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Attributable fractions inform research priorities and guide public policies. They are constructs 
subject to misconceptions, data gaps and misuses. Potential impact metrics should be carefully 
selected and interpreted based on their intended use. https://bit.ly/3kEJtlk

Epidemiologists interested in disease aetiology 
produce indicators of the increase in risk within 
a group of people exposed to a particular factor, 
compared to a non-exposed group. The ratio 
between these two quantities is the relative risk 
(RR), which, when higher than one, identifies factors 
that increase the risk of developing the disease, 
i.e. potential “risk factors”. The higher the RR, the 
stronger the risk factor. Now, a powerful risk factor 
to which only a small proportion of the population is 

exposed may generate a lower disease burden than 
a weaker risk factor to which a large proportion of 
the population is exposed [1]. It is precisely that kind 
of information, beyond RRs, that decision-makers 
in public health are asking for: quantitative tools 
designed to rank problems based on disease burden 
or number of cases related to different risk factors 
in the target population.

One such instrument of great importance is 
the concept of “attributable risk proportion” or 
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What proportion of the risk in a given population is attributable to a risk factor? The population 
attributable fraction (PAF) answers this question. “Attributable to” is understood as “due to”, 
which makes PAFs closely related to the concept of potential impact or potential benefits of 
reducing the exposure. The PAF is a tool at the border between science and decision making. 
PAFs are estimated based on strong assumptions and the calculations are data intensive, making 
them vulnerable to gaps in knowledge and data. Current misconceptions include summing up 
PAFs to 100% or subtracting a PAF for a factor from 100% to deduce what proportion is left to 
be explained or prevented by other factors. This error is related to unrecognised multicausality or 
shared causal responsibility in disease aetiology. Attributable cases only capture cases in excess 
and should be regarded as a lower bound for aetiological cases, which cannot be estimated 
based on epidemiological data alone (exposure-induced cases). The population level might 
not be relevant to discuss prevention priorities based on PAFs, for instance when exposures 
concentrate in a subgroup of the population, as for occupational lung carcinogens and other 
workplace hazards. Alternative approaches have been proposed based on absolute rather than 
relative metrics, such as estimating potential gains in life expectancy that can be expected 
from a specific policy (prevention) or years of life lost due to a specific exposure that already 
happened (compensation).
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“population attributable fraction” (PAF). Historically, 
PAFs were promoted by epidemiologists in the 
early 1950s [2, 3] to quantify the proportion of 
people afflicted by lung cancer who would not have 
developed the disease in the absence of exposure 
to active smoking. Various measures and related 
procedures followed in the 1970s and 1980s 
[4–6], and the topic has since been part of most 
epidemiology textbooks, although generally taught 
at the basic level. Usually reported as proportions 
(e.g. percentages) of cases of a disease that might 
be avoided, were the exposure of interest reduced 
or removed, PAFs have “become increasingly 
popular to carry out estimation of the burden of 
disease with the aim of identifying major risk factors 
contributing to important morbidity burdens as 
an aid to prioritizing risk reduction strategies” [7]. 
They now play a crucial role in the justification of 
public health decisions. Respiratory health is no 
exception, as exemplified by the recent figures 
published by the American Thoracic Society and 
the European Respiratory Society, estimating a 
substantial contribution of workplace exposures to 
the current burden of multiple chronic respiratory 
diseases [8].

Being familiar with such metrics and learning their 
proper uses, as much as their eventual misuses, is 
key to avoiding misinterpretation and grasping 
their clinical, research and policy implications. 
This article will: 1) define the metric, its main 
formulas and core assumptions; 2) summarise 
the pitfalls and misconceptions that may alter the 
validity and interpretation; and 3) highlight some 
of the complexities of chronic respiratory disease 
epidemiology that call for a cautious selection and use 
of figures to define public health problems in that field.

Attributable fractions: 
what is it about?

Formal definitions and preferred 
terminology

The PAF answers the question “What proportion 
of the risk in a given population is attributable to a 
risk factor?” In practice, the PAF is defined as the 
difference between the risk in the whole population 
(Rtot) and the risk in the unexposed group (R0), 
divided by the risk in the whole population (equation 
1 in table 1). “Attributable to” is understood as 
“due to”, which makes PAFs closely related to the 
concept of potential impact or potential benefits. 
Indeed, if x% of the current disease load is due to 
a particular risk factor, it retrospectively means 
that had the exposure prevalence been lower, 
fewer people would have developed the disease in 
that population (up to x% less, if no one had been 
exposed). By extension, PAFs are often interpreted 
as answering a prospective question: “By how 
much would the disease load be lowered in the 
future (over a specified period) if the exposure to 
this risk factor were reduced from now on, while 
nothing else were to change?” It may also be of 
interest to quantify that load and potential reduction 
specifically among the at-risk or exposed group; the 
corresponding metric is called attributable fraction 
in the exposed (AFE). It is defined as the difference 
between the risk in the exposed group (Re) and the 
risk in the unexposed group (R0), divided by the risk 
in the exposed group (equation 1′).

In 2015, Poole [6] noted, in a historical review of 
the PAF concept and its formulas, that some authors 

Table 1  Summary definitions and usual formulas for the attributable fraction

PAF AFE

Population of 
interest

The whole target population, irrespective of 
exposure to the risk factor

People exposed to the risk factor in the target 
population

Question 
answered

What proportion of the disease burden in a given 
(target) population is attributable to a given risk 
factor?

What proportion of the disease burden in those 
exposed in a given (target) population is attributable 
to a given risk factor?

Definition
PAF R= −R Rtot

tot

0
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Alternative 
formulas

Levin’s 1953 formula [3]:
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Miettinen’s 1974 formula [4]:
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(Equation 3)

AFE
RR
RR=

−( )1 	 (Equation 2′)

Note that to express PAFs and AFEs as proportions (%), formulas should be further multiplied by 100. The RR for PAF should be 
based on the same exposure definition as the prevalence, and for AFE on the same exposure definition as for defining the exposed 
group, and in both cases should be transportable to the target population. Pe: prevalence of exposure in the target population; PeD: 
prevalence of exposure in diseased people; AFE: attributable fraction in the exposed.
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have used interchangeably “population attributable 
risks” (PARs) and “attributable risks” (ARs) for PAFs. 
Now, ARs are also used to denote the risk difference. 
Following Rothman et al. [9] in 2008 and Poole [6] 
in 2015, we suggest using the term PAF to avoid 
confusion in terminology.

Main calculations

As studies directly allowing estimation of unbiased 
Rtot and R0 in the target population are rare, a PAF 
is often calculated by combining 1) prevalence 
of exposure (or distribution of exposure) to the 
risk factor, estimated from representative cross-
sectional surveys, with 2) RR estimated from 
cohort studies, case–control studies (under the 
rare disease assumption) and their meta-analysis. 
The typical formula by which RR is weighted by 
the prevalence of exposure in the target population 
(Pe) is presented in equation 2, often referred to 
as the Levin’s formula. For a fixed value of RR, the 
PAF can range from zero (no one is exposed) to a 
maximum value bound by RR minus one over RR (if 
everyone is exposed), meaning if RR=2, PAF would 
be at most 50% if the whole population is exposed. 
The latter situation corresponds to estimating the 
AFE (equation 2′).

One important condition to apply equations 
1 and 2 (respectively 1′ and 2′) is that no factor 
confounds the relationship between the risk factor 
and the disease. This condition is actually never 
met in practice. In case of confounding, it is not 
possible to simply use the adjusted RR in equations 
2 and 2′; this would produce biased estimates [10]. 
It is instead possible to use the adjusted RR in 
equation 3, but it requires a valid estimate of the 
prevalence of exposure in diseased people (PeD). 
Adjusted methods dealing with confounding 
and effect modification are beyond the scope of 
the current article, but details can be found in 
articles by Gefeller [11] and Benichou [12], who 
review adjusted PAF (or AR) estimators based on 
cross-sectional, cohort and case–control studies. 
Defining and interpreting attributable fractions 
based on right-censored survival data require 
further caution [13].

Another important issue in deriving and 
interpreting PAFs is the precision of estimates. 
Calculating the variance of a PAF and then deriving 
(95%) confidence intervals have long been topics 
of interest to methodologists. In their article from 
2006, Steenland and Armstrong [14] provide 
a good summary of formulas matching with 
equations 2 and 3, also mentioning advanced 
approaches like Monte Carlo simulations 
[15]. Some statistical softwares now provide 
computation tools, such as the AF [16] and 
stdReg [17] R-packages or the PUNAF, PUNAFCC 
and REGPAR packages in Stata [18], which allow 
derivation of attributable fractions and their 
confidence intervals from different study designs.

Core assumptions

The term “attributable” has a causal interpretation. 
The first and foremost assumption is therefore 
that the risk factor is a causal one. It means 
there must be enough evidence and a scientific 
consensus that the observed association between 
the exposure and disease of interest can be 
interpreted as reflecting causation. This may take 
decades, as is usually the case for occupational 
and environmental carcinogens, precluding the 
introduction of the risk factor in scenarios of risk 
reduction strategies. It is thus important to keep 
in mind that understudied or complex (although 
actual) causes will be less likely to be included 
in the scope of the calculations. In practice, this 
condition may be applied based on a stringent 
definition of causation, or a broader one. In a 
recent estimation of cancers attributable to 
occupational exposures in France, conducted by 
the International Agency for Research on Cancer 
(IARC), only group 1 (definite) carcinogens were 
considered in the main analysis [19, 20], while the 
prior UK comprehensive study also included group 
2A (probable) human carcinogens [21].

The second assumption is that data used to 
estimate the PAF in the target population are valid 
and accurate. “Ideally, the attributable fraction 
should be estimated from a lifetime follow-up of 
exposed and non-exposed cohorts in the population 
of interest. In practice, the attributable fraction 
is usually based on one or more epidemiologic 
studies of specific exposed and non-exposed 
populations with incomplete follow-up, and results 
are often applied to a larger general population” 
[14]. While precision is reflected in confidence 
intervals (be it for prevalence, RR or PAF itself), 
uncertainty should also be carefully discussed 
by listing potential confounding, selection and 
information bias. It is therefore key to assess 
transportability to the target population in terms of 
exposure distribution, timeline, sociodemographic 
characteristics and other factors that may influence 
estimates. Hutchings and Rushton [22] provide 
an innovative example of how Monte Carlo 
sensitivity analysis may be used to weigh the main 
sources of uncertainty against each other. Their 
analysis of lung cancer and respirable crystalline 
silica exposure among men in Britain yields a PAF 
of 3.9% with a credibility interval of 2.0–16.2%. 
The uncertainty was mainly driven by the choice 
of RR and, to a lesser extent, by the employment 
turnover used as input to estimate the prevalence 
of occupational exposure over the relevant time 
window. Such approaches are important to identify 
input parameters that are critical to improve the 
relevance of PAF estimates.

Additional assumptions are required when PAFs 
are used to predict potential benefits from lowering 
exposure to a risk factor. The natural history of the 
disease and causal mechanisms involved should be 
at least minimally understood in terms of latency, 
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existing threshold, dose–response relationship, 
and interaction with other factors to cause the 
disease. Interpreting PAFs as potential impact 
fractions requires that the intervention will work 
quickly and that other factors that affect risk will 
not be affected over the same period, which are 
both questionable. Reversibility of damage is also 
key. For instance, if the damage is irreversible, then 
prevention will be successfully achieved only by 
avoiding new-onset exposures. If it is instead 
reversible, then reducing or eliminating ongoing 
exposures will also be efficient in reducing the 
risk in those ever exposed, as was evidenced 
with smoking. Finally, the underlying exposure 
reduction scenario should be plausible based on 
identifiable actions. For example, assuming that 
every current smoker in a population will quit 
shortly and that no one will ever become a smoker 
any more is not realistic. In contrast, banning 
asbestos and imposing lower exposure limits to 
silica dust in the workplace have proved feasible 
(although achieved through decades of social 
mobilisation) and efficient to prevent asbestosis, 
silicosis, lung cancer and other specific respiratory 
diseases in countries where those regulations 
were adopted. This makes the choice of realistic 
risk reduction scenarios instrumental in giving a 
comparative (and social) value to these metrics [6].

Properties

The magnitude of PAFs is highly dependent on 
exposure definition and the choice of a reference 
level. Both will determine the prevalence of exposure 
as well as the risk in the exposed and unexposed 
groups. In the absence of a (clear) threshold, more 
restrictive definitions of the reference level will in 
particular lead to higher prevalence of exposure, 
while a broader definition of the reference group will 
play in the opposite direction. The interpretation of 
PAFs should be accompanied by a clear statement 
of that reference level and a discussion of how it 
applies to the target population.

Another important feature of PAFs is their 
distributive property. This means that, conditional 
on keeping the reference level constant, the total 
PAF equals the sum of PAFs (or rather “components 
of attributable fractions” (CAFs) [23]) for different 
exposure groups. If the reference group is non-
exposed, and three exposure levels have been 
defined based on mutually exclusive bounds, then 
the total PAF for the risk factor is the sum of the three 
CAFs corresponding each to one level of exposure 
(compared to the same non-exposed group). This 
property is particularly interesting when partial rather 
than total elimination of the exposure is considered.

Finally, a tricky property of the PAF is that it 
will take the same value for two populations with 
the same RR and same exposure prevalence. 
Yet, if incidence is lower in one of the two 
populations, then the same PAF would lead to 
a substantially lower potential impact in terms 

of number of avoided disease load and/or saved 
lives. This draws our attention to the importance 
of considering different metrics, both in terms of 
relative importance, e.g. PAFs, and absolute burden, 
e.g. attributable or excess cases, while comparing 
potential benefits of the same intervention applied 
in two different populations, or in relation to two 
different health outcomes [24].

On attributing disease 
burden to causal factors: 
mind the knowledge gap

What does attribution really 
mean?

Although attributable cases are usually interpreted 
as aetiological cases, i.e. cases of disease that were 
caused by a specific exposure of interest, they are 
estimated based on excess cases, i.e. cases that 
would not have occurred during the study period, 
had the exposure been absent [25]. While all 
excess cases are aetiological cases, the reverse 
is not true. In fact, for an attributable fraction to 
equal an aetiological caseload, conditions should 
be met that are not easily warranted. Every time 
the exposure hastens disease onset among 
people who would anyway have got the disease 
during the study period, or some of the caused 
cases are balanced with prevented cases (by the 
same exposure), the aetiological caseload will be 
underestimated. The attributable fraction should 
therefore be seen as a plausible lower bound for 
the aetiological fraction [26]. Authors need to be 
careful in wording the interpretation of PAFs in 
order not to confuse the excess and aetiological 
fractions [6, 27]. Although this terminology has 
not been proposed so far, we personally would 
find more suitable the use of “attributed fraction” 
(or cases) in place of “attributable fraction”, 
which makes clear that attribution is not given 
by directly measurable facts, but constructed 
based on partially observable facts interpreted in 
the light of scientific theory. Another important 
distinction is between attributable (or attributed) 
cases at the group or population level and the 
decision (sometimes made by courts or legal 
compensation systems) that the disease was 
caused by the risk factor in a particular person. 
Other metrics have been proposed to quantify the 
probability of a causal contribution at the individual 
level, in particular the probability of causation 
(the probability of being an exposure-induced 
case), which has been extensively discussed by 
Greenland and Robins [25, 26, 28, 29].

Do not sum up… or subtract!

The problem of wrongly summing up PAFs 
calculated for single risk factors, or conversely trying 
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to deduce the upper bound of the PAF for a particular 
risk factor by subtracting the PAF for another risk 
factor from 100%, has been repeatedly pointed out 
in the epidemiology and public health literature over 
the last two decades [27, 30]. In 2005, Rothman 
and Greenland [31] explained nicely why this could 
not be done, based on multicausality, or shared 
causal responsibility [32]. That model of causation 
acknowledges that “a given disease can be caused 
by more than one causal mechanism, and every 
causal mechanism involves the joint action of a 
multitude of component causes” [31].

Let’s consider three causal mechanisms that 
involve five causal factors in total. The first causal 
mechanism involves the combined action of risk 
factors A, D and E; the second involves A, B and C, 
while the third involves B, D and E. Suppose that the 
PAFs for each causal mechanism distribute this way: 
40% for the first, 35% for the second, and 25% for 
the third. As shown in table 2 for causal factors A and 
B, the PAF for each causal factor will be given by the 
sum of PAFs for causal mechanisms in which each 
risk factor is involved. In this example, causal factor A 
that is involved in two causal mechanisms has a PAF 
of 75%, while the PAF for B is 60%. This makes clear 
that summing up PAFA and PAFB would yield a PAF 
higher than 100%. The error of thinking that PAFs 
sum up to 100% stems from not understanding that 
A and B are being involved in a common mechanism. 
When we are summing PAFA and PAFB we are in fact 
counting twice the 35% of cases that occur through 
causal mechanism 2: once for causal factor A, once 
for causal factor B. This multicausality model allows 
us to understand in practice that “every case of every 
disease has some environmental and some genetic 
component causes [causal factors], and therefore 
every case can be attributed both to genes and to 
environment” [31]. For the same reason, it is not 
right to consider the complement of a PAF (e.g. 
100%−PAF) as the proportion of a risk that can be 
attributed to other causes.

This has strong implications; in particular, the 
fact that the PAF for a causal factor is high does 
not mean that every other causal factor necessarily 
has a low PAF and minor impact. It just means that 
removing/reducing exposure to that particular factor 
would have a potential high impact on lowering the 
disease burden. It does not say anything about other 
factors being unimportant. In fact, even another 
factor with a lower PAF but more feasible or ethical 
exposure reduction actions could well be preferred 
as a target for prevention, in the end. Therefore, the 
fact that a single risk factor (or the combination of 
known risk factors) has a high PAF does not directly 
mean that there are interventions able to improve 
population distributions of those risk factors; neither 
can it be used to plead for a reduced priority on the 
search for new causes.

The other thing is that removing one of the 
component causes through prevention will prevent 
every case in which that component cause might 
have been involved. If A is completely eliminated, 

then only causal mechanism 3 will remain, and 
the PAF for B, D and E would then rise to 100%, 
although relative to a lower burden of disease (in 
number of incident cases).

From “no data, no problem”…

In spite of conceptual clarity provided by 
methodologists in epidemiology, those attempting 
to apply PAFs are often faced with important 
empirical knowledge and data gaps. “No data, no 
problem” is a key issue regarding PAFs, which require 
the gathering of a large amount of knowledge prior 
to any estimation and are data- and computer-
intensive. A causal link must be established between 
the risk factor of interest and the selected disease 
outcome. We already mentioned that meeting this 
assumption is a long process: it took more than 
20 years between the first classification of diesel 
exhaust as a probable carcinogen to humans 
(group 2A) and its upgrade as a proved human 
carcinogen (group 1). Then an unbiased estimate 
of the RR must be available in the target population 
(or transportable from other populations) using a 
compatible disease definition. A valid prevalence 
of the exposure of interest in the same population 
is also needed, based on a definition of exposure 
consistent with available RRs and over a period 
relevant to disease aetiology (notably in terms of 
latency). In the French occupational cancer burden 
study conducted by IARC, 15 out of 68 group 1 
occupational carcinogens could not be considered 
due to lack of proper cancer incidence or exposure 
prevalence data [19]. Also, as the prevalence of the 
ever-exposed population over the relevant (long-
term) exposure period was not directly available 
for most of the considered carcinogens, it was 
estimated either through modelling (simulation) 
or correction of cross-sectional data based on 
expert decisions [20]. The implications may differ 
by population subgroups. For lung cancer, the joint 
PAF for 13 established (group 1) occupational lung 
carcinogens was estimated at 19.3% among adult 
French men and only 2.6% among women. It is, 
however, not clear to what extent the difference is 
due mainly to lower exposures among women or to 

Table 2  Theoretical example of multicausality and how it affects PAFs for single 
causal factors

Causal mechanism

1 2 3

Risk factors causally involved A, D, E A, B, C B, D, E

PAF for each causal mechanism 40% 35% 25%

PAF for causal factor A 40%+35%=75% NA

PAF for causal factor B NA 35%+25%=60%

NA: not applicable.
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more extensive data gaps about occupational lung 
carcinogens in women [33].

In the end, even when important hypotheses 
are met and calculation algorithms are robust, 
a metric will just be as good as the knowledge 
and data assembled to build it. Indeed, a metric 
is a construct that is based on numerous steps, 
each one bearing its part of uncertainty. The more 
complex or aggregate the metric, the more cautious 
we should be, at least in reviewing potentially 
important blind spots or distortions. This is all the 
more important if we intend to use the metric to 
define high-risk groups and target prevention, or 
even compensation.

…to “wrong question, wrong 
problem”

We have pointed out already that multicausality 
is difficult to take into account in the derivation 
of PAFs and should always be kept in mind at 
the interpretation stage. Multiple exposures and 
their eventual synergism or inhibition is another 
area in which important knowledge gaps can 
mislead us. We now know that on top of smoking, 
asbestos, crystalline silica dust, polycyclic aromatic 
hydrocarbons and diesel exhaust are established 
causal factors (or component causes) for lung 
cancer. But we know very little about how much 
co-exposures occur, quantitatively, which they 
obviously do in some population subgroups, like 
construction workers. And we know even less 
about eventual interactions between those factors, 
with some exceptions: notoriously asbestos and 
smoking do interact to synergistically increase 
the risk, beyond mere addition [34], although 
even this apparently robust statement has been 
challenged by a recent review [35]. Formulas have 
been proposed to estimate joint PAFs, i.e. summary 
PAFs for several risk factors taken together, but 
they are generally based on the assumption of no 
interaction or independent effects. Joint PAFs can 
also be directly derived from case–control studies 
where co-exposure prevalence, RRs, confounding 
and eventual effect modification can be taken into 
account. For example, Wild et al. [36] assessed that, 
among middle-aged men in a former industrial 
region in France, the joint PAF of asbestos, silica 
dust, polycyclic aromatic hydrocarbons and diesel 
exhaust for lung cancer amounted to 52–56% 
after adjusting for smoking. As pointed out by 
the authors, this suggests that beyond smoking, 
which is a powerful lung carcinogen, occupational 
exposures should be taken into account to identify 
relevant target groups for prevention.

This important comment raises the broader issue 
of the relevant target population for estimating 
attributable fractions, depending on how the risk 
factor distributes (or is distributed) within the 
general population. In the case of occupational 
carcinogens that concentrate within specific 

occupations, it would make sense to provide 
estimates by activity sector or even broader socio-
occupational groups, rather than reporting a diluted 
PAF at the scale of the whole population [37]. In 
a population-based case–control study, the joint 
PAF for asbestos, silica and diesel exhaust among 
middle-aged men was 29.3% for lung cancer; 
however, the decomposition of the PAF by socio-
occupational group showed that blue-collar workers 
contributed 92% of the attributed caseload [38]. 
In the case of occupational carcinogens, the 
population level estimates (overall 2–8% of incident 
cancers) are too often interpreted as confirming 
a posteriori their lesser aetiological importance 
or lower priority for prevention, whereas they 
are amenable to interventions beyond individual 
behaviours (banning or restrictions in use) and such 
interventions could help reduce social inequalities 
considerably.

Specific challenges 
and new avenues

Facing the complexities of chronic 
respiratory disease epidemiology

Some features of specific respiratory diseases 
should be further considered while estimating and 
interpreting PAFs, in particular in relation to disease 
definition and aetiology [39]. The heterogeneity 
of COPD and asthma phenotypes makes it 
challenging to consolidate disease definitions. 
This also implies that studies on which we rely 
to estimate attributable fractions are themselves 
heterogeneous. Their disease definitions are not 
necessarily in line with the latest internationally 
agreed definitions and, most importantly, with 
the intended use of the impact measures (e.g. for 
discussing complex aetiology, prevention priorities 
or compensation rules). For example, contrary to 
primary cancer of the lung, which can be clearly 
defined based on first diagnosis, “current asthma” 
definitions reflect the intermittent course of the 
disease, which requires accounting for incidence 
but also remission and persistence. COPD, on the 
other hand, is defined based on lung function 
levels that determine stages of severity. Another 
crucial aspect pertains to disease aetiology, which 
is key to selecting established causal factors. While 
respiratory diseases like lung cancer and COPD 
fit narrowly the causality paradigm supported 
by Bradford Hill’s viewpoints [40], the aetiology 
of asthma is by far less well understood. More 
generally, while many risk factors have been 
established during adulthood, there is growing 
evidence that in utero and early-life exposures, 
and typically a wide range of environmental or 
parental occupational exposures, may affect lung 
function later in life. We hence should keep these 
complexities in mind while interpreting attributable 
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fractions in relation to single exposures captured at 
one point in time (or for a limited period contingent 
on available data) rather than multiple exposures 
during critical time windows of susceptibility or 
over the life course.

Keeping up with meaningful 
methodological innovations

Beside the application of standard methods within 
a growing body of burden of disease studies, some 
important conceptual and statistical innovations 
were introduced that yet failed to be reproduced and 
appropriated by the wider audience. For instance, 
a stepwise procedure aiming at apportioning PAFs 
to individual risk factors and subpopulations was 
introduced in 1995 by Eide and Gefeller [23] 
and further developed [41]. This method allows 
estimation of sequential attributable fractions 
that are interpreted in terms of an additional 
reduction in disease occurrence when an exposure 
is eliminated in a given sequence, after having 
removed other risk factors. Newer approaches 
and metrics that have not yet been extensively 
discussed include pathway-specific attributable 
fractions [42] and degrees of necessity and of 
sufficiency [43]. Such recent developments in 
methodology are linked to the current shift in 
causal theory towards the potential outcomes 
framework [44] that stimulates many discussions 
among academics in epidemiology (see for example 
the special section on Causality in Epidemiology of 
the International Journal of Epidemiology, Volume 
45, Issue 6, December 2016).

Matching metrics and 
interpretations with their 
intended use

We pointed already towards some pitfalls and 
misuses of PAFs regularly seen among clinicians, 
epidemiologists and, even more so, people involved 
in public health decision making. We warned not 
to deduce from the value of a PAF for a single (or a 
combination of) factor(s) that other causal factors 
would be less important. We also discussed that the 
potential impact of reducing the exposure depends 
on how far the exposure is modifiable among the 
relevant subgroups in the population, through 
ethical and timely interventions.

At stake is the adequate selection and 
interpretation of metrics and their estimates 
to answer a particular, explicit question. The 
question may be about aetiology: “How much 
do we know about the causes of a disease? What 
further research is needed?” As pointed out by 
Poole [6] in 2015, “the greater the PAF for a 
given cause or set of causes, the more advisable 
it is to look for new causes among exposed 
persons, especially if the cause or cause(s) with 
the high PAF are resistant to favorable change 

at the population level”. We may instead wish 
to assess the importance of a particular causal 
factor (or group of causal factors) within a defined 
population, with the idea that the considered 
exposure(s) is amenable to interventions, and this 
would sustain advocacy towards moving ahead in 
that direction. Such exercise may be performed 
at different scales, from international [45] to 
regional [8] or national [20] levels, with their 
respective strengths and limitations. PAFs may 
also be estimated within a specific occupation 
rather than the general population. For example, 
in 2019, Dumas et al. [46] estimated that the 
attributable fraction of weekly use of disinfectants 
on COPD risk among a large cohort of registered 
female nurses in the USA was 12%. The authors 
concluded that this estimate, if confirmed by 
other studies, would call for the development 
of exposure-reduction strategies in healthcare 
settings.

The aim may more specifically be to model the 
burden that will arise from current exposures, or 
the benefits that could be achieved in the future 
through specific interventions or regulations 
adopted at the country level, as for the UK [47], 
or at the European Union level [48]. Recently, 
innovative approaches adopting a comparative 
risk assessment perspective have been proposed 
to facilitate communication between scientists, 
managers and workers’ representatives. Building 
on previous suggestions to prefer absolute risk 
metrics such as years of life lost [49], in 2020 
Richardson et al. [50] developed a set of estimates 
and graphical outputs comparing the potential 
impact of two policies on a cohort of Ontario 
uranium workers. The results show that removing 
occupational exposure to radon progeny could 
increase life expectancy by an average of 6 months 
per worker (depending on age), also shifting the 
causes of death towards a different composition, 
in particular a lower contribution of lung cancer.

Conclusion

We have shown that calculating attributable 
fractions is partly a theoretical exercise, based 
on assumptions not all warranted in many 
settings, and that the metric should therefore be 
interpreted cautiously. An in-depth presentation 
of other methodological complexities can be found 
elsewhere [6, 26]. The estimates provided by PAFs 
are imperfect. They are nevertheless widely used 
to pose disease aetiology and research needs, to 
debate alternative actions to reduce the disease 
burden in a target population, as well as (in 
particular) to set occupational or environmental 
disease compensation rules. The later misuse of 
PAFs or the more specific probability of causation 
metric may raise even greater problems where 
knowledge on biological mechanisms as well as 
epidemiological/exposure data are not sufficient 
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to frame the question and answer it adequately. 
Beyond the scientific difficulties in documenting 
complex industrial and environmental hazards 
over long periods of time, we should keep in mind 
what science and technology studies have taught 

us: that undone science and the production of 
ignorance are narrowing the definition of problems 
and shaping blind spots that complicate the 
improvement of public health, PAFs being one 
good example [51].
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