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Abstract

Molecular modeling and simulation are invaluable tools for nanoscience that predict mechanical, 

physicochemical, and thermodynamic properties of nanomaterials and provide molecular-level 

insight into underlying mechanisms. However, building nanomaterial-containing systems remains 

challenging due to the lack of reliable and integrated cyberinfrastructures. Here, we present 

Nanomaterial Modeler in CHARMM-GUI, a web-based cyberinfrastructure that provides 

an automated process to generate various nanomaterial models, associated topology, and 

configuration files to perform state-of-the-art molecular dynamics simulations using most 

simulation packages. The nanomaterial models are based on the interface force field (IFF), one of 

the most reliable FFs. The transferability of nanomaterial models among the simulation programs 

was assessed by single-point energy calculations, which yielded 0.01% relative absolute energy 
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differences for various surface models and equilibrium nanoparticle shapes. Three widely-used 

Lennard-Jones (LJ) cut-off methods are employed to evaluate the compatibility of nanomaterial 

models with respect to conventional biomolecular FFs: simple truncation at r = 12 Å (12 

cut-off), force-based switching over 10 to 12 Å (10–12 fsw), and LJ particle mesh Ewald 

with no cut-off (LJPME). The FF parameters with these LJ cut-off methods are extensively 

validated by reproducing structural, interfacial, and mechanical properties. We find that the 

computed density and surface energies are in good agreement with reported experimental 

results, although the simulation results increase in the following order: 10–12 fsw < 12 cut-

off < LJPME; nanomaterials in which LJ interactions are a major component show relatively 

higher deviations (up to 4% in density and 8% in surface energy differences) compared to 

the experiment. Nanomaterial Modeler’s capability is also demonstrated by generating complex 

systems of nanomaterial-biomolecule and nanomaterial-polymer interfaces with a combination of 

existing CHARMM-GUI modules. We hope that Nanomaterial Modeler can be used to carry out 

innovative nanomaterial modeling and simulation to acquire insight into the structure, dynamics, 

and underlying mechanisms of complex nanomaterial-containing systems.

Graphical Abstract

INTRODUCTION

Understanding the dynamical evolution of biological and materials systems at the atomic 

scale is essential for groundbreaking advances in health science, materials science, energy 

conversion, sustainability, and overall quality of life.1–5 However, progress is limited as 

current experimental techniques alone cannot provide complete information about structures 

and dynamical processes at the nanometer to micrometer scale. Classical molecular 

modeling and simulation using force fields (FFs) and complex configuration databases are 

playing an increasingly important role in explaining experimental data, elucidating design 

principles, and making transformative property predictions for unknown biomolecular and 

nanomaterial structures and dynamics, as well as their interfaces. These computational 

methods are suitable for harnessing big data and accelerating discovery from the quantum 

scale to the microscale.6–8
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State-of-the-art FFs for biomolecular systems (e.g., proteins, lipids, nucleic acids, and 

carbohydrates) have matured to the point where they can explain experiments and 

accelerate experimental discovery via testable hypotheses.9, 10 The same is true for the 

growing number of surface models for nanomaterials and nanomaterial-biological (nano-

bio) interfaces.11, 12 In particular, the surface model database and parameters for metals, 

clay minerals, silica, apatites, layered materials (e.g., MoS2 and graphite), cement minerals, 

and gas molecules in the INTERFACE force field11 (IFF) routinely achieve more accurate 

predictions of surface energies, binding energies, and molecular recognition than typical 

density functional theory (DFT) methods and is compatible with biomolecular FFs.13–15 

These recent developments present a unique opportunity for the life and material sciences 

to harness the predictive power of computer simulation methods to explore a broad range of 

nano-bio interfaces and complex electrolytes.

A recent round-robin study showed that distinct user groups working with different 

simulation FFs and programs yielded inconsistent results even for calculating simple 

thermodynamic properties such as density and potential energy.16 The lack of a reliable 

and unified cyberinfrastructure to build complex nano-bio interfaces poses major challenges 

to the molecular modeling and simulation community in terms of steep learning curves, 

risks of choosing unsuitable FF and faulty interface models, as well as mistakes in 

file conversion and input scripts that render simulations less useful or invalid. Several 

programs have been developed to help users to build nanomaterial model systems, 

including web applications, such as NanoModeler17 and PubVINAS,18 and stand-alone 

software packages such as Atomic Simulation Environment (ASE),19 pysimm,20 Molecular 
Simulation Design Framework (MoSDeF),21 and NanoMaterialCAD.22 NanoModeler 
supports 16 gold nanocluster models with ligand grafting function and PubVINAS provides 

11 material types with corresponding physicochemical properties and/or bioactivities. 

ASE, pysimm, and MoSDeF provide methods to prepare various nanomaterial systems 

and API to integrate different features of existing software packages using Python-

based scripting. NanoMaterialsCAD offers a graphical user interface (GUI) to build 

and manipulate a nanomaterial system. However, all aforementioned software requires 

significant preprocessing to prepare structures, topologies, and parameters of nanomaterials 

for simulation and/or is limited to use specific prebuilt nanostructures. Commercial packages 

also exist, such as Material Studio,23 Schrödinger,24 and Amsterdam Modeling Suite,25 

but, are not freely available to everyone. Furthermore, the models from these programs 

are not transferable to other molecular dynamics (MD) simulation packages. Therefore, 

building models of functional nano-bio materials such as nanoparticle therapeutics, imaging 

agents, biomineral structures, bioinspired composites, and biosensors has been challenging 

to accomplish. Moreover, the simulation input preparation for nanomaterials and nano-bio 

interfaces currently involves multiple operations by researchers. This process includes the 

choice of building tools or scripts and file conversion and reassignment of FF parameters 

depending on the chosen simulation platform. Unfortunately, no single, user-friendly 

cyberinfrastructure is available to accomplish these crucial tasks.

CHARMM-GUI (https://www.charmm-gui.org), a web-based GUI, provides a well-designed 

workflow to interactively construct various complex biomolecular systems and seamlessly 

handles complicated internal data structures and simulation input files for CHARMM,26 
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NAMD,27 GROMACS,28 AMBER,29 GENESIS,30 LAMMPS31, TINKER,32 Desmond,33 

and OpenMM34 with several biomolecular FFs.7 The simulation protocols are optimized6 

following the principles of the original FF development.35, 36 Therefore, CHARMM-GUI is 

widely utilized in studies on the role of biomolecular motions, conformational changes, and 

thermodynamic relationships in biological function.

This work presents Nanomaterials Modeler, an important extension of CHARMM-GUI 

to a broad range of nanomaterials based on the IFF, which can bridge the gap between 

biomolecular and material simulations through compatibility with multiple simulation 

platforms.8, 37 Nanomaterial Modeler enables researchers to build nanomaterials models 

with up to 5,000,000 atoms and addresses aforementioned needs by merging IFF and 

CHARMM-GUI in an easy-to-use and state-of-the-art platform. The following sections 

discuss the methods, workflow, available nanomaterials models, the user interface, supported 

simulation engines, validation of the models, and example applications. The paper ends with 

brief conclusions.

METHODS

1. Workflow of Nanomaterial Modeler

Currently, CHARMM-GUI Nanomaterial Modeler supports ten classes of nanomaterials, 

including fcc metals, clay minerals, calcium sulfates, cement minerals, calcium silicate 

hydrate, silica, phosphate minerals, transition metal dichalcogenides (TMDC), and 

carbonaceous materials (Table 1).

Figure 1A shows an overall nanomaterial system building process that has been generalized 

and automated in two subsequent steps. Each step is designed to incorporate a user’s 

specific options through a web interface and run CHARMM input files. Individual input 

and output files, including the generated structure and an archive of all created files, are 

available at each step. Video demonstrations on how to use Nanomaterial Modeler are 

available on the CHARMM-GUI website (http://www.charmm-gui.org/demo/nanomaterial). 

Nanomaterial Modeler adopts a GUI that allows researchers to quickly check and design 

nanomaterials (i.e., size and shape of nanomaterials, chemical modification of the surface, 

and periodicity along each axis).

Step 1 - Building bulk crystal(s)—In step 1, users can set a material type, shape, Miller 

index, size, and periodicity along X, Y, and Z directions. A unit cell structure of a selected 

nanomaterial (Figure 1B) is used to generate a user-specified nanomaterial system through 

unit cell duplication and translation (Figure 1C).

Step 2 - Treatment of unbalanced atoms and surface modification—For specific 

nanomaterials, bonds between the primary and neighboring cells (i.e., image bonds) are 

required to model an infinite surface or molecule along with the periodic images. To 

facilitate such image bonds, the “patch information” necessary to create such connections 

has been defined for the currently supported nanomaterials (Figure 1D). The patch 

information includes all bonds, angles, dihedrals, and partial charge and atomic type 

information that are created when the primary cell connects to the 26 image cells. After 
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setting periodicity, Nanomaterial Modeler performs necessary surface ionization, defect 

generation, and/or surface chemical modification (Figure 1E). At the end, users can obtain 

a nanomaterial system with the desired structure, topology, FF parameters, and simulation 

configuration files for further simulation. Furthermore, the generated structure can be used 

in CHARMM-GUI Multicomponent Assembler to model nano-bio systems as described 

below.

Nanomaterial Modeler provides validated all-atom simulation inputs for various MD 

programs, including CHARMM, GROMACS, NAMD, LAMMPS, AMBER, GENESIS, 

and OpenMM, enabling researchers to employ the package of their choice (see Supporting 

Information, Table S1, and S2). In the original IFF, electrostatic interactions are calculated 

using the particle mesh Ewald (PME) method and two Lennard-Jones (LJ) potentials (i.e., 

the 12-6 and 9-6 forms) are adapted. Nanomaterial Modeler supports a 12-6 LJ potential 

since the conventional biomolecular FFs such as AMBER,46 CHARMM,47–49 GROMOS,50 

and OPLS-AA51 have been developed with a 12-6 LJ potential:

VLJ r = 4ε σ/r 12 − σ/r 6

where r is the distance between two interacting particles, ε is the depth of the potential 

well, and σ represents the distance at which the particle-particle potential energy is zero. 

In practice, the VLJ interactions are negligible at large distances, and therefore an energy 

cut-off is introduced at a certain interparticle distance. A 12 Å cutoff was chosen for IFF 

due to the rapid loss of electron-electron correlation of London dispersion interactions 

with distance after few layers of nearest neighbors in contrast to long-range Coulomb 

interactions between permanently charged atoms.52, 53 Also, a 12 Å cut-off is generally 

accepted for various FFs. However, different cut-off methods are used in conventional 

biomolecular FFs for different FF forms. The most widely-used methods are: i) simple 

truncation at r = 12 Å (12 cut-off), ii) force-based switching over 10 to 12 Å (10–12 

fsw54), and iii) LJ particle mesh Ewald (LJPME). To compare the implementations of all 

supported MD programs and LJ methods, single point energy calculations of hydroxyapatite 

and α-quartz were performed (Table S3). The results show that all simulation programs 

are in excellent agreement with a maximum difference of 0.01% in the total energy, 

indicating that the nanomaterials IFF is correctly implemented within CHARMM-GUI. 

Note that the small observed differences are inevitable due to the usage of slightly different 

conversion factors within the programs and 10–12 fsw function implemented in GROMACS 

are slightly different with other software.55 In this work, the mechanical, physicochemical, 

and thermodynamic properties were analyzed using these LJ cut-off methods to assess 

the transferability of IFF for different simulation packages and ability to model complex 

nano-bio systems in combination with various biomolecular FFs.

2. Model building

The unit cell structures of all nanomaterials were obtained from X-ray diffraction data56–58 

and the interface force field (IFF) database8. Starting from the conventional unit cell, a series 

of lattice vector transformations are performed to create an ‘oriented’ unit cell (OUC) where 

the a and b lattice vectors are parallel to the plane with Miller indices (hkl).59 Note that the 
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c lattice vector is not necessarily perpendicular to the plane, although an orthogonal vector 

obtained within a reasonable cell size is used. For example, 18 fcc metals with 13 Miller 

indices have α = β = γ = 90°. All lattice parameters of OUC of supported nanomaterials 

are summarized in Table S4 and Table S5. Model building methods for larger models from 

multiple unit cells are described in Figure 1. All model building procedures are controlled 

by CHARMM scripts and individual input and output files, including the CHARMM scripts 

and an archive of all the created files (i.e., structure, topology, and configuration files), are 

available on the Nanomaterial Modeler (http://charmm-gui.org/input/nanomaterial). Details 

of complex nano-bio and nano-polymer system building are summarized in Supporting 

Information.

3. Computational details

All simulations used the interface force field (IFF) for nanomaterials, the CHARMM 

force field for proteins, peptides, and lipids, and the CHARMM generalized force field 

for polymer.9, 36, 60 The TIP3P water model was utilized for water-containing systems. 

To achieve better sampling and check convergence, three independent molecular dynamics 

(MD) simulations were performed for each system. Periodic boundary conditions (PBCs) 

are employed for all simulations, and the particle mesh Ewald (PME) method61 is used for 

long-range electrostatic interactions. A leap-frog algorithm was used to integrate Newton’s 

equation of motion. The simulation time step is set to 1 fs for equilibration and 2 fs 

for the production run in conjunction with the SHAKE algorithm62 to constrain the 

covalent bonds involving hydrogen atoms for all programs except GROMACS in which 

the LINCS algorithm63 is used instead. All simulation trajectories were recorded every 

10 ps except vibrational frequency calculation (see Supporting Information). For each 

nanomaterial model, all structure and corresponding parameter files are generated in the 

CHARMM format (i.e., rtf and prm files). For GROMACS, NAMD, and LAMMPS, FF-
Converter in CHARMM-GUI64 is used for format conversion from CHARMM data format 

to corresponding program readable formats. For specific nanomaterials, bonds between 

the primary and neighboring cells (image-bond) are required to model infinite surfaces or 

molecules along with the periodic images. Nanomaterial Modeler supports CHARMM, 

NAMD, GROMACS, LAMMPS, OpenMM, Amber, and Genesis for non-image-bond 

systems such as fcc metals. Four simulation programs, OpenMM, Gromacs, LAMMPS, 

and NAMD, are supported for image-bond systems. Three types of LJ cutoff methods, 

including 10–12 fsw, 12 cut-off, and LJPME are employed for the LJ interactions to 

investigate the cut-off method effect on the structural, physical, and mechanical properties. 

For LJPME, grid spacing and interpolation order were set to 1.2 Å and 4, respectively. 

Details of computational methods such as thermostat, barostat, and coupling constants for 

each simulation program are described in Supporting Information S1. Computational details 

of density, surface energies, mechanical properties, and vibrational spectra calculation 

for various nanomaterials are provided in Supporting Information S2–7. Details of 

computational methods, including density, surface energies, mechanical properties, and 

vibrational spectra, are provided in the Supporting Information.
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RESULTS AND DISCUSSION

1. Metals: gold surfaces with various Miller indices and its equilibrium particle shapes

Nanomaterial Modeler supports 18 fcc metals (Table 1): Ac, Ag, Al, Au, Ca (α), Ce (γ), 

Cu, Es (β), Fe (γ), Ir, Ni, Pb, Pd, Pt, Rh, Sr (α), Th (α), and Yb (β). One can generate 

i) bulk crystal, ii) different cleavage surfaces with Miller indices ranging from (100) to 

(332) with any combination of periodicity, and iii) a variety of shapes such as a sphere, 

cylinder, rod, polygon, box, and Wulff construction. Figure 2A shows the user interface 

of Nanomaterial Modeler for building a (111) gold surface with a size of 51.9 × 59.9 × 

35.3 Å3; n.b., the input dimension and the final model dimension can be different because 

of the unit cell size. The selected (111) Miller index plane is perpendicular to the Z-axis. 

With user-specified X, Y, and Z dimensions, Nanomaterial Modeler displays an estimated 

system size from the unit cell information (see Supporting Information for lattice parameters 

of all unit cells). To build an infinite surface parallel to the XY plane with vacuum layers 

(i.e., a slab), periodicity can be selected in the X and Y directions and vacuum selected 

under “System Type”. This simple user interface enables easy system building for various 

fcc metals. With these options, a final all-atom model of (111) gold surface is illustrated in 

Figure 2B. In this work, experimental densities and surface energies are employed for model 

validation. Computed densities of 18 fcc metals with different LJ cut-off methods (i.e., 12 

cut-off, 10–12 fsw, and LJPME) are in excellent agreement with the experimental data for 

all supported simulation programs (Table S6 and Figure S1). Solid-vapor interface tensions 

(γSV
(111)) for 18 fcc metals with 13 Miller indices were computed (Figure S2). Figure 2C 

shows comparison of computed and experimental γSV
(111) of 18 fcc metals with three LJ 

cut-off methods. The 10–12 fsw, 12 cutoff, and LJPME reproduce surface energy for all fcc 

metals with less than −6.5%, 0.9%, and 6.5% deviations, respectively (Table S4 and S7).

Nanomaterial Modeler provides versatile methods to generate nanoparticle structures and 

surface modeling. One of the classic models to describe a particle shape is the Wulff 

construction65 based on its orientation-dependent surface free energy. The computed surface 

energies of all fcc metals are presented in Table S4, which were used to generate the Wulff 

constructions (Figure 2D). One can select any combination of Miller indices and adjust 

surface energy values in the user interface. Figure 2D shows predicted equilibrium shapes 

using the Wulff construction and corresponding all-atom models of gold nanoparticles. 

Selecting (100) and (110) surfaces yield a cuboid (Shape 1). Changing from (110) to (111) 

produces a truncated octahedron (Shape 2). As the (100) surface energy increases, (100) 

surface area decreases and the shape changes to an octahedron (Shape 3). When a (110) 

surface is added to Shape 2, edges are covered with (110) surface and overall nanoparticle 

shape is closer to a spherical shape (Shape 4).

2. Clay minerals: Kaolinite, Pyrophyllite, Montmorillonite, and Muscovite

Clay minerals have been widely employed not only for industrial applications,66 but also as 

additive biomaterials for drug delivery67. Nanomaterial Modeler provides facile modeling 

methods for four different clay minerals: kaolinite, pyrophyllite, montmorillonite, and 

muscovite. Unlike fcc metals, an infinite surface model of clay minerals has image bonds 

across the periodic boundary conditions (PBCs), and 27 image bonds are constructed. In 
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addition, some clay minerals may contain ions between layers, which can be measured by 

cation exchange capacity (CEC) states. For example, montmorillonite exists in various CEC 

states with different amounts of Mg replaced by Al. This substitution leaves net negative 

charges, which attracts cations for charge neutrality. Nanomaterial Modeler provides options 

to control the CEC states by randomly replacing Al with Mg and randomly distributing 

either Na+ or K+.

Figure 3A shows the user interface for building a montmorillonite surface model with 0.333 

mmol/100g CEC, a size of 60 × 60 × 30 Å3, and XY periodicity. Users can select desired 

CEC states by setting the ratio of the defect (i.e., a ratio of Al and Mg) and ion types. In 

addition, X and Y periodic options are selected to build an infinite surface along the XY 

plane. Representative snapshots of three clay minerals (pyrophyllite, montmorillonite, and 

muscovite) with various CEC states are shown in Figure 3B. The first row displays top 

views, where layers below the top layer are hidden for clarity. The second row illustrates 

a side view of each material. While pyrophyllite does not have ions in between layers, 

montmorillonite and muscovite do, and thus, the number of ions increases as the CEC states 

become larger. As a result, the spacing between layers of pyrophyllite is ~2.9 Å that is 

smaller than the other clay minerals due to the lack of ions between the layers (e.g., ~3.9 

Å for montmorillonite and muscovite). Supported Miller indices and corresponding unit cell 

parameters are summarized in Table S5.

The densities, bulk modulus, and Young’s modulus of the clay minerals are calculated 

with three different LJ cut-off methods to validate the model. Computed densities of clay 

minerals with other LJ cut-off methods show good agreement with experimental data with 

less than 4% deviation for all supported simulation programs (Table S8 and Figure S3). 

Figure 3C shows the bulk modulus of muscovite as a function of the applied pressure, which 

is in good agreement with a previously reported bulk modulus.68 Also, all of the LJ cut-off 

methods yield consistent results; 10–12 fsw and LJPME have deviations of −2.6% and 

3.7% relative to the 12 cut-off. In experiments, solid-vapor interface tensions (γSV) show 

a broad range from 0.050 to 0.200 J/m2 because preparation process of Montmorillonite 

surface with specific CEC value is difficult, and even if the surface is made, the surface 

is very sensitive to environmental conditions such as humidity. The computed γSV of 

Montmorillonite are ranging from 0.087 to 0.113 J/m2, which is consistent with the range 

observed in experiments (Table S9). For Muscovite, computed γSV reproduce experimental 

observation with less than 4 % deviation. Note that the energy differences of computed γSV 

among the LJ cut-off methods are negligible for all clay minerals.

Figure 3D represents Young’s modulus of muscovite calculated along the Cartesian 

directions. The calculated moduli (132.0 GPa, 113.4 GPa, and 28.6 GPa for X, Y, and Z 

direction, respectively) show consistent trends and similar values to previous experimental 

and DFT results69, although the values are about 10% lower. Identical to the reported study, 

the modulus along the X direction is approximately 16.4% larger than Y direction, and the 

modulus along the Z direction is smaller by at least 50% than either X or Y direction.
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3. Silica: ɑ-cristobalite silica slab with different surface chemistry

Silicon dioxide and silica are widely available in nature and biologically enriched in various 

organisms.70, 71 These are also important materials in the semiconductor industry. The 

simulation of bulk and surface properties of silica has been of great interest since the 

emergence of computational modeling methods.43, 72–74 Nanomaterial Modeler provides 

diverse modeling capabilities of silica that cover various surface chemistry and pH (i.e., the 

surface density of silanol and siloxide groups, and degree of ionization) for two shapes (box 

and sphere).

Figure 4A shows the user interface for building a surface of α-cristobalite with a 4.7 

nm−2 density of silanol groups. The surface chemistry of silica depends on the surface 

characteristics (e.g., cleavage plane, particle size, and porosity), heat treatment, and 

environmental pH.43 Various forms of silica at high pH contain Q2 surface environments, 

which correspond to two silanol groups per superficial silicon atom (=Si(OH)2), and mixed 

Q2/Q3 surface environments where Q3 surface represents one silanol group per silicon atom 

(≡Si(OH)). The area density of silanol groups is in the range of 9.4 to 4.7 nm−2 (Figure 

4B). Most silica glasses and medium size nanoparticles (~100 nm) contain 70–90% Q3 

environments on the surface (Figure 4C). The silica surfaces after thermal treatment consist 

of a high portion of Q4 environments in which siloxide bridges without silanol groups 

(Figure 4D). All silanol groups on the silica surface are subject to deprotonation or/and 

protonation upon environmental conditions such as the area density of silanol groups, pH, 

ionic strength of the solution, and the type of ions present in solutions. In the physiological 

conditions with an ionic strength of 0.1~0.3 M of sodium ions, the ionization degree of 

silanol groups ranges from 0% to 20%. Nanomaterial Modeler supports ionization degrees 

up to 50% (Figure 4A). Figures 4E–G shows a Q3 surface with a total Si-O(H,Na) density of 

4.7 nm−2 with 5%, 15%, and 25% ionization, respectively.

The silica models show good agreement between computed and experimental properties of 

(1) densities, (2) water contact angles on the silica surfaces, (3) heat of immersion of silica 

surfaces in water, and (4) vibrational properties. Figure 5A shows the water contact angle, 

θc, on charge-neutral silica surfaces ranging from Q3 to Q4 environments in simulation and 

experiment.75 The details of contact angle calculations are summarized in the Supporting 

Information and in Figure S4. The Q3 surface exhibits a contact angle of θc = 0. This 

surface is strongly hydrophilic due to the formation of hydrogen bonds between surface 

Si-OH groups and water molecules, thus fully wetted with water. Heat treatment from 200 to 

1000°C decreases the area density of surface silanol groups due to condensation of adjacent 

silanol groups in Q2 and Q3 environments, yielding Q4 environments. The transition in 

surface chemistry from Q3 to Q4 is modeled with 4.7, 2.35, 1.2, and 0 silanol groups per 

nm2. Note that the silanol groups are non-ionized to represent interfaces with deionized 

water. The agreement between simulation and experimental measurements falls within ±3°. 

The heat of immersion (ΔHimm) represents the enthalpy released upon immersion of clean 

particles or surfaces into the water and provides insight into silica-water interactions. Figure 

5B shows a computational procedure to compute ΔHimm of Q3 silica surfaces in water. 

ΔHimm of Q3 silica obtained from calorimetric measurements is 160 ± 5 mJ/m2 at 300 K, 

and the calculated results show good agreement within the uncertainty for all LJ cut-off 
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methods. The model also reproduces the vibrational frequency of silica with infrared and 

Raman measurements (Figure 5C and Figure S5). Strong bands at 960~1200 cm−1 and 

600~800 cm−1 correspond to asymmetric and symmetric Si-O-Si stretching vibrations, 

respectively. The O-Si-O bending vibrations at 400~500 cm−1 and O-H stretching vibrations 

near 3700 cm−1 are also reproduced in the simulation. Although the computed value for one 

of the bands near 800 cm−1 is shifted approximately 100 cm−1 lower and the intensities of 

vibrational spectrum are not reproduced due to the lack of full electronic structure, most 

peak positions of the vibrational modes are clear and sufficient to monitor peak shifts in 

chemically different environments.

4. Phosphate minerals: hydroxyapatite with different surfaces and Wulff construction

Hydroxyapatite (HAP), Ca10(PO4)6(OH)2, is of great importance for human health because 

it is the major component in human bone and teeth and plays a central role in maladies such 

as osteoporosis.44, 76 Atomistic models of HAP could facilitate a better understanding of 

the complex surface chemistry and provide insight into the interaction between biomolecules 

and HAP. Recent simulation results have shown that specific interactions between HAP 

surfaces and proteins are strongly dependent on pH, type of facet, surface defect, and 

specific details of the amino acid arrangement.44, 77 To facilitate the research of HAP 

surface chemistry, surface models of various facets and nanocrystals as a function of pH are 

introduced in Nanomaterial Modeler.

Figure 6A shows the user interface for building a (001) HAP surface with a size of 60 

× 60 × 30 Å3 at pH ~10. Nanomaterial Modeler provides two shapes (box and Wulff 

construction). The number of possible (hkl) cleavage plane is in principle unlimited, 

but cleavage preferably occurs in (hkl) directions with weaker nonbonded interactions. 

Nanomaterial Modeler offers the common cleavage planes of HAP, (001), (010), (020), and 

(101), and surface models of HAP at various pH conditions, including pH ~5, ~10, and > 

14 (see details in Supporting Information). MD simulations were performed to investigate 

the cleavage energies of the common low index planes of HAP (Figure 6B). The computed 

cleavage energies of PO4
3- terminated surfaces range from 897.0 to 1223.3 mJ/m2 and 

increase in the following order: (001) < (101) < (010) < (020). Note that the cleavage 

energy differences among the simulation packages are negligible (Table S9). For the LJ 

cut-off methods, 10–12 fsw and LJPME produce only −2.4% and 3.2% deviations relative 

to the 12 cut-off method (Table S10). Such a small difference compared to the deviations 

observed for fcc metals arises from the fact that electrostatic interactions dominate the HAP 

surface energy (see details in Supporting Information). In an experiment, the preparation 

of ideal cleaved surfaces of HAP is complex as they are hygroscopic and thus sensitive 

to environmental conditions such as humidity. To our knowledge, direct measurements of 

cleavage energies in vacuum have not been reported. Nevertheless, the cleavage energies of 

minerals with similar chemical composition and previously calculated cleavage energies for 

HAP are in good agreement with the current simulation results (see Table S10).

Nanomaterial Modeler enables modeling of HAP nanocrystals (i.e., Wulff construction) and 

various surface models. Figure 6C illustrates predicted shapes of HAP nanocrystal and final 

all-atom models according to the combination of Miller indices and corresponding surface 
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energies. Like the Wulff construction of gold nanoparticles in Figure 2, one can freely 

change the surface energy values in the text box and add/delete surfaces by clicking the ± 

button. In addition, the environment pH option can be specified during Wulff construction. 

Since cleavage energies are highly affected by environment pH, Nanomaterial Modeler 
automatically updates energy values and predicts corresponding shapes based on the selected 

pH range.

5. Transition Metal Dichalcogenide: MoS2

Two-dimensional (2D) materials, including graphene and transition metal dichalcogenides 

(TMDC), such as molybdenum disulfide (MoS2), have received significant attention due 

to their unique structural and electronic properties.78, 79 Nanomaterial Modeler provides a 

facile modeling capability for graphene and 2H-MoS2.

Figure 7A shows the user interface for building four 2H-MoS2 layers with a size of 50 × 

50 × 24 Å3. In the Unit Cell Info section, one can set the number of MoS2 layers to be 

generated according to the Z-length value in the Box Options. Note that MoS2 is limited 

to XY-PBC as there is no information available for surface-end modification. The cleavage 

energy of the basal plane of a layered material is a key property for its applications. To 

evaluate the cleavage energy of MoS2, a potential energy difference of two systems (i.e., a 

box of surface slab separated with a 60 Å vacuum layer (Esep) and an equivalent periodic 

bulk model of the same number of atoms without a vacuum layer (Ebulk)) is computed 

with 10–12 fsw, 12 cut-off, and LJPME using four simulation packages (Figure 7B and 

Supporting Information). The results agree with an experimental observation of 150 ± 10 

mJ/m2 for 12 cut-off. The use of different cut-off methods yields 137 ± 2 mJ/m2 (10–12 

fsw) and 156 ± 1 mJ/m2 (LJPME), respectively. These relatively high deviations are also 

observed in the fcc metal cases as LJ interactions are the major component for their cleavage 

energy. For MoS2, the contributions of LJ and electrostatic interactions to the cleavage 

energy are 93% and 7%, respectively. This indicates that, when LJ interaction is the main 

contributing factor to the cleavage energy, the LJ parameter adjustments for 10–12 fsw and 

LJPME methods are required to achieve the level of accuracy at experiment.

Structural and mechanical properties, as well as surface properties are essential factors 

to validate the MoS2 model.15 Figure 7C shows that the computed XRD pattern from 

experiment and simulation. The characteristic peak of MoS2 is observed at 14.4°, 

corresponding to the (002) plane, and agrees well with experimental observation. For 

mechanical properties, the compressibility is computed with 12 cut-off method by recording 

the volume change at different pressures (1, 2, 3, and 4 GPa) and compared to the 

experiment (Figure 7D). The simulation results are identical with experiment up to about 

2 GPa. Even when the pressure exceeds 2 GPa, the difference between the computed and 

experimental data remain below a 2% deviation.

6. Complex system

Several complex nano-bio systems are modeled and simulated to illustrate the potential 

use of Nanomaterial Modeler in combination with other CHARMM-GUI modules. Note 

that these illustrative systems are chosen to show the new capability of Nanomaterial 
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Modeler but not for FF validation. As a first example, a platinum (Pt) nanoparticle system 

with T7 peptides (acyl-TLTTLTN-amide) is built using three modules in CHARMM-GUI: 

Nanomaterial Modeler for the Pt nanoparticle, PDB Reader & Manipulator7, 80 for T7 

peptides, and Multicomponent Assembler for assembly of all models and solvation (Figure 

8A). A cuboctahedron Pt nanoparticle is generated using Wulff construction (Shape 2 

in Figure 2 and Figure S6) and located at the system center. T7 peptides are randomly 

distributed in the system with 3, 6, 12, 18, and 36 peptides corresponding to concentrations 

of 5, 10, 20, 50, and 100 μg/ml (see Methods and Supporting Information for details of the 

system building and simulation methods). After MD simulations of 200 ns duration, all T7 

peptides are adsorbed onto the nanoparticle surface at all concentration levels (Figure 8B). 

At low concentration (< 20 μg/ml), the binding of the T7 peptides to the Pt nanoparticle 

occurred preferentially near edges as opposed to the inner portions of the (100) facets. 

This is due to the substantially reduced binding of water at the edges, which is consistent 

with previously reported data.81 These simulations provide insight into the mechanisms of 

nanocrystal growth and the spatial distribution of facet-specific ligands as a function of 

concentration.

As a second example, 10th type III modules of fibronectin (FN-III10, PDB ID: 1TTF82) 

on a HAP surface are generated (Figure 8C). Fibronectin (FN) is known to regulate cell 

adhesion, growth, differentiation, or survival of osteoblasts, and support osteogenic cell 

responses in vitro.83 This complex nano-bio interface system can be readily generated using 

a combination of the Nanomaterial Modeler, PDB Reader, and Multicomponent Assembler 
modules. This system can be used to investigate the effects of HAP surface properties on the 

adsorption of FN modules, which is important because the surface topology may modulate 

the biological activity of FN and the corresponding cell adhesion process.

The third example consists of a supported lipid bilayer (SLB) that is a popular model of cell 

membranes with potential biotechnological applications.84 Many experimental techniques 

such as atomic force microscopy (AFM), quartz crystal microbalance with dissipation 

monitoring (QCM-D), and ellipsometry have been employed to investigate the structure and 

physical properties of lipid bilayers reconstituted with membrane proteins.85, 86 However, 

most of these methods only provide superficial information and/or lack molecular-level 

insight into underlying mechanisms. Figure 8D shows an SLB system built using a 

combination of the Nanomaterial Modeler, Membrane Builder,87–89 and Multicomponent 
Assembler modules (see Methods and Supporting Information).

In addition to various nano-bio interfaces, Nanomaterial Modeler can also be used to 

build polymer-containing nanomaterial systems (i.e., nano-polymers). As a final example, 

a nano-polymer complex system that consists of a cement mineral (in this case, tobermorite) 

and poly(acrylic acid) (PAA) was investigated. It is known that PAA strongly binds to the 

cement surface via ionic or possibly chelate binding and induces the cement to harden. 

Three modules in CHARMM-GUI are employed: Nanomaterial Modeler for tobermorite, 

Polymer Builder60 for PAA, and Multicomponent Assembler for integration and solvation. 

A tobermorite (004) slab is located in the simulation box, and a 60% ionized PAA chain is 

placed 10 Å above the surface (Figure 8E). At an early simulation stage, carboxylates in the 
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PAA side chains begin to interact with the surface via strong ionic bonds with Ca2+ ions, and 

finally, the entire polymer chain is adsorbed on the surface.

CONCLUSIONS

This work presents Nanomaterial Modeler in CHARMM-GUI, a web-based 

cyberinfrastructure for building all-atom models of various nanomaterials and providing 

all necessary FF and configurational files for MD simulations. The model building workflow 

is generalized and automated in two steps: (i) building a bulk crystal through duplication and 

translation of a unit cell structure, and (ii) applying image patches and capping unbalanced 

atoms based on periodicity and chemical environment. Nanomaterial Modeler’s versatile 

and efficient modeling features are illustrated by building various nanomaterial surface 

models and equilibrium nanoparticle shapes. Moreover, the transferability of nanomaterial 

models among the simulation programs was assessed by single-point energy calculations, 

which yielded 0.01% relative absolute energy differences for various surface models and 

equilibrium nanoparticle shapes. The significance of this work is that Nanomaterial Modeler 
provides a convenient modeling capability for various nanomaterial systems. Generated 

nanomaterial models can be used to model complex systems with other CHARMM-GUI 

modules, as demonstrated here with selected representative test cases.

To assess the transferability of our models and the IFF, we have investigated the effect 

of LJ cutoff methods on the structural, mechanical, and thermodynamic properties of 

nanomaterials. We have determined that the different LJ cut-off methods exhibit overall 

consistent results for most nanomaterial cases. The exceptions are nanomaterials for which 

LJ interactions are a major component for their cleavage energy. Such systems exhibit 

relatively larger deviations (up to 8%) compared to the electrostatic-driven materials if an LJ 

cut-off other than 12 Å is used. However, in most cases deviations are minor and consistent 

cut-offs or adjustments in the ε and σ parameters can be explored. Future work will include 

testing transferability for other nanomaterial properties and comparison with reactive and 

machine learning FFs through the OpenKIM framework.90 We hope that Nanomaterial 
Modeler can be useful for carrying out innovative and novel nanomaterial modeling and 

simulation research to acquire insight into structures, dynamics, and underlying mechanisms 

of complex nano-bio and nano-polymer interface systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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page of Nanomaterial Modeler, one can also obtains initial coordinates, topology, and 

configuration files of five representative systems, which include 1) surface tension of Au 

{111} surface, 2) surface energy of Muscovite, 3) contact angle measurement of silica 

surfaces, 4) Pt nanoparticle with T7 peptides, and 5) supported lipid bilayer system. 

Detailed procedures on how to build nanomaterial models using Nanomaterial Modeler 
are described in video demonstration (https://www.charmm-gui.org/demo/nanomaterial). 

Tutorial 1: overview of Nanomaterial Modeler; Tutorial 2: surface model and Wulff 

construction of fcc metal; Tutorial 3: building clay mineral models; Tutorial 4: Building 

calcium sulfate models; Tutorial 5: building cement mineral models; Tutorial 6: modeling 

nanoparticle and surfaces of silica; Tutorial 7: modeling nanocrystal and surfaces of 

hydroxyapatite; Tutorial 8: modeling molybdenum disulfide; Tutorial 9: modeling carbon 

nanotube and graphene. Questions related to the performance of IFF for the nanomaterials 

and related simulation settings can be directed to HH (hendrik.heinz@colorado.edu).
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Figure 1. 
Illustration of the Nanomaterial Modeler workflow. (A) Workflow of Nanomaterial Modeler. 
(B) Unit cell information is used to build nanomaterials. (C) Each unit cell structure is 

duplicated and translated for the generation of user-specified system size. (D) For systems 

having bonds along a specific direction, bond linkages across the neighboring periodic 

images are built. (E) Surface modification is performed to facilitate hydrogenation and 

ionization.
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Figure 2. 
Building surfaces and equilibrium shapes of gold nanoparticles using Nanomaterial 
Modeler. (A) User interface of Nanomaterial Modeler for building a (111) gold surface. 

One can select X, Y, and Z under “Periodic Options” to define the periodicity of the gold 

surface along each axis and choose a “System Type” to build the nanomaterial in water 

or in vacuum. (B) All-atom model obtained from the options in (A). (C) Comparison of 

simulated and experimental surface energies of 18 fcc metals for (111) surfaces. Three LJ 

cut-off methods (i.e., 12 Å cut-off, 10–12 Å fsw, and LJPME) were used to calculate surface 

energies. (D) Predicted equilibrium shapes using Wulff construction and corresponding all-

atom models of gold nanoparticles. The shape depends on a combination of Miller indices 

and the corresponding surface energies.
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Figure 3. 
(A) User interface to generate 0.333 mmol/100g cation exchange capacity (CEC) 

montmorillonite. (B) Illustrative snapshots of top (upper panel) and side (lower panel) views 

of pyrophyllite, montmorillonite, and muscovite. In the top view, the layers located below 

the top layer are hidden to show the different CEC states clearly. (C) The bulk modulus of 

muscovite with different LJ cut-off methods as a function of applied pressure. (D) Young’s 

modulus of muscovite along the X, Y, and Z direction with different LJ methods. Error bars 

are smaller than the symbol size. Aluminum, magnesium, silicon, oxygen, and potassium ion 

are colored in gray, green, yellow, red, and purple, respectively.
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Figure 4. 
Generation of silica surface models using Nanomaterial Modeler. (A) User interface to build 

a (20-2) α-cristobalite surface with a size of 60 × 60 × 30 Å3. (B-D) Q2/Q3, Q3, and Q4 

surfaces with a total Si-OH density of 9.0 nm−2, 4.7 nm−2, and 0 nm−2 with top (upper 

panel) and side views (lower panel). Black arrows indicate the formation of siloxide bridges 

from two silanol groups. (E-G) Q3 surfaces with a total Si-O(H, Na) density of 4.7 nm−2 and 

5%, 15%, and 25% ionization with top (upper panel) and side (lower panel) views. Silica, 

oxygen, hydrogen, and sodium are colored in yellow, red, gray, and blue.
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Figure 5. 
Silica-water interfacial properties and vibrational spectrum. (A) Water contact angles on 

silica surfaces ranging from Q3 to Q4 environments. Experimental results are obtained from 

ref75. (B) The heat of immersion of silica surfaces in water. Three systems were generated to 

compute Esurface-water, Esurface-vacuum, and Ewater, respectively (upper panel). Results of Q3 

surfaces using different LJ cut-off methods and experiments (lower panel) are shown. (C) 

Vibration spectrum of α-cristobalite from the simulation in comparison with experimental 

infrared and Raman spectra.
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Figure 6. 
Generation of hydroxyapatite (HAP) surfaces and nanocrystals. (A) User interface for the 

generation of HAP surfaces. Nanomaterial Modeler supports (001), (010), (020), and (101) 

surface with three hydrogenation states based on strong basic (pH > 14), basic (pH ~10), 

and mildly acidic (pH ~5) conditions. (B) Illustrative snapshots of relaxed surface models 

of HAP and calculated cleavage energies in vacuum in different pH environments. (C) 

Predicted and corresponding all-atom models of rod-like (left) and elongated hexagonal 

bipyramid (right) shapes of HAP nanocrystals. Phosphate, oxygen, hydrogen, and calcium 

ion are colored in magenta, red, white, and green, respectively.
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Figure 7. 
(A) User interface for building 2H-MoS2 layers. (B) The models used to calculate the 

cleavage energy comprise a cleaved surface slab of four MoS2 layers with a 60 Å vacuum 

layer (left) and the equivalent periodic bulk systems (right). Esep and Ebulk represent the 

potential energy of separated and bulk systems, respectively. A is the surface area. (C) X-ray 

powder diffraction (XRD) pattern comparison between the experimental data57 (red) and the 

MD result (black). (D) The compressibility of bulk MoS2 from experiment and simulation.
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Figure 8. 
Illustrative snapshots of (A) initial and (B) final simulation systems for a platinum (Pt) 

nanoparticle with T7 peptides. Pt, nitrogen, carbon, oxygen, and hydrogen atoms are 

colored in pink, blue, gray, red, and white. (C) hydroxyapatite surface with FN-III10 

protein. Hydroxyapatite is colored as in Figure 4. FN-III10 proteins are represented in a 

cartoon with different colors based on the secondary structures (yellow for β-sheet and 

orange for coil and turn). (D) Supported lipid bilayer composed of 1-palmitoyl-2-oleoyl-sn-

phophatidylcholine (POPC) and muscovite. Phosphorus, carbon, silica, oxygen, hydrogen, 

calcium, and aluminum atoms are colored in magenta, gray, yellow, red, white, green, and 

pink, respectively. (E) Snapshots of poly(acrylic acid) adsorption on a tobermorite (004) 
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facet. The color code is the same as (D). Water molecules are omitted for clarity except for 

(D).
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Table 1.

Nanomaterials available in Nanomaterial Modeler and corresponding references.

Class Material (Chemical formula) Shape Remarks

Fcc metals Ac, Ag, Al, Au, Ca, Ce, Cu, Es, Fe, Ir, Ni, Pb, Pd, Pt, Rh, Sr, 
Th, and Yb box

a
, cylinder, rod, 

polygon, sphere, Wulff

ref38,39

Clay Minerals Pyrophyllite (Al2Si4O10(OH)2) box ref40

Kaolinite (Al2Si2O5(OH)4) box ref40

Montmorillonite ((K, Na)n[Si4O8][Al2-nMgnO2(OH)2]) box ref40

Muscovite (KAl2(AlSi3)O10(OH)2) box ref40

Calcium Sulfates Gypsum (CaSO4·2H2O) box, Wulff ref13

Hemihydrate (CaSO4·1/2H2O) box ref13

Anhydrite (CaSO4) box ref13

Cement Minerals Tricalcium Silicate (Ca3SiO5) box, Wulff ref41

Tricalcium Aluminate (Ca3Al2O6) box ref42

Calcium Silicate Hydrate Tobermorite (Ca4Si6O15(OH)2·5H2O) box ref42

Silica α-quartz (SiO2) box, sphere ref43

α-cristobalite (SiO2) box, sphere ref43

Phosphate Minerals Hydroxyapatite (Ca5(PO4)3(OH)) box, Wulff ref44

Transition Metal Dichalcogenides Molybdenum (MoS2) box ref15

Carbonaceous Materials Carbon Nanotube - ref45

Graphene box, hexagonal ref45

Graphite box ref45

a
Box represents a rectangular parallelepiped shape.
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