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There is growing experimental evidence that many respiratory viruses—
including influenza and SARS-CoV-2—can interact, such that their
epidemiological dynamics may not be independent. To assess these
interactions, standard statistical tests of independence suggest that the
prevalence ratio—defined as the ratio of co-infection prevalence to the pro-
duct of single-infection prevalences—should equal unity for non-interacting
pathogens. As a result, earlier epidemiological studies aimed to estimate the
prevalence ratio from co-detection prevalence data, under the assumption
that deviations from unity implied interaction. To examine the validity of
this assumption, we designed a simulation study that built on a broadly
applicable epidemiological model of co-circulation of two emerging or sea-
sonal respiratory viruses. By focusing on the pair influenza–SARS-CoV-2,
we first demonstrate that the prevalence ratio systematically underestimates
the strength of interaction, and can even misclassify antagonistic or synergis-
tic interactions that persist after clearance of infection. In a global sensitivity
analysis, we further identify properties of viral infection—such as a high
reproduction number or a short infectious period—that blur the interaction
inferred from the prevalence ratio. Altogether, our results suggest that eco-
logical or epidemiological studies based on co-detection prevalence data
provide a poor guide to assess interactions among respiratory viruses.
1. Introduction
The pandemic of coronavirus disease 2019 (COVID-19), caused by the novel
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has empha-
sized the persistent threat posed by respiratory viruses. In addition to
SARS-CoV-2, other major respiratory viruses like influenza and the respiratory
syncytial virus (RSV) cause a substantial burden every year, estimated at 78
million cases of lower respiratory infections and 130 000 associated deaths
worldwide in 2016 [1]. As evidenced by the current and past pandemics, the
large host range of respiratory viruses—and the correspondingly high risk of
spillover from animals into humans—also makes them prime candidates for
emergence of currently unknown ‘diseases X’ [2]. Interaction—here broadly
defined as the ability of one pathogen to affect infection or disease caused by
another pathogen—is an intriguing yet understudied aspect of respiratory
viruses’ biology [3]. Although different nomenclatures have been proposed [4],
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such interactions can be classified according to their sign, either
positive (synonymously, synergistic or facilitatory) or negative
(synonymously, antagonistic or competitive). According to
experimental evidence, various biological mechanisms exist
which make either sign a priori plausible [4]. Examples include,
in the case of positive interactions, upregulation of viral target
receptors [5] or cell fusion [6]; and, in the case of negative inter-
actions, blocking of viral replication caused by the interferon
response [7,8]. Intriguingly, different respiratory viruses may
have opposing effects on COVID-19, e.g., rhinoviruses can
inhibit SARS-CoV-2 infection via the interferon response [8],
while influenza A viruses can facilitate it via upregulation
of ACE2, the cognate receptor of SARS-CoV-2 in human
cells [5,9]. SARS-CoV-2 interactions may have far-reaching
implications for predicting not only the future course of the
COVID-19pandemic, but also the indirect effects of non-
COVID-19vaccines on COVID-19 [10]. Indeed, vaccines against
a target pathogen may also indirectly affect non-target patho-
gens that interact with this target pathogen—an effect
expected (by the lawof signs) to reduce the non-target pathogen
burden in case of positive interactions, and to increase it in case
of negative interactions [11–13].

Because of their relevance to epidemiology and public
health, a natural question is how best to identify and estimate
interactions between respiratory viruses. Arguably, challenge
studies in animals or humans provide the strongest form of
evidence, because they can pinpoint the within-host mechan-
isms of interaction in a controlled experimental setting.
However, such studies remain scarce and, more generally,
it is not easy to predict their consequences at the scale of
human populations [14]. Hence, epidemiological studies—
ideally informed by experimental evidence to narrow the
search range of interacting pathogens—remain indispensable
to assess interactions, but it is unclear whether methods
commonly used in such studies are well-suited to this task.

In particular, recent studies of SARS-CoV-2 interactions
used a test-negative design [15] to compare the risk of SARS-
CoV-2 infection among those infected with another respiratory
virus (e.g. influenza) to that among those uninfected [16–18].
The underlying idea is conceptually simple: if two (or more)
viruses do not interact and circulate independently, then the
frequency of co-detection estimated from cross-sectional data
should be approximately equal to the product of each virus’s
detection frequency—conversely, any significant deviation
from equality should indicate interaction. However, earlier epi-
demiological and ecological modelling studies have cautioned
against seemingly intuitive statistics of interaction [14,19,20].
In fact, to our knowledge the validity of this study design
has not yet been systematically tested for emerging or seasonal
respiratory viruses.

In this study, we aimed to determinewhether epidemiologi-
cal studies based on co-detection prevalence data enabled
reliable estimation of interactions between respiratory viruses.
To do so,we designed a simulation study that built on a general
epidemiological model of co-circulation of two emerging or
seasonal respiratory viruses. We show that cross-sectional esti-
mates of co-infection prevalence—interpreted either alone or in
combination with estimates of single-infection prevalences—
provide a poor guide to assess interaction. Hence, we argue
that earlier epidemiological studies based on this design
should be interpreted with caution and that further longitudi-
nal studies will be needed to elucidate the epidemiological
interactions of SARS-CoV-2with other respiratory viruses.
2. Methods
(a) Transmission model of viral co-circulation
We developed a deterministic model of circulation of two respirat-
ory viruses, assumed to interact during the infectious period
(i.e. the period of transmissible viral infection, denoted by I) or
during a transient period following clearance of infection (denoted
by T ). According to experimental evidence, such interactions can
result from an antiviral state caused by non-specific innate
immune responses (such as the interferon response),whichdevelop
early during infection and can persist for a short period after clear-
ance of infection [7]. By contrast, we did not model long-term
interactions (effected, for example, by adaptive cross-immunity),
which are less likely for different species of respiratory viruses [7].
The model was similar to that originally proposed by Shrestha
et al. [14], with the addition of a latent period (denoted by E) and
of a realistic distribution for the infectious period, modelled as a
Gamma distributionwith shape parameter 2 [21]. The transmission
dynamic of each virus was, therefore, represented by a susceptible
exposed infected temporary recovered (SEITR) model [22], where S
represents susceptible individuals and R recovered individuals.
Following Shrestha et al., we used a double index notation to indi-
cate the infection status with respect to each virus, e.g. XSE

represents the proportion of individuals susceptible to virus 1
and exposed to virus 2. As we primarily focused on respiratory
viruses that cause epidemics lasting a few months, we made the
reasonable assumption of a constant, closed population.

The model was defined by a set of 6 × 6 = 36 ordinary differ-
ential equations, represented schematically in figure 1. The force
of infection of each virus i∈ {1, 2} was given by:

l1(t) ¼ R1

1� r0,1
g1p1(t)

p1(t) ¼
X

x[J

½XIax(t)þ XIbx(t)�

l2(t) ¼ R2

1� r0,2
g2p2(t)

p2(t) ¼
X

x[J

½XxIa (t)þ XxIb (t)�

,

where J ¼ {S, E, Ia, Ib, T, R} is the set of state variables, Ri is the
reproduction number of virus i, r0,i the initial fraction immune to
virus i, 1/γi the average infectious period of virus i and pi(t) the
prevalence of infection with virus i. Importantly, the parameter
Ri is best interpreted here as the initial reproduction number in
a partially immune population, as opposed to the basic repro-
duction number (given by Ri/(1− r0,i) for virus i) in a fully
susceptible population [23]. We also defined the prevalence of
individuals co-infected (purple compartments in figure 1):

p12(t) ¼ XIaIa (t)þ XIaIb (t)þ XIbIa (t)þ XIbIb (t):

(b) Statistic to infer interaction from co-detection
prevalence data

Standard statistical tests of independence suggest that the
following prevalence ratio (PR):

PR(t) ¼ p12(t)
p1(t)� p2(t)

,

could be used to infer interaction [16–18]. Intuitively, a prevalence
ratio above unity indicates that the frequency of co-detection is
higher than that expected by chance, suggesting that co-infection
is facilitated—that is, that the interaction is positive, i.e. synergis-
tic [19,20]. Correspondingly, a prevalence ratio below unity
would suggest a negative, or antagonistic interaction. In numerical
applications, we calculated the prevalence ratio at the time of
peak co-infection prevalence, tmax = argmaxtp12(t) (cf. electronic
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Figure 1. Schematic of epidemiological model of viral co-circulation. Individuals infectious with virus 1 are highlighted in blue, with virus 2 in red, and with both
viruses in purple. Dashed lines indicate epidemiological transitions affected by interactions. (Online version in colour.)
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supplementary material, figure S1), as we reasoned that empirical
studies would have maximal statistical power to detect co-
infection at that time point. Nevertheless, this choice is arbitrary,
and we considered an alternative calculation in a sensitivity
analysis, described below. In the following, we drop the time argu-
ment (PR = PR(tmax)) and we simply refer to the prevalence ratio
calculated at that time point.

Of note, other definitions of the prevalence ratio are possible
and have been used in previous studies. For example, earlier
studies of the association between SARS-CoV-2 and influenza
compared the fraction of individuals infected with virus 2
among those infected with virus 1 to the fraction infected
with virus 2 among those uninfected with virus 1—that is, a test-
negative design [16–18]. Using the above notations and after
some algebra, the corresponding prevalence ratio PR0 equals:

PR0 ¼ p12=p1
ðp2 � p12Þ=ð1� p1Þ ¼ PR

1� p1
1� PR� p1

:

However, this alternative prevalence ratio is no longer sym-
metric in viruses 1 and 2, which implies an arbitrary choice of
virus 1. We, therefore, prefer our formulation, but we point out
that the two prevalence ratios are approximately equal for low
prevalence of infection with virus 1. Furthermore, it can be
shown that PR0 ≥ 1⇔ PR≥ 1, such that the sign of the interaction
inferred from either ratio is identical.
(c) Model parametrization
In numerical applications, we considered the pair influenza
(virus 1)–SARS-CoV-2 (virus 2) and we fixed the parameters
accordingly (table 1). Specifically, for influenza we assumed an
average latent period of 1 day and an average infectious period
of 4 days, resulting in an average generation time of 3
days [24,26]. For SARS-CoV-2, we assumed an average latent
period of 4 days and an average infectious period of 5 days
(average generation time of 6.5 days) [25,27]. The reproduction
number of influenza was fixed to 1.3 [23] and that of SARS-
CoV-2 to 2.5 [25]. To initialize the model, we assumed that a
small fraction XES(0) = e0,1 = 10−3 had been exposed to influenza
and XSE(0) = e0,2 = 10−5 to SARS-CoV-2. These initial conditions
were chosen to reflect the epidemiological situation in early
2020 in Europe, where influenza was already circulating before
the emergence of SARS-CoV-2 [28]. We further assumed that
XRS(0) = r0,1 = 40%of individuals were initially immune to
influenza [29], and XSR(0) = r0,2 = 0% to SARS-CoV-2. Other indi-
viduals were assumed fully susceptible (XSS(0) = 1− e0,1− e0,2−
r0,1− r0,2), and all other compartments were initialized to 0. For
simplicity, in the base models we considered only symmetric
interactions, that is, the effect of virus 1 on virus 2 was assumed
equal to that of virus 2 on virus 1. Furthermore, we assumed that
interaction could not change sign over the course of infection,
and we therefore tested negative (0.2≤ θ(T ), θ(I )≤ 1) and positive
(1≤ θ(T ), θ(I )≤ 5) interactions separately.

(d) Simulation protocol
In all scenarios, the model was integrated numerically for a
period of 400 days, with state variable values recorded every
0.05 days.

(e) Sensitivity analyses for influenza and SARS-CoV-2
To verify the robustness of our results, we conducted three sen-
sitivity analyses. First, we considered an alternative prevalence
ratio, similarly defined but averaged ±14 days around the time
of peak co-infection prevalence. Second, although earlier exper-
imental studies found that influenza can affect SARS-CoV-2
infection [5,9], the effect of SARS-CoV-2 on influenza infection,
if any, is currently unknown. Previous experimental studies—
e.g. of influenza and RSV [7]—demonstrated the possibility of
non-symmetric interactions, where one virus affects the



Table 1. List of model parameters.

parameter meaning

fixed value or interval
(influenza–SARS-CoV-2
analysis)

fixed value or interval
(global sensitivity analysis) source/comment

s�1
1 average latent period

of influenza

1 day s�1
1 ¼ s�1

2 ¼ s�1

s�1 [ [1� 14] days

[24]

s�1
2 average latent period

of SARS-CoV-2

4 days [25]

g�1
1 average infectious

period of influenza

4 days g�1
1 ¼ g�1

2 ¼ g�1

g�1 [ [4� 14] days

[26]

g�1
2 average infectious

period of

SARS-CoV-2

5 days [25,27]

R1 reproduction number

of influenza

1.3 R1 ¼ R2 ¼ R

R [ {1:5, 2:0, 2:5}

[23]

R2 reproduction number

of SARS-CoV-2

2.5 [25]

e0,1 initial fraction exposed

to influenza

10−3 e0,1 = e0,2 = 10−5 assumption: influenza

circulated before

SARS-CoV-2 [28]

e0,2 initial fraction exposed

to SARS-CoV-2

10−5

r0,1 initial fraction immune

to influenza

0.4 r0,1 ¼ r0,2 ¼ r0
r0 [ [0:0� 0:4]

[29]

r0,2 initial fraction immune

to SARS-CoV-2

0 assumption

d�1 ¼ d�1
1 ¼ d�1

2 average post-infectious

period

1–14 days 1–14 days [30]

u(I) ¼ u(I)1 ¼ u(I)2 strength of interaction

during infectious

period

0.2–5 1–5 assumption

u(T) ¼ u(T)1 ¼ u(T)2 strength of interaction

during post-

infectious period

0.2–5 1–5 assumption
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other, but not the other way around. We therefore tested an
alternative hypothesis of non-symmetric interactions, for which
influenza affected SARS-CoV-2 infection, while SARS-CoV-2 did
not affect influenza infection (u(I)2 ¼ u(T)2 ¼ 1). Third, we tested a
scenario with seasonal transmission (representing, for example,
weather-induced changes in virus survival [31,32]), modelled as
a multiplicative effect on the transmission rate of each virus.
For simplicity and interpretability, the seasonal forcing function
was chosen as a sine wave:

s(t) ¼ 1þ Acosv(t� f),

where ω = 2π/365 day−1 is the annual angular frequency, A∈ {0,
0.1, 0.2} the peak relative semi-amplitude and ϕ = 100days the
peak time. This peak time was chosen to approximately coincide
with the peak time of co-infection (electronic supplementary
material, figure S1), under the assumption of co-circulation
during periods of higher seasonal transmission (e.g. during
winter in temperate climates).
( f ) Global sensitivity analyses
To examine more generally the properties of viral infection
and interaction that affected the prevalence ratio, we conducted
a global sensitivity analysis for a broad range of respiratory
viruses [33]. For simplicity, we assumed a fully symmetric
model with identical characteristics of the two viruses, and we
then proceeded in three steps. First, we used a Latin hypercube
design to sample 103 values (over the ranges indicated in
table 1, [30]) of the following six parameters: average latent
period (1/σ), average infectious period (1/γ), average post-infec-
tious period (1/δ), degree of interaction during the infectious
period (θ(I )), degree of interaction during the post-infectious
period (θ(T )) and initial fraction immune (r0). Second, we simu-
lated the model and calculated the prevalence ratio for every
parameter set. Finally, we used a normal generalized additive
regression model (GAM) with log-link to simultaneously esti-
mate the association between the prevalence ratio and every
input parameter [34]. For every parameter, the association was
modelled using a basis of cubic splines, with a maximum basis
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dimension of 10. Preliminary analyses indicated that the
prevalence ratio was sensitive to the reproduction number, in iso-
lation and in interaction with other parameters. To simplify the
regression model, we, therefore, ran the global sensitivity analy-
sis for three different values of the reproduction number (1.5, 2.0
and 2.5). To dissect the association of the prevalence ratio with
every input parameter, we fitted the same GAM to the preva-
lence of co-infection ( p12, numerator of prevalence ratio) and to
the product of single-infection prevalences ( p1p2, denominator
of prevalence ratio).

(g) Numerical implementation
We implemented and simulated all the models using the pomp
package [35] in R v. 3.6.3 [36]. For the global sensitivity analysis,
we used the mgcv package [34] to fit the GAMs and the ggeffects
package [37] to plot the marginal effect of each input parameter.
Finally, we used the renv package to keep track of all packages’
version and to increase reproducibility [38].
B
289:20212358
3. Results
(a) The prevalence ratio correctly identifies the sign, but

not the degree, of uniform interactions
We first considered interactions of equal strength during
the infectious and post-infectious periods (θ = θ(I ) = θ(T ))—
henceforth referred to as uniform interactions. Example
simulations of negative, neutral and positive interactions
between influenza and SARS-CoV-2 are plotted in the electronic
supplementary material, figure S1. Compared with the no-
interaction scenario (peak co-infection prevalence: 0.2%), the
peak amplitude of co-infection was lower for negative inter-
action (0.1%) and higher for positive interaction (1.3%). In all
scenarios, however, the time of peak co-infection was approxi-
mately identical (range: 77.7–79.7 days). Next, we examined
the general relationship between the strength of interaction
and the prevalence ratio for different values of the post-infec-
tious period in the range 1–14 days (figure 2). We found that
the prevalence ratio equalled 1 for non-interacting viruses and
thus permitted correct identification of neutral interactions
(θ = 1). For interacting viruses (θ≠ 1), the prevalence ratio also
correctly estimated the sign of the interaction, but systematically
underestimated its strength. In addition, the degree of underes-
timation increased with the strength of interaction and the
duration of the post-infectious period. Hence, we found evi-
dence that the prevalence ratio enabled qualitative, but not
quantitative, estimation of uniform interactions.

(b) Higher interaction post-infection can cause the
prevalence ratio to mis-identify non-uniform
interactions

Next, we considered the more general case of interactions that
differed during the infectious and the post-infectious periods,
or non-uniform interactions (θ(I )≠ θ(T )). For these experiments,
we assumed an average post-infectious period of 7 days and
we tested negative (0.2≤ θ(I ), θ(T )≤ 1) and positive (1≤ θ(I ),
θ(T )≤ 5) interactions separately. Because higher values of θ
actually resulted in lower interaction when the true inter-
action was assumed negative, in the following we define
the strength of interaction as 1− θ for negative interactions
and as θ for positive interactions during either the infectious
or the post-infectious period. As shown in figure 3, we found
that the prevalence ratio was a monotonic function of the
strength of interaction during the infectious period, either
decreasing for negative interactions or increasing for positive
interactions. Hence, in either case stronger interaction during
the infectious period helped the prevalence ratio identify
the true interaction. By contrast, higher interaction during
the post-infectious period blurred the interaction inferred
from the prevalence ratio. For weak interaction during infec-
tion (0.90≤ θ(I )≤ 1.75, 11% of tested scenarios for negative
interactions and 14% for positive interactions), these two
opposing effects combined caused the prevalence ratio to
mis-identify the sign of interaction in scenarios with strong
interaction post-infection. In the other scenarios, the preva-
lence ratio correctly identified the sign of the interaction,
but substantially underestimated its strength (e.g. prevalence
ratio of 0.56 for θ(I ) = 0.2 and θ(T ) = 1, of 1.91 for θ(I ) = 5
and θ(T ) = 1). These experiments demonstrate that the preva-
lence ratio is an unreliable measure of interaction between
influenza and SARS-CoV-2.

(c) Sensitivity analyses demonstrate the results’
robustness for influenza and SARS-CoV-2

In sensitivity analyses, we first verified that our results were
robust to an alternative calculation of the prevalence ratio (elec-
tronic supplementary material, figure S2). Second, we repeated
our analyses for non-symmetric interactions with no effect of
SARS-CoV-2 on influenza infection (electronic supplementary
material, figure S3). The results were broadly comparable to
those for symmetric interactions (figure 3), except that fewer
parameter combinations caused the prevalence ratio to mis-
identify the sign of interaction (7% of all combinations tested,
compared with 13% for symmetric interactions). However, the
strength of positive interaction was also more severely underes-
timated in this scenario (prevalence ratio range: 0.83–1.51,
compared with 0.56–1.91 for symmetric interactions). Third,
we tested a scenariowith seasonal forcing in transmission (elec-
tronic supplementary material, figure S4). We found that the
prevalence ratio was moderately sensitive to the amplitude of
seasonality, with interaction more severely underestimated for
higher amplitude. These results remained robust to alternative
seasonal peak time values that approximately coincided with
the time of peak co-infection.

(d) Global sensitivity analysis highlights properties of
viral infection that obscure or facilitate estimation
of interaction

In a global sensitivity analysis of positive interactions (θ(I ),
θ(T )≥ 1), we assessed how different properties of viral infec-
tion and interaction affected the prevalence ratio. As shown
in figure 4, the prevalence ratio decreased with the average
latent period, the average post-infectious period, the strength
of interaction post-infection, and the initial fraction immune.
Hence, these four parameters blurred the interaction inferred
from the prevalence ratio. Conversely, the average length of,
and the strength of interaction during the infectious period
increased with the prevalence ratio and therefore facilitated
estimation of the interaction. Of note, higher values of the
reproduction number dampened all these variations and
decreased the prevalence ratio. To better understand these
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associations, we estimated the effect of each parameter on the
numerator (prevalence of co-infection p12) and the denomi-
nator (product of single-infection prevalences p1p2) of the
prevalence ratio. As shown in the electronic supplementary
material, figure S5, the prevalences of single- and co-infec-
tions decreased as the average latent period and the initial
fraction immune increased. However, for both parameters
co-infection prevalence decreased more rapidly than the
product of single-infection prevalences, thereby explaining
the overall variation of the prevalence ratio (figure 4). By con-
trast, the prevalences of single- and co-infections increased
with all the other parameters—as expected, since these
parameters either intensified (θ(I ) and θ(T )) or extended (γ−1

and δ−1) (positive) interaction. The overall effect of these
parameters on the prevalence ratio was again explained by
their different effects on the prevalence of co-infection and
on the product of single-infection prevalences. In summary,
these results confirm our earlier experiments on influenza
and SARS-CoV-2 and highlight additional factors that make
it difficult to interpret the prevalence ratio as a measure of
interactions between respiratory viruses.
4. Discussion
In this study, we aimed to determine whether the prevalence
ratio—defined as the ratio of the prevalence of co-infection to
the product of individual infection prevalences—enabled
reliable estimation of interactions between respiratory viruses.
To do sowe designed a simulation study that built on a broadly
applicable epidemiological model of co-circulation of two
emerging or seasonal respiratory viruses. By focusing on the
pair influenza–SARS-CoV-2, we first demonstrated that the
prevalence ratio systematically underestimated the strength
of interaction, and could even mistake the sign of interactions
that persisted after clearance of infection. In a global sensitivity
analysis, we further identified properties of viral infection—
such as a high reproduction number, a long latent period, or
a short infectious period—that blurred the interaction inferred
from the prevalence ratio. Our results show that, in the absence
of precise information about the timing of interaction, eco-
logical or epidemiological studies designed to estimate the
prevalence ratio, or variations thereof, may be unreliable.

With the likely prospect of COVID-19 becoming endemic,
there is a pressing need to elucidate the potential interactions
of SARS-CoV-2with other pathogens, in particular respiratory
viruses. Thus far, most epidemiological studies of SARS-CoV-2
interaction used simple statistics of co-circulation, such as the
prevalence of co-infection, the prevalence ratio, or some vari-
ation thereof [16–18,39,40]. As we showed here, however,
such studies—even those carefully designed to control for var-
ious sources of bias like age or co-morbidities—are probably
uninformative. Besides the prevalence ratio, we found that
the prevalence of co-infection was also an unreliable measure
of interaction, as low prevalences (less than or equal to 2.8%
in the electronic supplementary material, figure S1, bottom



true interaction: positive

true interaction: negative

1 2 3 4 5

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

2

3

4

5

strength of interaction during infectious period

st
re

ng
th

 o
f 

in
te

ra
ct

io
n 

du
ri

ng
 p

os
t−

in
fe

ct
io

us
 p

er
io

d
st

re
ng

th
 o

f 
in

te
ra

ct
io

n 
du

ri
ng

 p
os

t−
in

fe
ct

io
us

 p
er

io
d

1.0 1.5
prevalence ratio

Figure 3. Relationship between strength of interaction and prevalence ratio for non-uniform interactions between influenza and SARS-CoV-2. The scenarios tested
correspond to u(I)1 ¼ u(I)2 ¼ u(I) and u(T )1 ¼ u(T)2 ¼ u(T); other parameters were fixed to model the coupled dynamics of influenza and SARS-CoV-2 (cf. table 1).
For negative interactions (top panel), the x-axis represents 1− θ(I) and the y-axis 1− θ(T); for positive interactions (bottom panel) θ(I) and θ(T). Hence, in either
panel the true strength of interaction increases from left to right and from bottom to top. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20212358

7

panel) could be consistent with strong, positive interactions. As
suggested by our global sensitivity analysis, the deficiencies of
statistics based on co-infection prevalence may be even more
severe for SARS-CoV-2 infection, characterized by a relatively
high reproduction number [25]. In summary, we submit that
further epidemiological studies will be needed to elucidate
the interactions of SARS-CoV-2with other respiratory viruses.

More generally, our study adds to the growing body of
evidence demonstrating the shortcomings of seemingly intui-
tive measures of interaction. Using the same model, Shrestha
et al. demonstrated the unreliability of phase as an indicator of
interaction [14]. Using a susceptible infected susceptible
(SIS)-like model of multiple pathogens causing chronic infec-
tion, Hamelin et al. showed that the prevalence ratio (as
defined in this study) exceeded unity for non-interacting
pathogens [20]. By contrast, we found that the prevalence
ratio equalled unity for non-interacting pathogens (figure 2).
This discrepancy, explained by the different pathogens and
modelling assumptions considered in [20], highlights the
sensitivity of the prevalence ratio to the characteristics of
infection. More generally, it suggests that our results cannot
be extrapolated to pathogens not well described by the sus-
ceptible infected recovered (SIR)-like model used here.
Using a series of SIS and susceptible infected recovered sus-
ceptible (SIRS) models, Man et al. examined the properties
of the odds ratio, defined as the ratio of the odds of one
type in the presence of the other type, relative to the odds
of this type in the absence of the other type—a quantity clo-
sely related to the alternative prevalence ratio PR0 defined
above [19]. They proved that odds ratios exceeding unity
could mask negative interactions. Despite differences in the
scope of, and the models used in, this study, our results repli-
cate this finding (figure 3). Furthermore, the association
between the prevalence ratio and the interaction parameter
in our study (figure 2) is comparable to that in [19] (fig. 2a;
SIRS direct model). Finally, in a field study to assess
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interactions between an intestinal pathogen and nematodes
in mice (where the true sign of interaction was known from
previous experimental evidence), Fenton et al. reported that
statistical methods based on cross-sectional data performed
poorly and typically estimated the wrong sign of inter-
action [41]. Our results align with these findings, and we
second Fenton et al.’s caution against the use of such methods
to study pathogen-pathogen interactions. In summary, our
study broadly agrees with previous evidence, and provides
new evidence specific to the epidemiology of emerging or
seasonal respiratory viruses.

The shortcomings of the prevalence ratio demonstrated
here might suggest the need for new statistical methods to
estimate interaction from co-detection prevalence data.
However, seconding Fenton et al. [41], we propose that
methods based on longitudinal data—collected at an appropri-
ately fine time scale—offer a more promising avenue of
research. Among those methods, mathematical models of
transmission provide a powerful tool to formulate and test bio-
logically explicit mechanisms of interaction, while capturing
the underlying, nonlinear dynamics of infection of each patho-
gen [42]. Robust statistical inference techniques now facilitate
fitting these models to epidemiological time series [43,44],
as demonstrated by earlier successful applications in the
field of pathogen interactions [45–48]. Alternatively, advanced
regression models have been developed to assess interactions
between respiratory viruses [49], but such models may be lim-
ited because they lack amechanistic formulation of interaction.
Altogether we propose that empirical or mechanistic models of
longitudinal data will be required to study the interactions of
SARS-CoV-2with other respiratory viruses, and more gener-
ally the interactions between respiratory pathogens [50].

Our study has four important limitations. First, becausewe
used a deterministic model expressed in proportions, we side-
stepped the important issue of statistical uncertainty, caused
for example by finite sample size or imperfect measurement
of infection prevalences. As the prevalence ratio was found to
systematically underestimate the strength of interaction, such
uncertainty—inevitable in practice—may further limit the
ability of the prevalence ratio to correctly identify interactions.
Second, for simplicity we did not include confounding
variables (e.g. age) that may also affect estimation of the preva-
lence ratio. Third, we considered only short-term interactions
that rapidly waned after clearance of infection. Although
such interactions appear to be the most biologically plausible
for different species of respiratory viruses [7,8], long-term inter-
actions resulting from adaptive cross-immunity have been
documented and could be relevant to other systems, such as
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the multiple types or subtypes of influenza [51,52]. Fourth,
for simplicity we only modelled interactions that affected
susceptibility to infection, because experimental evidence
suggests this mechanism predominates among respiratory
viruses [7,8]. However, other mechanisms—like changes
in the transmissibility or the duration of infection—are bio-
logically likely and could be tested for other classes of
pathogens. Acknowledging all these limitations, our simple
model could serve as a building block for further research on
epidemiological interactions.

In conclusion, our results show that the inherently
complex, nonlinear dynamic of emerging and seasonal res-
piratory viruses makes the interpretation of seemingly
intuitive measures of interaction difficult, if not impossible.
Despite these pitfalls, other statistical or mathematical
methods based on longitudinal data should enable epidemio-
logical research on pathogen interactions. Indeed, with
increasing evidence that SARS-CoV-2 and other pathogens
do not circulate in isolation but within polymicrobial systems,
such research should remain a priority.
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