1) to the C4 hydroxyl group of the ligand, which occludes the 

space for the C4-phosphate and thereby sterically prevents PI(4,5)P2 binding 27,28. PI(3,5)P2 

binding activates the MmTPC1 channel by pulling IS6 towards the ligand-binding pocket 

through the interactions between K331 in IS6 and the phosphate groups of the ligand. 

This movement propagates to the other part of the IS6 helix, resulting in the outward 

dilation and rotation movements of those constriction-forming residues. To accommodate 

the conformational change at IS6 and open the pore, the other constriction-forming residues 

on IIS6 must undergo similar dilation and rotation movements28. Based on the structural 

comparison between the open and closed MmTPC1, it was proposed that this concurrent 

movement of IIS6 in response to the PI(3,5)P2-induced conformational change at IS6 can 

only occur when IIS4 of VSD2 is in the activated, up state28.

12. Transient Receptor Potential Mucolipin (TRPML)

TRPMLs are Ca2+-permeable non-selective cation channels that belong to the large family 

of TRP ion channels79. TRPML family consists of three isoforms, TRPML1, TRPML2, 
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and TRPML3, which share high homology in amino acid sequence but are expressed 

in different tissues80,81. TRPML1 is ubiquitously expressed in mammalian cells and is 

primarily localized to the lysosomal membrane 82. In contrast, the tissue expression of 

TRPML2 and TRPML3 is more restricted. TRPML2 is expressed in the thymus, spleen, 

and kidney 83,84, and TRPML3 is expressed in the kidney, lung, and organs of the 

endocrine system85. TRPMLs involve in multiple important cellular activities including 

lysosome trafficking, lipid accumulation, signaling transduction, and autophagy8-11,86. 

Mutations in TRPML1 can directly cause the lysosomal storage disorder mucolipidosis 

type IV (MLIV), a neurodegenerative disease characterized by abnormal neurodevelopment, 

retinal degeneration, and iron deficiency anaemia13,14,87,88. Gain-of-function mutations in 

mouse TRPML3 attribute to the varitint-waddler (Va) phenotype with symptoms including 

deafness, pigmentation defects, and circling behavior19,89.

13. The overall structure of TRPML

Multiple TRPML structures have been determined in various states29,30,90-95. TRPMLs 

are 6-TM tetrameric cation channels and are comprised of two structural components: the 

membrane-embedded S1-S6 transmembrane domain (TMD) and the canopy-like luminal 

linker domain atop the TMD29,30,90 (Fig. 3A&B). Like most canonical 6-TM tetrameric 

channels, the TMD of TRPML is divided into two parts, the S1-S4 VSD and the S5-S6 pore 

domain, connected by the S4-S5 linker helix30. The VSD resembles other TRP channels by 

having four straight helices tightly packed against each other but differs from the canonical 

VSD of voltage-gated channels by lacking the canonical voltage sensing arginines. The 

ion conduction pore is formed by S5, S6, and two pore helices (P1 and P2). Different 

from TRPV1 whose filter can undergo a remarkable conformational change upon ligand 

activation77,78, the selectivity filter of TRPML is tightly packed with P1 and P2 helices and 

is unlikely to undergo major conformation change during gating29,30,90. The luminal linker 

domain contains a sequence of about 200 amino acids between S1 and S2 (Fig. 3A&B). 

Structurally, each luminal linker domain is comprised of two long helices and seven strands; 

four linker domains form a square-shaped canopy with a central hole above the channel 

pore in a channel tetramer, which is a characteristic feature of group II TRP channels 

including TRPML and TRPP79,96 (Fig. 3A-3C). In the polycystic kidney disease channel 

PKD2, a member of the TRPP family, this linker domain is referred to as the polycystin 

or top domain96. TRPML possesses two unique cytosolic extensions: an N-terminal pre-S1 

cytosolic domain containing two short helixes (H1 and H2) enriched in basic residues and 

a helix–turn–helix (H3–turn–H4) between S2 and S3. Another distinct feature of TRPMLs 

is the lack of TRP domain, a short peptide sequence around 25 amino acids immediately 

after S6 that is commonly seen in other TRP family channels, including the TRPC, V, M 

subfamilies97,98.

14. The modulation of TRPMLs by natural and synthetic ligands

TRPMLs can be activated or inhibited by various ligands, including natural and synthetic 

molecules. Endogenously, TRPMLs can be activated by lysosome-specific PI(3,5)P2
99, but 

inhibited by PI(4,5)P2 enriched in plasma membrane 100. In addition, sphingomyelins 

have been shown to inhibit the activity of TRPML1, and such inhibition is reversed by 
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treating with sphingomyelinase9. Multiple synthetic agonists and antagonists have been 

identified through drug screenings and development9,101-104. ML-SA1 is the most well-

characterized agonist that can robustly activate TRPML by itself as well as synergistically 

with PI(3,5)P2
9,102. In addition to agonists, several antagonists with different chemical 

structures were identified, such as ML-SI1, 2, and 3. Some of these antagonists are capable 

of inhibiting both ML-SA1 and PI(3,5)P2-elicited TRPML currents103. Furthermore, two 

recent studies suggested that rapamycin and reactive oxygen species can both directly and 

specifically activate TRPML in an mTOR-independent manner105,106.

The structures of TRPML1 in complex with PI(3,5)P2 or PI(4,5)P2 reveal that both lipids 

bind to the same N-terminal poly-basic region formed by cytosol-extruding H1 and H2, 

which is distal from the pore region94 (Fig. 3D). As the structure of PI(3,5)P2-bound 

TRPML1 (in the absence of other agonists) remains in the closed conformation likely 

because of the low open probability of channel upon PI(3,5)P2 activation, it is unclear how 

PI(3,5)P2 induces the conformational changes that open the channel30,94. It was proposed 

that the binding of PI(3,5)P2 and the ensued interaction between its C3 phosphate and Y355 

in S3 promote the formation of a π-cation interaction between Y355 and R403 in S4, which 

in turn facilitates the pore opening94. However, as those PIP2-bound structures are of low 

resolution, the protein-ligand and protein-protein interactions at the lipid-binding site could 

not be accurately defined.

As a potent agonist, the ML-SA1-bound structure captured the TRPML1 channel in an open 

conformation29. ML-SA1 resides in a hydrophobic pocket formed by several aromatic and 

hydrophobic residues from P1, S5, S6, and S6 of the neighboring subunit (Fig. 3E). The 

binding of ML-SA1 causes the pore-forming S5 and S6 to shift slightly away from the pore 

center, resulting in the opening of the lower gate. To accommodate the ML-SA1 binding 

and its induced lower gate-opening S6 movement, the filter region including the two pore 

helices and the selectivity filter also moves slightly away from the center, resulting in a 

subtle enlargement of the filter pathway 29,94.

Recently, the antagonist ML-SI3-bound human TRPML1 structure was reported92 (Fig. 3F). 

The structure is in a closed conformation and is virtually identical to the apo structure. 

ML-SI3 binds at the same hydrophobic cavity as ML-SA1 does, explaining ML-SI3’s 

competitive inhibition of ML-SA1 activation of TRPML1. However, the two chemicals 

engage in a different set of protein-ligand interactions, rendering one (ML-SA1) to be 

agonist whereas the other (ML-SI3) to be antagonist.

15. The modulation of TRPMLs by pH and Ca2+

The TRPML activity is also regulated by pH and Ca2+ concentration in both lysosomal 

lumen and cytoplasm sides80,107-109. Increasing luminal Ca2+ concentration inhibits the 

channel conductance in a dose-dependent manner. The luminal Ca2+-inhibition is pH-

dependent as lowering the luminal pH can rescue the inhibition107. Several aspartate 

residues, including D111, D114, and D115 in both human and mouse TRPML1, are 

positioned in proximity to the central ion pathway of the luminal linker domain and have 

been shown to contribute to the pH-dependent luminal Ca2+-inhibition of TRPML195. With 
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an acidic luminal environment in the lysosome, the protonation of these acidic residues 

likely mitigates the Ca2+ inhibition of TRPML1 under physiological conditions. Contrary to 

the promotion of ion conduction by reducing Ca2+ inhibition in TRPML1, it has been shown 

that lower extracytosolic (luminal or extracellular) pH inhibits Na+ or Ca2+ conduction 

in TRPML3 and this pH-dependent regulation is mediated by a string of histidines in 

the luminal linker domain110. In addition, the linker domain has also been shown to be 

responsible for the inhibition of TRPML2 and TRPML3 by extracytosolic Na+ 111,112. It 

was suggested that in normal cells, the lysosomal Na+ concentration is high enough to 

keep TRPML3 inactive. However, the channel can become active when the lysosome is 

damaged or the lysosomal Na+ and H+ gradient break down 91,110,111. A study suggests 

that pathogen-induced pH neutralization of lysosome triggers Ca2+ release by activating 

TRPML3, which in turn facilitates lysosome exocytosis and expulsion of the phagocyted 

bacteria pathogens113.
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Fig. 1. Structures of AtTPC1.
(A) Topology diagram of one AtTPC1 subunit. [Note: The N-terminal helix that directly 

interacts with the EF-hand domain was initially labeled as S0 in AtTPC1 but as an H1 

helix in mammalian TPCs. To be consistent, it is labeled as H1 in this review.] (B) 
Cartoon representations of the AtTPC1 crystal structure (PDB code: 5E1J)23. Domains are 

individually colored in one subunit as shown in (A) and the other subunit is colored in grey. 

Ca2+ ions are drawn as green spheres. (C) Ion conduction pore consisting of IS5–IS6 (PD 

1 in cyan with front subunit removed for clarity) and IIS5–IIS6 (PD 2, magenta). Right 

inset: zoomed-in views of ion pathway at filter 1 and filter 2. Lower inset: zoomed-in views 

of the bundle crossing formed by IS6 and IIS6 pairs. Numbers are diagonal distances (in 

Å) at the narrowest constriction points. (D) The structure of AtTPC1 VSD2 in the resting 

state (upper panel with IIS1 removed for clarity) and the partial sequence alignment (lower 

panel) of IIS4 among AtTPC1, MmTPC1, and HsTPC2. The gating charge region is boxed. 
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IIS4 is stabilized in a resting state by the luminal Ca2+ (green sphere). (E) Zoomed-in view 

of the EF-hand domain with EF-1 in a Ca2+-bound state and EF-2 in an apo state. The 

two EF-hand motifs are shown in orange; the H1 helix and IS6 are shown in cyan. (F) 
Zoomed-in view of the luminal Ca2+ binding site with the Ca2+ ion shown as a green sphere. 

Key residues are colored in yellow. (G) The structure of a partially open AtTPC1 (PDB 

code: 7FHO)72 with Ca2+-bound EF-hand domain and activated VSD2. (H) Zoomed-in view 

of the Ca2+-activated EF-hand domain with three bound Ca2+ ions (green spheres). The F2 

helix breaks into two short helices in the Ca2+-bound EF-2 motif. (I) zoomed-in view of the 

activated VSD2 in AtTPC1 with IIS1 removed for clarity.
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Fig. 2. Structures of mammalian TPCs.
(A) Topology diagram of one MmTPC1 subunit. The C-terminal domain is present in 

mammalian TPC1 but not TPC2. (B) Side and top views of MmTPC1 dimer structure 

in PI(3,5)P2-bound open state. Domains in one subunit are individually colored as shown 

in (A) and the other subunit is colored in grey. PI(3,5)P2 is shown as yellow sticks. (C) 
Zoomed-in view of MmTPC1 cytosolic soluble region containing the EF-hand domain 

(green) and the C-terminal domain (salmon). (D) MmTPC1 ion conduction pore consisting 

of IS5–IS6 (PD 1 in red with front subunit removed for clarity) and IIS5–IIS6 (PD 2, blue). 

Right inset: zoomed-in views of MmTPC1 filter 2 with a partial sequence alignment of filter 

2 region among AtTPC1, MmTPC1 and HsTPC2. (E) Zoomed-in views of the closed and 

open cytosolic gates formed by IS6 and IIS6 pairs. Numbers are diagonal distances (in Å) 

at the narrow constriction points. (F) Structure of MmTPC1 VSD 2 with S1 helix removed 

for clarity. (G) Structure of HsTPC2 VSD 2. (H) Zoomed-in view of the PI(3,5)P2 binding 

site in MmTPC1. (I) Zoomed-in view of the PI(3,5)P2 binding site in HsTPC2. PI(3,5)P2 is 

shown in yellow, key residues are shown in white. (PDB codes for the structures used for 

making the figures are: 6C96 for the apo state MmTPC1; 6C9A for the PI(3,5)P2 -bound 

MmTPC1; 6NQ0 for the PI(3,5)P2 -bound HsTPC2)25,26
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Fig. 3. Structure of mammalian TRPML1.
(A) Topology diagram (left) and the structure (right) of a single HsTRPML1 subunit in 

the PI(3,5)P2/ML-SA1-bound open state (PDB code: 6E7Z)86. Domains are individually 

colored. (B) The structure of HsTRPML1 homotetramer in the PI(3,5)P2/ML-SA1-bound 

open state, one subunit is colored as that shown in (A) and the other three are in grey. (C) 

Top view of the luminal linker domain. The three aspartates important for pH-dependent 

luminal Ca2+-inhibition are shown as yellow sticks. (D) The PI(3,5)P2 binding site in 

HsTPC1. PI(3,5)P2 is shown as yellow and red sticks. (E) ML-SA1 (magenta) binding site 

in HsTPC1. (F) ML-SI3 (blue) binding site in HsTPC1 (PDB code: 7MGL) 88.
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