Skip to main content
. 2022 Jan 12;40(4):1053–1075. doi: 10.1007/s00354-021-00152-0

Table 1.

Analysis of the CA model

Layer (type) Output size Parameters
input_1 (Input Layer) (100, 100, 1) 0
conv2d_1 (Conv2D) (100, 100, 32) 320
max_pooling2d_1 (MaxPooling2) (50, 50, 32) 0
conv2d_2 (Conv2D) (50, 50, 16) 4624
max_pooling2d_2 (MaxPooling2) (25, 25, 16) 0
conv2d_3 (Conv2D) (25, 25, 8) 1160
max_pooling2d_3 (MaxPooling2) (13, 13, 8) 0
conv2d_4 (Conv2D) (13, 13, 8) 584
up_sampling2d_1 (UpSampling2) (26, 26, 8) 0
conv2d_5 (Conv2D) (26, 26, 16) 1168
up_sampling2d_2 (UpSampling2) (52, 52, 16) 0
conv2d_6 (Conv2D) (50, 50, 32) 4640
up_sampling2d_3 (UpSampling2) (100, 100, 32) 0
conv2d_7 (Conv2D) (100, 100, 1) 289
Total learnable parameters: 12,785