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Abstract

Modern recording techniques now permit brain-wide sensorimotor circuits to be observed 

at single-neuron resolution in small animals. Extracting theoretical understanding from these 

recordings requires principles that organize findings and guide future experiments. Here we review 

theoretical principles that shed light onto brain-wide sensorimotor processing. We begin with an 

analogy that conceptualizes principles as streetlamps that illuminate the empirical terrain, and we 

illustrate the analogy by showing how two familiar principles apply in new ways to brain-wide 

phenomena. We then focus the bulk of the review on describing three more principles that have 

wide utility for mapping brain-wide neural activity, making testable predictions from highly 

parameterized mechanistic models, and investigating the computational determinants of neuronal 

response patterns across the brain.

Multiple principles will be needed to understand sensorimotor processing

Understanding brain-wide circuit mechanisms of behavior is a central goal of neuroscience. 

Sensorimotor circuits require multiple processing stages to extract relevant sensory 

information, select a course of action, and generate appropriate motor commands. 

Considerable effort has already gone into deciphering individual stations within such 

circuits, but understanding integrated sensorimotor processing remains challenging. In 

particular, sensorimotor information flow is flexible, state-dependent, and multidirectional. 

How does the brain integrate multiple sensory streams with the outcomes of past behavior 

to holistically guide action selection? How do memory and motivation shape sensorimotor 

processing, and how are they shaped by it? Inputs and outputs both shape representation 

in neural networks, so an integrated view is also needed to decipher the logic of 

sensorimotor coding. For example, to what extent does the animal’s behavioral repertoire 

shape the priorities of sensory computation? These questions are becoming increasingly 

experimentally accessible [1, 2], yet they are formidable, and their answers will be 

complicated. We argue here that quantitative testable theories will be needed to organize 

empirical findings and prioritize future experiments [3].

One can conceptualize a successful theoretical science as a well-lit terrain (Figure 1a). 

Like someone metaphorically looking for lost keys only under a streetlamp, scientists are 

limited by the conceptual frameworks they use to understand the world. Scientists need 
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streetlamps to ensure that they not only see but also comprehend whatever is in front of 

them. We believe that theoretical principles provide the best streetlamps, as once found they 

can illuminate many phenomena quantitatively. We consider their light as concrete models 

and derivable results, and the illuminated terrain as the principle’s domain of applicability. 

A famous example from the history of physics is the principle that mass can be neither 

created nor destroyed. Physicists extracted light from this principle by deriving and using the 

continuity equation, which quantifies how the amount of matter in a given region changes 

via inward and outward flow. The continuity equation in turn implied the diffusion equation, 

revealing this principle’s wide domain of applicability to phenomena spanning statistical 

physics, chemistry, and biology.

Useful principles can have limited domains of applicability for two reasons. First, useful 

principles can fundamentally fail, as when Einstein realized that mass could be converted 

to energy. This particular failure led to generalization, as the principle of conservation of 

energy gracefully absorbed the conservation of mass. The generalized continuity equation 

could then be applied to new domains like cosmology. Second, a principle’s domain of 

applicability is limited by its relevance to specific questions of interest. For example, the 

continuity equation contributes centrally to the theory of fluid flow but not rigid-body 

motion, even though it’s valid in both settings. Moreover, P. W. Anderson argued in “More 

is Different” that understanding a complex system requires fundamentally different concepts 

and laws at each scale [4]. The multiscale nature of the brain is well appreciated [5], 

and we will probably need many streetlamps to illuminate sensorimotor processing. For 

instance, the conservation of mass can help a neuroscientist calculate the time required for 

neurotransmitter diffusion, but it predicts little about neuronal population coding. We must 

develop a good understanding of when each principle works, when it breaks down, and when 

it becomes irrelevant. Only then can we choose the right principles to analyze the question at 

hand.

In this review we highlight five theoretical principles that are shedding light onto brain-wide 

sensorimotor processing. In the next section we briefly illustrate the streetlamp analogy 

with two example principles that show the utility of familiar principles for brain-wide 

neuroscience. In the remaining three sections we discuss three more principles that we 

consider especially applicable to brain-wide recordings of sensorimotor processes.

Models of brain-wide phenomena can further reveal a principle’s domain of 

applicability

We begin by illustrating the analogy with two familiar principles that have successfully 

driven experimental and theoretical progress in brain-wide neuroscience. First, much recent 

work has emphasized the principle that neurons in motor regions serve primarily as 
participants in a large dynamical system that collectively generates bodily movements 
through ongoing neuronal dynamics [6, 7] (Figure 1a). Single neuron tuning properties 

may or may not be interpretable, so it can be critical to characterize the dynamical system 

holistically. Kato et al. revealed new domains of applicability for this principle by using it 

to explain how the C. elegans brain generates stereotyped movement sequences [8] (Figure 
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1b). In particular, they attributed the activity of most neurons to shared low-dimensional 

dynamics that followed highly stereotyped periodic trajectories (Figure 1c). Different parts 

of these trajectories reliably mapped to different movements in the behavioral sequence 

(Figure 1d), and subtle differences between nearby trajectories corresponded to behavioral 

variations. Spontaneous and stimulus-evoked population dynamics were robust to single 

neuron silencing, highlighting globally distributed sensorimotor processing. This example 

principle thus allowed Kato et al. to illuminate brain-wide mechanisms of sequential 

behavior that were not localized to single neurons or brain areas.

A second familiar principle is that cortical circuits operate in a state of balanced 
excitation and inhibition [9]. The theoretical appeal of balanced excitation and inhibition 

is multifaceted and deep [10, 11], but the basic principle makes intuitive sense. Too much 

excitation destabilizes network dynamics, and too much inhibition prevents information 

transmission. Many computational properties of local cortical processing emerge in 

inhibition-stabilized networks [12, 13], a model variant of balance where strong excitation 

would lead to instability without inhibition. Joglekar et al. [14] cast light from the balance 

principle onto multi-regional cortical networks by generalizing the balanced amplification 

model of Murphy et al. [12] to a global form that balanced strong long-range excitation 

with local inhibition. Joglekar et al. found that their global balanced amplification model 

enhanced signal propagation throughout the cortical hierarchy [14], so balance might 

facilitate hierarchical sensorimotor processing in cortex.

Certain principles may be particularly useful for understanding brain-wide recordings of 

sensorimotor processing. We therefore devote each of the next three sections to highlighting 

a principle that has repeatedly proven its worth. Measurements of cellular-resolution brain-

wide activity excite us because they can act as the keystone of a bridge spanning local 

circuits and systems. The next two sections explain this bridge through its top-down arc 

from larger-scale task variables to cellular activity and its bottom-up arc from smaller-scale 

biological mechanisms to the same activity. The final section discusses comparisons of 

brains to performance-optimized artificial neural networks.

Parsing brain-wide activity through quantitative algorithms of behavior

The empirical basis of the top-down arc from task variables to cellular activity is brain 

activity mapping. Single neuron activity is heterogeneously shaped by many environmental, 

behavioral, and cognitive task variables [8, 15–18], but a global organization coexists 

with this heterogeneity. A systems-scale understanding of the brain requires us to resolve 

how brain activity is simultaneously distributed across the brain and specialized within 

its subdivisions. The principle that cellular activity, somewhere in the brain, represents 
task-variables linearly underlies most brain activity mapping studies [9, 19]. In order to 

maximize the utility of this principle, researchers must build quantitative algorithmic models 

that explain how a multitude of behavioral, environmental, and cognitive variables unfold 

throughout the task. An important caveat is that correlative maps are not causal, and this 

principle does not imply that the task variables capture what matters most to the neural 

circuit dynamics and behavior.
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Multiple recent papers focused on different aspects of the behavioral algorithm for the 

zebrafish optomotor response and thereby discovered a diversity of cellular participants in 

the sensorimotor transformation [20–25]. Here we illustrate the principle through Dragomir 

et al. [23] and Bahl et al. [24], who found congruent results by independently performing 

similar experiments and analyses. These authors recorded behavioral and neuronal responses 

to random dot stimuli with variable right-left motion coherence (Figure 2a). Momentary 

turning rates followed a continuous evidence accumulation model (Figure 2b), which 

temporally integrated stimuli over the previous few trials to explain long timescale behavior 

correlations (Figures 2c). The behavioral model thereby identified evidence accumulation 

as a covert computation that must occur in the brain (Figure 2b), leading the authors to 

map brain activity by the timescales on which neurons integrate directional motion signals 

(Figure 2d). This revealed significant neuronal diversity within and across brain regions, 

with some neurons responding rapidly to stimuli and others integrating signals within and 

across trials. Bahl et al. additionally found that the behavior was better explained if the 

behavior model included a dynamic decision threshold, and both sets of authors ultimately 

mapped their behavioral models onto neuronal signals by combining these and other results 

(Figure 2e).

Evidence accumulation is a canonical computation for decision making, and these zebrafish 

studies illustrate the synergy between behavioral modeling and cellular-resolution brain-

wide recordings. Similar approaches will also be useful for dissecting sensorimotor 

decision-making processes in higher vertebrates. For example, several recent studies used 

sophisticated behavioral models to provide a nuanced view of rodent evidence accumulation 

[26, 27]. The authors’ inferred behavioral algorithms permitted them to correlate neuronal 

activity in specific cortical regions with subtle cognitive variables [28], and brain activity 

mapping showed that decision-making variables are widely distributed [29]. As large-scale 

recording techniques continue their rapid rise [16, 17, 29, 30], behavior-model driven brain 

mapping will surely produce countless discoveries. Nevertheless, the domain of applicability 

of this principle is likely limited, as the brain may not linearly represent all relevant 

task variables [31, 32]. Conceptual and technical progress is needed to derive principled 

methodology for nonlinear brain activity mapping.

Making predictions with mechanistic models: finding constraints amongst 

uncertainty

Mapping sensory, cognitive, and behavioral variables does not explain how the brain actually 

builds these representations from related sensory inputs and motor outputs. This is the 

purview of the bottom-up arc from biological mechanism to cellular-resolution brain-wide 

activity. One generally hopes to construct a mechanistically detailed dynamical system 

model that can elucidate the causal flow of information throughout the sensorimotor 

network, and several recent studies followed brain-wide activity mapping with multi-

regional neural network modeling [20, 24, 33, 34]. Complete system specification is 

challenging [35, 36], but the principle that relatively few combined parameters control 
emergent properties in high-dimensional physical systems [3, 37] provides a guide for 

nevertheless designing, constraining, and testing large-scale neural network models [38].

Biswas et al. Page 4

Curr Opin Neurobiol. Author manuscript; available in PMC 2022 January 12.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



This principle has two facets relevant for mechanistically understanding distributed neural 

networks. First, many cellular and circuit mechanisms may be irrelevant for explaining 

the neuronal responses underlying specific sensorimotor transformations [20, 36, 39]. For 

instance, brain-wide sensorimotor circuits overlap with each other and operate concurrently 

with unrelated behavioral and cognitive processes [8, 15, 16, 40–42]. Some low-level 

mechanisms will only be needed to generate responses in these unrelated contexts. Models 

can therefore be simplified by ignoring these irrelevant details. Second, other mechanistic 

details may be critical for explaining the functional responses in focus [43]. This means 

that incompletely constrained models may still be able to make accurate experimental 

predictions.

Many neural network models are parametrized by their synaptic weights. Critical synaptic 

connections could provide compelling experimental predictions, but discerning critical 

model parameters is generally hard computationally [43–45]. This further increases the 

appeal of simple models [3], especially when analytical methods can relate synaptic 

weights and neuronal responses comprehensively [46]. Biswas and Fitzgerald [47] recently 

developed a theoretical formalism to find synaptic connections required for stimulus 

responses in threshold-linear recurrent neural networks (Figure 3a), a rich nonlinear model 

class with promising analytical tractability [48]. The authors first analytically found all 

synaptic weight matrices with specified steady state neural responses (Figure 3b). They then 

sought critical synaptic connections that must be present (Figures 3c). When compared to 

linear neural networks, threshold nonlinearities increased the size of the solution space by 

permitting variability in “semi-constrained” dimensions that appear when a neuron does not 

respond to a stimulus (Figure 3d). Nevertheless, the authors derived a geometric formula 

that could analytically pinpoint many critical synaptic connections, even in large networks. 

This theoretical approach could thus be used to make rigorous anatomical predictions from 

brain-wide neuronal responses [1].

Performance-optimized artificial neural networks as models of brain-wide 

computation

We now turn to the fifth and final principle. Analyzing brain-wide computation is 

complicated by our limited knowledge of the brain’s high-level functions and constituent 

mechanisms, with mechanistic access most limited for large animals. However, the principle 

that evolutionary convergence of neural computations highlights computational mechanisms 
suited to solve general problems under common constraints allows neuroscientists to 

understand complex brains via comparisons to simpler ones. An interesting twist of this 

principle treats artificial neural networks (ANNs) as uniquely tractable model systems, 

whose functions and mechanisms are fully known [49, 50]. ANNs currently achieve 

remarkable performance in multiple artificial intelligence tasks. Such tasks require ANNs 

to transform low-level sensory information into task-relevant representations that support 

goal-directed outputs. Biological neural networks (BNNs) perform analogous tasks using 

neurons that span much of the brain, so comparing network-wide sensorimotor processing 

in ANNs and BNNs may provide insights into many brain areas [51, 52]. Not all aspects 
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of ANNs will translate to BNNs, but the same is true when comparing two BNNs from 

different animal species [25, 53, 54].

Recent work by Haesemeyer et al. shows the utility of this comparative approach [51]. 

The authors trained an ANN to predict temperature changes enabling a virtual agent 

to navigate heat gradients. The authors then compared activity in the ANN to activity 

previously recorded in larval zebrafish [33, 51]. Neuron types emerged in the ANN with 

response properties matched to the BNN [51]. This permitted experiments in the ANN 

that made predictions for the BNN. For example, targeted ablation of some ANN neuron 

types substantially reduced the agent’s navigational abilities, and the authors predicted that 

these neuron types are critical in the BNN. Most impressively, the ANN predicted a critical 

neuron type that was not previously seen in the zebrafish brain. This prediction prompted 

the authors to reanalyze their brain-wide imaging data and discover a neuron type in the 

cerebellum that matched the ANN. This illustrates why brain-wide neuronal recordings are 

valuable for facilitating comparisons to large-scale ANNs. The authors did not know a priori 
where to look.

The notion that representations converge in ANNs and BNNs is increasingly familiar, as 

neuroscientists have repeatedly found this outcome in sensory and cognitive neuroscience 

[55–57]. If neuroscientists can understand how ANN representation emerges from its 

optimization function, network architecture, and learning dynamics [50], then ANN 

modeling will become an immensely useful tool for examining the principles of comparative 

computational neuroscience. It is therefore crucial to train ANNs using many learning 

paradigms, optimization criteria, and regularization schemes. For example, studies have 

ascribed importance to regularization that promotes “simple” activity patterns in ANNs 

[58]. Convergences could be enhanced by the development of ANNs that explicitly respect 

biological findings [59]. The field is probably only beginning to glimpse the full potential of 

this comparative approach.

Outlook

In this review, we’ve likened the importance of theoretical principles to that of streetlamps. 

Scientists can get lost in the dark without them, and beautiful things may go unnoticed 

if hidden in shadow. We’ve provided examples of five principles that have utility in brain-

wide neuroscience, and each principle had a broad but limited domain of applicability. 

Neuroscientists will thus have to bring these and other principles together to understand 

brain-wide sensorimotor circuits. We would refer to the resulting theoretical system as 

a framework. Frameworks can be far more illuminating than any of their constituent 

principles. For example, Galileo’s law of inertia was an insightful principle that changed 

how his contemporaries saw motion, but it became inestimably more powerful once 

absorbed into the framework of Newtonian mechanics as its first law. In neuroscience, 

the Hodgkin-Huxley framework is exceptionally powerful because it coherently integrated 

many principles of neuronal excitability whose concepts fundamentally changed how 

experimenters interpreted their data. We are optimistic that the principles highlighted here 

are synergistic and complementary. They may therefore contribute productively to whatever 

Biswas et al. Page 6

Curr Opin Neurobiol. Author manuscript; available in PMC 2022 January 12.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



theoretical framework eventually systematizes the fundamentals of brain-wide sensorimotor 

computation.
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HIGHLIGHTS:

• Multiple theoretical principles are needed to understand brain-wide neural 

activity

• Brain-wide recordings provide new opportunities for testing familiar 

principles

• Quantitative behavioral models reveal target variables for brain activity 

mapping

• Sensitivity analyses aid mechanistic predictions from highly parameterized 

models

• Artificial neural networks can serve as tractable model systems for 

neuroscience
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Figure 1: 
(a) We conceptualize theoretical principles as streetlamps, related models and their derivable 

results as emitted light, and the empirical domain of applicability as the illuminated 

terrain. For example, the principle that neurons involved in movement production serve 

primarily to support the ongoing dynamics of a large dynamical system has led to low-

dimensional dynamical systems models that provide means of interpreting the activity of 

large populations of neurons. This principle was articulated in the domain of primate motor 

cortex and recently applied by Kato et al. [8] to study the control of motor-sequences in C. 
elegans. Multiple streetlamps are required to illuminate the full landscape of neuroscience 

phenomena. The job of the neuroscientist is hardest when they find themselves outside 

the guiding light of all available streetlamps. (b) Kato et al. recorded brain-wide neuronal 

activity from immobilized C. elegans fictively performing stereotyped movement sequences 

known as pirouettes. A pirouette consists of a reversal from forward to backward crawling, 

followed by a turn along either the dorsal or ventral body axis, and finally by the resumption 

of forward crawling. (c, left) Principal component analysis (PCA) on the brain-wide 

recordings revealed trajectories in neural population activity space that cyclically followed 

stereotyped paths. By analyzing single neuron and population activity, the authors were 

able to decompose neural state space trajectories into several segment types (colors). See 
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Kato et al. for details. (c, right) Average segment trajectories illustrate the brain’s cyclical 

dynamics. Ovals indicate regions where different bundles of the trajectories mix. They 

serve to graphically connect segment averages to each other. (d) The individual segment 

types of the identified brain cycle could be reliably mapped to the major components of 

the worm’s movement sequence (colors coded to match (c)). This correspondence was 

made by comparing brain-wide neuronal recordings during fictive behavior to single neuron 

recordings in freely moving worms.
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Figure 2: 
Mapping distributed sensorimotor processing in larval zebrafish using an evidence 

accumulation model. (a) Dragomir et al. [23] and Bahl et al. [24] used visual motion 

stimuli to drive turning behavior. Stimuli with three different strengths of rightward motion 

are shown (coherence fraction = 0, 0.5, 1). Panel from [23]. (b, left) The probability of 

correct turns (i.e. turns in the direction of motion) increased over time within the trial 

and also increased with higher coherence fractions. (b, middle) These results suggest an 

evidence accumulation model, whereby zebrafish leakily integrate noisy motion evidence to 

determine the direction of visual motion and set the rates of leftward and rightward turning. 

(b, right) The model successfully reproduces the observed behavioral patterns. Panel from 

[24]. (c) Motor actions do not reset the evidence accumulator, and its integration time scale 

is long enough to span several bouts and trials. The fraction of correct first turns accordingly 

depended on the direction of visual motion in the preceding trial and on the direction of the 

last turn. Panel from [23]. (d) Implementing the leaky integrator model would require the 

brain to first detect fast changes in sensory signals and then integrate them temporally. The 

authors therefore mapped brain activity by the integration time constant that best modeled 

each neuron’s stimulus responses. The map of model time constants showed a diversity of 

neuronal responses that were organized anatomically and could realize the computational 

steps of the behavioral models. Each colored dot is a segmented neuron, A-P denotes 

the anterior-posterior axis, and L-R denotes the left-right axis. Also shown are an outline 

of the zebrafish brain and boxes that highlight regions with many task-relevant neurons. 

Panel from [23]. (e) The authors ultimately superimposed their behavioral models onto 

cellular-resolution brain-wide maps, revealing neurons that detected motion signals in each 

direction, neurons that competitively pooled leftward and rightward motion signals, neurons 

that dynamically set the threshold separating low and high values of accumulated evidence, 

and neurons that represented stochastically generated leftward and rightward motor turning 

commands. Panel from [24].
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Figure 3: 
(a) Biswas and Fitzgerald [47] first specified steady-state responses of a recurrent threshold-

linear neural network (green neurons) receiving feedforward input (purple neurons). (b) 

Assuming that the number of specified responses does not exceed the number of synapses 

onto each neuron, they then found all synaptic weight matrices having fixed points at 

the specified responses. Red (blue) matrix elements denote positive (negative) synaptic 

weights. (c) When a weight was consistently positive (or consistently negative) across 

all possibilities, then the model needed a nonzero synaptic connection to generate the 

responses. The model thus predicts that this synapse should exist experimentally. (d) The 

threshold nonlinearity provides flexibility, but some features of connectivity can nevertheless 

be definite. (d, left) Cartoon depicting steady state response patterns of a simple feedforward 

network under two stimulus conditions. The driven neuron responds in one stimulus 

condition (top) but is silent in the other (bottom). Numbers inside the neurons indicate 

activity levels. (d, right) The circle represents the two-dimensional space of allowed synaptic 

weights, assuming that the total weight norm is bounded by W. The two response conditions 

would uniquely determine the weight magnitudes in a linear neural network (brown dot, 

w1 = w2 = 1/2). However, the driven neuron’s silent response in the threshold-linear neural 

network only implies that the synaptic weight component along the ωs direction is negative, 

because any sub-threshold input would suffice. All points on the semi-infinite yellow line 

thus reproduce the observed responses. Biswas and Fitzgerald refer to the ωs direction as 

a “semi-constrained” dimension in the solution space. Despite this flexibility, all model 

solutions require w2 > 0.
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