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Abstract

Retinal direction-selectivity originates in starburst amacrine cells (SACs), which display a

centrifugal preference, responding with greater depolarization to a stimulus expanding from

soma to dendrites than to a collapsing stimulus. Various mechanisms were hypothesized to

underlie SAC centrifugal preference, but dissociating them is experimentally challenging

and the mechanisms remain debatable. To address this issue, we developed the Retinal

Stimulation Modeling Environment (RSME), a multifaceted data-driven retinal model that

encompasses detailed neuronal morphology and biophysical properties, retina-tailored con-

nectivity scheme and visual input. Using a genetic algorithm, we demonstrated that spatio-

temporally diverse excitatory inputs–sustained in the proximal and transient in the distal

processes–are sufficient to generate experimentally validated centrifugal preference in a

single SAC. Reversing these input kinetics did not produce any centrifugal-preferring SAC.

We then explored the contribution of SAC-SAC inhibitory connections in establishing the

centrifugal preference. SAC inhibitory network enhanced the centrifugal preference, but

failed to generate it in its absence. Embedding a direction selective ganglion cell (DSGC) in

a SAC network showed that the known SAC-DSGC asymmetric connectivity by itself pro-

duces direction selectivity. Still, this selectivity is sharpened in a centrifugal-preferring SAC

network. Finally, we use RSME to demonstrate the contribution of SAC-SAC inhibitory con-

nections in mediating direction selectivity and recapitulate recent experimental findings.

Thus, using RSME, we obtained a mechanistic understanding of SACs’ centrifugal prefer-

ence and its contribution to direction selectivity.
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Author summary

Retinal direction selectivity is a canonical example for a computation undertaken by the

retina. Starburst amacrine cells (SACs), interneurons in the retina, mediate direction

selectivity via two mechanisms: they form asymmetric inhibitory connections with direc-

tion selective ganglion cells (DSGCs); and their processes are themselves direction selec-

tive, displaying a centrifugal preference. Various hypotheses were raised to account for

this centrifugal preference, including the arrangement of SAC excitatory inputs, their

kinetics, as well as reciprocal inhibition between SACs. To address this, we developed the

Retinal Stimulation Modeling Environment (RSME)–a modeling environment for highly

detailed, biologically plausible simulations, tailored to the exploration of neuronal

dynamic and visual processing in retinal circuits. We started with exploring the excitation

to a single SAC, and found that a precise organization of the input kinetics along SAC pro-

cesses can generate a centrifugal preference that matched our experimental recordings.

We then generated a network of SACs and found that reciprocal inhibition between SACs

further enhances the centrifugal preference. Finally, we embedded a DSGC in the net-

work, and dissected the contribution of SAC-DSGC asymmetric connections and SAC

centrifugal preference to direction selectivity in DSGC.

Introduction

Retinal direction selectivity emerges in direction selective retinal ganglion cells (DSGCs),

which strongly respond to motion in one (preferred) direction and weakly to motion in the

opposite (null) direction (Fig 1A) [1–4]. The key mechanism for generating direction selectiv-

ity in DSGCs is asymmetric GABAergic inhibition from starburst amacrine cells (SACs) [5–7].

This asymmetry is achieved by asymmetric wiring from SACs to DSGCs [8] combined with

the centrifugal (CF) preference of SAC processes (SAC dendrites and axons are synonymous

and called processes): SAC processes respond more strongly to motion away from the cell

soma (CF) than towards cell soma (centripetal, CP) (Fig 1B and 1C) [9–11].

Different hypotheses have been raised to account for SACs’ CF preference, including their

intrinsic properties, excitatory input distribution, and their reciprocal inhibitory connections

[2–4,12–14]. The intrinsic properties of the SAC, such as the differential expression of chloride

transporters, voltage-gated ion channels, and somatic activation of mGluR receptors were all

suggested to contribute to SAC CF preference [9,15–21].

The input distribution hypothesis is supported by two recent studies showing that SAC

excitatory inputs are concentrated in its proximal 2/3 of dendritic arbors and skewed away

from the distal release sites, an organization that is thought to underlie SAC CF preference

(Fig 1D) [10,11]. In addition, physiological and anatomical data have detected different kinet-

ics of the excitatory inputs from bipolar cells to SACs, with more sustained excitation in proxi-

mal processes and more transient excitation towards distal processes [22–24]. The precise

spatiotemporal distribution may contribute to SAC CF preference, as only during centrifugal

motion the sequential activation of the sustained and transient inputs is effectively integrated

(Fig 1E). Yet, this spatiotemporal dependence of excitation has not always been observed in

experimental data and its contribution to SAC CF preference remains controversial [11,25].

The reciprocal connections between SACs form a dense inhibitory network, which has also

been suggested to contribute to SAC CF preference (Fig 1F) [26–28]. However, the role of

inhibitory connections between SACs is also unsettled as blocking GABA receptors fails to

fully eliminate SACs’ CF responses [15,16,29,30]. A study that combined morphologically
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constrained SAC network model and dendritic imaging suggested that reciprocal SAC inhibi-

tion supports velocity and contrast tuning [11]. Another recent study suggested that SAC-SAC

inhibitory connections mildly affect SAC activity and are more dominant for the computation

of direction selectivity in DSGCs under certain stimulus conditions, particularly when the

moving stimulus is presented on a noisy background [31].

Fig 1. Mechanisms for direction selectivity and centrifugal preference in experimentally recorded SAC. A. Example directional tuning of a DSGC. Top: Illustration

of a moving bar stimulation. Bottom: Spiking activity recorded in loose-patch mode. The polar plot represents the mean spike count (black) in response to the leading

edge of a white bar (On response) moving in 12 directions; grey lines represent single repetitions (4 in total); the arrow represents the preferred direction. The

surrounding traces depict one representative recording trace. B. A cross-section of the direction selective circuit. Only inputs to DSGCs from the On layer are illustrated

for simplicity. DSGCs receive excitatory inputs (#) from bipolar cells and inhibitory inputs (?) from SACs. SACs on the null side form stronger inhibitory connections

than SACs on the preferred side. C. Schematic of a DSGC innervated by a null-side SAC, top view. SAC processes respond with greater depolarization to centrifugal

motion (red arrows), corresponding to the DSGC’s null direction. Bottom: illustration of the excitatory and inhibitory inputs to DSGC during preferred and null

motion, and their resulting spiking activity. D-F. Illustration of the mechanisms that are thought to underlie SAC CF preference: proximal distribution of excitatory

inputs (D), differential input kinetics (E), and SAC-SAC inhibitory connections (F). G. Experimental design: current-clamp recordings were performed from On-SACs

in response to expanding and collapsing rings centered on the cell soma. H. Two examples of SAC voltage responses to expanding (red) and collapsing (blue) rings

stimulation, averaged over cycles and repetitions. Responses to two cycles of the rings are shown. Black dots denote the initial response and the peak. I. Normalized

waveforms (mean±SEM) of all experimentally recorded SAC responses to expanding and collapsing rings averaged over 1 second (n = 27 cells). DSGC: direction

selective retinal ganglion cell; SAC: starburst amacrine cell; BC: bipolar cell; PR: photoreceptor; PD: preferred direction; ND: null direction.

https://doi.org/10.1371/journal.pcbi.1009754.g001
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Surprisingly, despite the ample studies dedicated to identifying the source of SAC CF pref-

erence, its role in mediating direction selectivity in DSGC is not yet solved. Whereas selective

reduction of SAC CF preference was found to decrease direction selectivity [29], another study

rendered inhibitory inputs to DSGC symmetric (indicating loss of SAC CF preference) and

direction selectivity was still maintained [30].

To find the mechanistic balances for SAC CF preference, we developed the Retinal Stimula-

tion Modeling Environment (RSME) framework: a modeling environment for highly detailed,

biologically plausible simulations tailored to the exploration of visual processing in retinal cir-

cuits. RSME is a versatile framework that supports single cell as well as network modeling. It

incorporates detailed morphological and biophysical constraints of each neuron alongside

providing efficient modules for retinal mosaic organization, connectivity schemes, synaptic

dynamics and graded synaptic release. RSME has a module for generating structured visual sti-

muli, allowing to assess the responses of the simulated neurons to various light patterns. Using

RSME, we aimed to reveal the network mechanisms that can generate a CF preference in simu-

lated SACs that resembles our electrophysiological recordings. We further pushed the neuro-

nal circuits to extreme conditions that are experimentally unfeasible to unfold the role of

excitatory input kinetics arrangement and the contribution of SAC-SAC inhibitory connec-

tions to SAC CF preference and direction selectivity in the DSGC.

Results

Electrophysiological recordings reveal SAC CF preference in response to

moving rings

We previously demonstrated SAC CF preference using patch-clamp recordings from On-

SACs in the isolated mouse retina [32]. The electrophysiological SAC recordings presented

here combine published and new data. The retina was presented with expanding and collaps-

ing rings centered on the SAC soma, and SAC voltage was recorded in current-clamp mode

(Fig 1G). In accordance with previous findings [9–11,32], expanding rings, which generate

centrifugal motion, evoked a stronger and faster depolarization response in SACs than collaps-

ing rings, which generate centripetal motion (Fig 1H). SAC response amplitude and kinetics

dictate the amount and timing of the inhibitory currents in a postsynaptic DSGC and thereby

its directional preference [32]. We therefore used two parameters to assess SAC CF preference,

the Centrifugal Selective Index and the Rise Time Index (CSI and RTI, respectively, see Meth-
ods). The CSI is evaluated based on SAC response amplitude and positive values indicate larger

response amplitudes to centrifugal motion. The RTI is evaluated based on SAC response rise

time, measured as the time from the initial response (when the voltage reached 20% of the

peak) to peak response [32]. Positive RTI values indicate shorter rise times during centrifugal

motion than during centripetal motion. While we detected some variability between the exper-

imentally recorded SACs (Fig 1H), both CSI and RTI values tended to be positive (CSI: 0.18

±0.17, RTI: 0.33±0.22, mean ± STD), as is also reflected in the average voltage response to

expanding and collapsing rings of all SACs (Fig 1I; n = 27 cells).

Modeling environment

RSME encapsulates NEURON to provide a retina-focused modeling framework in which sim-

ulated neurons can be stimulated with visual patterns. RSME comprises a NeuroML-inspired

XML-based specification interface [33] and a dedicated parsing engine, which supports

detailed biophysical, morphological, network architecture, and stimulation parameters. It fea-

tures a set of mechanisms for retinal circuitry related specifications, including (1) graded
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synaptic transmission-based communication, which is essential as most retinal neurons do not

produce action potentials and use graded neurotransmitter release instead; (2) orientation-

based rules for synaptic connectivity to accommodate previously reported retinal connectivity

patterns [8]; (3) arrangement of cells of the same type in a grid, supporting retinal mosaic orga-

nization [34,35]. Data specification (e.g., number of neurons, synaptic distribution and loca-

tion) can be visualized with a dedicated module and is processed to generate a NEURON

model. RSME also supports iterative execution with varying initial conditions, which can be

used for model optimization, as demonstrated below using a genetic algorithm. Results are

logged, saved and visualized, and are available for further analysis. A schematic of the software

architecture is given in Fig 2. Detailed information on RSME architecture can be found in

Methods (see S1–S3 Figs) and in the project’s GitHub. RSME is an open-source framework

available at: https://github.com/NBELab/RSME and its detailed documentation is available at:

https://elishai.gitbook.io/retinal-stimulation-modeling-environment/ [36].

Simulating a single SAC: SAC’s spatiotemporal excitatory inputs can

generate CF preference

We first utilized RSME and a genetic algorithm to test whether a set of synaptic properties can

give rise to the CF preference in a single SAC [9,22,32]. For this, we used the morphology of a

reconstructed On-SAC [32] (Neuromorpho.org; ID: NMO_139062), transformed it into a 3D

multicompartmental model and specified the passive properties of the cell (S4 Fig). We used a

genetic algorithm to scan for a combination of spatial organization and temporal dynamics of

Fig 2. RSME schematic. RSME is comprised of model specifications and a simulation environment. Parameters include the visual stimulation pattern,

cellular morphology and biophysics, and network organization. Simulation parameters are parsed and visualized within the modeling environment and

used to simulate over NEURON. RSME permits the utilization of signal processing for local optimization (e.g., via a genetic algorithm).

https://doi.org/10.1371/journal.pcbi.1009754.g002
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excitatory inputs that induce SAC CF preference (for an explanation on GA, please see S5A–

S5F Fig and Methods). For each set of synaptic inputs, the simulated SAC was presented with

expanding and collapsing rings. CF preference was assessed based on response amplitude

(measured as CSI) and rise time (RTI), similar to the experimental data.

Our genetic algorithm explored an 8-dimensional parameter space that controls the distri-

bution and response kinetics of the synapses. Three parameters control the distribution of

bipolar cell synapses along the SAC processes according to a sigmoid function, going from

denser in the proximal processes to sparser in the distal processes as previously shown [10,11]

(Fig 3A). The distribution function was parameterized by a proximal density value (synapse

probability per 1 μm), a density transition point (the distance from the soma in which input

density changed; this point divides the densely innervated proximal processes from the

sparsely innervated distal processes), and a distal density value (Fig 3A; see Methods). Four

parameters control the kinetics of bipolar cell synapses, designed using a stochastic vesicle

release mechanism [37]. These synapses were regulated by vesicle refilling rate, release proba-

bility, a kinetic transition start-point that dictates the location where the synaptic inputs start

to change from sustained to transient, and a kinetic transition endpoint that dictates the area

where the kinetics remain constant (See Methods). Based on the spatiotemporal input hypothe-

sis, the release kinetics were set to shift gradually from more sustained in proximal to more

transient in distal synapses (Fig 3B) [22–24]. The eighth parameter controls the conductance

of the bipolar cell synapses.

Many different parameter configurations were found to produce a CF preference in the

SAC, implying that various combinations of anatomical constraints on the excitatory inputs

and their kinetics can lead to SAC CF preference. We used six different seeds for the genetic

algorithm and found that the results were qualitatively the same, concentrated in a region of

parameter space which is well-performing, independent of the initial parameters. Indeed, it

was previously suggested that multiple parameter sets may often provide equally valid solu-

tions [38,39]. The set of cells that displayed a clear CF preference, as indicated by AmpCF-

AmpCP�4, RTCF-RTCP�0, and Voltagescore�0 (see Methods), is localized to only a subset of

the initial distribution, indicating that only a smaller space of parameters produces realistic

responses (S6 Fig). Here, the anatomical transition point provided an insight into the anatomi-

cal distribution of excitatory inputs that can generate SAC CF preference: as mentioned above,

the distribution of inputs from bipolar cell synapses is confined to SAC’s proximal 2/3 den-

dritic arbors [10,11,32]. The genetic algorithm demonstrated that CF preference in SACs

could also arise when the transition point is significantly closer to the SAC soma than observed

biologically (S6 Fig, see Discussion).

Two example sets of SAC parameters are shown together with the voltage trace produced

by RSME (Fig 3A–3C). In these examples, the distribution of inputs from bipolar cell synapses

matched the known anatomical constraints of SAC excitatory inputs. These two examples

resemble responses of other SACs with similar anatomical constraints and demonstrate the

similarity of the results of the genetic algorithm and our experimental recordings (compare

Fig 3C to Fig 1H).

We next investigated the contribution of non-homogenous input kinetics in generating

SAC CF preference. First, we assessed the input kinetics along the SAC process based on the

sustained-transient index of the synaptic input as a function of its location (Fig 3D). Accord-

ing to the constraints we set, the sustained-transient index decreased with distance from cell

soma. However, the dynamics of this decrease differ between the first and the last generations

of the genetic algorithm. In the first generation, before the simulation converged to CF-prefer-

ring SACs, the decrease in the sustained-transient index was moderate and started already at

the very proximal processes. As the algorithm converged and the generations primarily
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comprised CF-preferring SACs, the decline of the sustained-transient index was steeper and

located further from cell soma (Fig 3E–3G). The steeper decline probably allows for an optimal

input integration during CF, but not CP, motion, and the location of the kinetic change proba-

bly allows for sufficient amounts of both sustained and transient inputs to integrate onto the

SAC.

Second, we manipulated the input kinetics to follow the reversed logic by running the

genetic algorithm once more. Here, transient inputs were confined to the proximal dendrites

Fig 3. Kinetic properties of excitatory inputs can generate CF preference in simulated SACs. A. Left: Reconstruction of a SAC showing the spatially restricted

simulated excitatory inputs (red dots). Right: Density of excitatory synapses as a function of distance from soma for two example simulated SACs. The distribution is set

by three parameters: proximal synapse density, distal synapse density and the anatomical transition point. For illustration, the transition of color in the example process

on top depicts the location of the anatomical transition point. B. Left: Illustration of the spatiotemporally diverse excitation distribution, color-coded according to

distance from the SAC soma. Right: The kinetics of excitatory inputs in different locations along SAC processes are color-coded by their distance from the cell soma for

the two example simulated SACs. C. Left: Illustration of the stimulus. Right: The somatic voltage of the two simulated SACs in response to expanding (red) and

collapsing (blue) rings. D. The sustained-transient index of the excitatory inputs was calculated at each dendritic location based on the input kinetic waveform (see inset

and Methods). Values of 1 and 0 indicate completely sustained and transient input kinetics, respectively. E. The sustained-transient index as a function of distance from

cell soma for all cells in the first generation (light green) and last generation (#45; dark green) of an example simulation seed. F. Same as E, for all example cells shown in

Fig 5C and 5E. G. The midpoint of the sustained-transient index for all cells in the example seed as a function of generation. By the 6th generation, the indices tend to

span the entire range–from 1 in the proximal to 0 in the distal processes–and the index converges on a value of 0.5. H-J. As in A-C but for an example SAC with reversed

kinetics of the excitatory inputs, changing from transient inputs in the proximal to sustained inputs in the distal processes.

https://doi.org/10.1371/journal.pcbi.1009754.g003
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and became more sustained towards the distal dendrites. All other parameters space remained

unchanged. Interestingly, under these reversed-kinetics conditions, the algorithm did not find

any CF preferring SAC (S5G–S5I Fig). Instead, some SACs revealed a slight centripetal prefer-

ence (Fig 3H–3J). Finally, when we run the simulation with fixed input kinetics the algorithm

resulted with only four SACs (out of 2125) that were considered CF preferring according to

our criteria, and all four of them barely crossed the threshold for inclusion. Taken together,

our simulation results suggest that the distribution of excitatory input kinetics along SAC pro-

cesses plays an important role in determining its CF preference.

Somatic and dendritic voltage in response to circular rings resemble

Thus far we reported on voltage responses recorded at the soma of simulated SACs. Yet, SAC’s

release sites are located in its distal dendrites, and the dendritic voltage is a crucial factor that

dictates the inhibitory input to the DSGC, and thereby its directional preference. The expand-

ing and collapsing rings stimuli are suited to maximally and minimally activate all SAC den-

drites, respectively, and therefore the somatic voltage is expected to reflect the correlated

dendritic activity. To verify this, we ran RSME while measuring voltages at both the soma and

the distal dendrites (as before, SACs included passive membrane properties but no active prop-

erties). We found that the dendritic voltage, as well as its CF preference, closely match the

somatic one (Fig 4). We did notice a few milliseconds delay between the traces (Fig 4B) that is

expected from the distance between the recording sites and the sequential activation of the cir-

cular rings in proximal and distal dendrites. These results are in line with a previous study that

conducted simultaneous electrical recordings in the SAC soma and calcium imaging in its

dendrites and showed that they are correlated [15].

Simulating SAC network: SAC-SAC inhibitory connections enhance SAC

CF preference

To investigate the contribution of reciprocal inhibitory connections between SACs to SAC CF

preference, we used RSME to create networks of SACs and stimulated them with expanding

and collapsing rings, which were centered on the central cell. To form these networks, we

manually chose simulated SACs from the results obtained by the genetic algorithm. We

restricted our choice to SACs whose set of parameters produced a CF preference (CSI>0) and

obeyed the anatomical constraint of a dense excitatory input limited to the inner 1/2-2/3 of

their processes in comparison with the density in the distal 1/3 dendrite [10,11,32] (n = 76

SACs). We then replicated each simulated SAC to create a two-layered design, consisting of

two overlaid 3x3 and 2x2 grids of SACs (a total of 13 cells, Fig 5A). Within this SAC network,

inhibitory GABAergic synapses were located at intersecting sections (see Methods), and release

sites were confined to the last third of the segment [11]. Fig 5B illustrates the CF preference,

recorded at the cell soma of the central SAC, as a function of inhibition weight between neigh-

boring SACs in an example SAC network. Inhibition weight was determined by the conduc-

tance of the inhibitory synapses. In the absence of inhibition, the cells are independent, and

the simulation returns to the initial response of a single SAC given the set of parameters found

by the genetic algorithm. As depicted in the simulation example in Fig 5B, we found that

reciprocal inhibition between SACs slightly enhanced the SAC CF preference in terms of

response amplitude, and significantly enhanced CF preference in terms of response kinetics

(assessed by CSI and RTI, respectively).

We then used the 76 simulated SAC networks to investigate how the strength of reciprocal

inhibition in these networks affects SAC CF preference in terms of both amplitude and kinet-

ics. We compared the CF preference of the SACs while embedded across six network

PLOS COMPUTATIONAL BIOLOGY RSME dissects mechanisms for retinal direction selectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009754 December 30, 2021 8 / 31

https://doi.org/10.1371/journal.pcbi.1009754


configurations: in the absence of reciprocal inhibition and when inhibition gradually strength-

ened to 1 nS. The CSI values were positive even in the absence of functional inhibition from

the network, reflecting the criteria for cell inclusion. Interestingly, the CSI values moderately

increased with inhibition strength, but with stronger inhibition (>0.1 nS) the CSI values of a

portion of the cells tended to decrease, and the variability within the population increased (Fig

5C). The CSI values extracted from the physiological data showed a clear tendency for positive

values (Fig 5D). Searching for the source of the variability in the simulated SACs, we found

that the effect of inhibition on CSI was negatively correlated with the density of excitatory

inputs in the distal processes. SACs with sparse inputs in the distal dendrites tended to main-

tain a positive CSI, while SACs with denser inputs in the distal dendrites tended to reduce

their CSI with increasing inhibitory strength (S7 Fig). The response kinetics of simulated

SACs were more affected by the reciprocal inhibition, showing a monotonic increase in RTI

values as inhibition strength increased and reaching a plateau around 0.1 nS (Fig 5E). The RTI

values derived from the experimental data were similar to the values received in the simula-

tions when stronger inhibition was defined (Fig 5F). Timing of inhibition from SAC to DSGC

was shown to play an essential role in DSGCs’ directional response [30,32]. Thus, by delaying

the response of SACs to CP motion, SAC-SAC inhibitory connections can delay the inhibitory

input to DSGCs during preferred motion, thereby form another mechanism supporting

DSGCs’ direction selectivity.

Fig 4. Comparison of SAC direction selectivity in the soma and distal dendrites. A. An image of the reconstructed

SAC showing the locations used for the simulated voltage recordings, from the soma and from 5 dendritic locations. B.

Somatic recording and the recording from one dendritic location (#53) are superimposed. C-D. comparison of the CSI

(C) and RTI (D) values across locations. Dashed grey lines denotes values from the same cells (n = 68).

https://doi.org/10.1371/journal.pcbi.1009754.g004
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Can reciprocal inhibition between SACs per se generate CF preference? We chose non-CF

preferring SACs from the original pool of cells from any generation of the genetic algorithm

run to answer this. None of these SACs (n = 12 cells) displayed CF preference when reciprocal

inhibition was added to the SACs network, regardless of inhibition strength, and a portion of

the cells even displayed negative CSI and RTI values (S8 Fig). This was also true for SACs

depicted from the reversed kinetic simulation (with transient proximal and sustained distal

inputs, see Fig 5G–5I; n = 10 cells). Thus, our simulation implies that while inhibition

enhances SAC CF response, it is insufficient to generate it.

Simulating the direction selective circuit: the role of SAC-DSGC and

SAC-SAC inhibitory connections in DSGC direction selectivity

So far, we have investigated the mechanisms that underlie CF preference in SAC processes. It

was recently suggested that reciprocal inhibition between SACs is more influential on the

DSGC directional tuning than on the SAC response amplitude [31]. We therefore shifted our

focus to DSGCs, which directional response is thought to rely both on SAC CF preference and

on the asymmetric wiring from SACs to DSGCs (Fig 1) [1–4,8]. Our goal was to dissect the

contribution of each circuit component to DSGC’s direction selectivity. For this purpose, we

used a reconstructed DSGC (Neuromorpho.org; ID: NMO_05318) and embedded it in a SAC

network (see Methods for further details). In all conditions described below, the SAC-SAC

inhibitory connections were either set to 0 nS (no reciprocal inhibitory connections) or to 0.1

nS (optimal strength as assessed by CSI and RTI; Fig 5). The SAC-DSGC inhibitory synaptic

strength was fixed on 0.5 nS based on experimental data [5] (see Methods for a detailed expla-

nation). To determine the threshold for spiking, we conducted intracellular current-clamp

recordings from DSGCs. Based on these recordings, we set the threshold for activation to -49

mV. The baseline voltage was set to -52 mV based on measurements from DSGCs in the pres-

ence of GABA-A blockers (S9 Fig).

We started by a network of CF-preferring SACs that contained reciprocal inhibitory con-

nections and were randomly connected to the DSGC. With this random connectivity scheme,

the circuit did not produce direction selectivity in DSGC responses, as assessed by bars moving

in two opposite directions (Fig 6A). Next, we implemented the known asymmetric

SAC-DSGC connectivity rule, with SAC processes preferentially connecting to DSGCs with a

preferred direction antiparallel to the SAC process [8]. To implement this rule, we set the

probability function of synapse formation between SAC and DSGC as the inverse cosine of the

similarity between the direction of the SAC process (relative to the soma) and the preferred

direction of the DSGC (Fig 6B). When running the simulation in the absence of reciprocal

inhibition between SACs, the DSGC displayed direction selectivity, as preferred direction

motion evoked stronger depolarization in the DSGC than null direction motion (Fig 6C, left).

The inclusion of SAC-SAC inhibitory connections slightly increased the response in the pre-

ferred direction (referred to here as PD activation). Accordingly, the tuning strength measured

Fig 5. Effects of reciprocal inhibition on SAC CF preference. A. Simulated SAC network, consisting of two layers of

replicated SAC sheets (scales of grey and blue). Right: illustration of all cell bodies plotted for clarification. The

recorded simulated SAC (black, indicated by an arrow) resides in the center of the network. B. The voltage response of

an example simulated central SAC (same as simulated SAC 1 from Fig 3) to expanding (red) and collapsing (blue)

rings, shown for six different inhibition weights (colormap on top). C. The CSI of a population of simulated SACs

(n = 76) embedded in SAC networks with different inhibition weights. Grey solid line represents the CSI values of the

example SAC shown in B. Black solid line represents the mean CSI value. D. The CSI of the experimentally recorded

SAC population (n = 27 cells). The dot and whiskers on the right denote mean±STD. E. Same as C but for RTI values.

F. Same as D but for RTI values. G-I. As in B, C, E but for simulated SACs with reversed spatiotemporal excitation:

transient in proximal and sustained in distal processes.

https://doi.org/10.1371/journal.pcbi.1009754.g005
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Fig 6. Asymmetric SAC-DSGC connections are required for DSGC’s direction selectivity. A. A DSGC was randomly connected to a

network of CF-preferring SACs (Fig 5A) and consecutively presented with a bar moving in the preferred (PD, blue) and null directions

(ND, red), twice in a row. Voltage traces represent the DSGC’s somatic voltage during the 2nd stimulation cycle. Horizontal line represents

the threshold for spiking (-49mV; see S9 Fig). B. Schematic of two SACs (purple) forming asymmetric GABAergic synapses (red) onto a

DSGC (blue). SAC-DSGC synapses were defined with higher probability when the SAC’s process and the DSGC’s PD were antiparallel. C.

The response of the simulated DSGC when connected to the SAC network following the asymmetric connectivity rule, in the absence (left)

and presence (right) of reciprocal inhibition between SACs. Insets represent the SAC waveforms to expanding and collapsing rings in each

condition. D. Same as C but when random noise was added to the background of the visual stimulus. E. The direction selective index (DSI)

and PD activation calculated from the above simulations. The DSI is calculated according to the area under the voltage waveform (baseline

to trace), PD activation is calculated as the area above spiking threshold during preferred direction motion (see Methods). F. Same as C but

for a non-CF SAC network.

https://doi.org/10.1371/journal.pcbi.1009754.g006
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by the direction selective index (DSI, see Methods) also increased (Fig 6C right and 6E

bottom).

SAC-SAC inhibitory connections were recently shown to play a unique role in direction

selectivity in the presence of a noisy background [29,31]. We relied on this knowledge to fur-

ther examine the biological plausibility of our model. Random flickering spots were added to

the background of the moving bar (See Methods), and the simulation was run on the network

in the absence and presence of SAC-SAC inhibition (Fig 6D). The addition of the noisy back-

ground did not deteriorate the directional preference, but slightly impaired the DSGC tuning.

Notably, while SAC-SAC inhibitory connections somewhat improved direction selectivity in

the noiseless background, their effect was stronger in the presence of noise, in line with Chen

and colleagues (Fig 6E).

A recent study combined genetic manipulations with optogenetics to abolish SAC CF pref-

erence and demonstrated that direction selectivity in DSGCs is preserved [30]. RSME provided

us with a unique opportunity to investigate the contribution of SAC CF preference to direction

selectivity. For this, we generated a network of SACs from a non-CF preferring SAC (S8A

Fig). In accordance with Hanson’s study, the direction selectivity in DSGC was overall main-

tained, although to a lesser degree (Fig 6E and 6F). This result held both in the absence and

presence of reciprocal inhibition between SACs, as the latter failed to generate CF preference

in non-CF preferring SACs (Figs 6F, inset; S8).

Thus, DSGC’s response was stronger in the preferred direction in all simulations except for

the random connectivity condition, as reflected by the positive DSIs (Fig 6E). This hints that

null-side connectivity of SAC-DSGC is by itself sufficient to determine the preferred direction

of the DSGC. Reciprocal inhibition between SACs more strongly improved the directionality

of the response when the bar was presented on top of a noisy background and had little or no

effect when the bar was presented on a noiseless background or when the SAC was not CF pre-

ferring to begin with.

Discussion

Although our understanding of the retinal connectivity pattern is rather solid [8,40,41] and an

abundance of physiological data have been collected to decipher retinal function, many of the

mechanisms that underlie retinal computations are yet to be deciphered. Pure experimental

approaches are imperative but often insufficient to reveal the contributions of neurons’ bio-

physical properties, input dynamics, and network connections to their functions. Therefore,

the utilization of computational tools in retina research is essential. The dynamic nature of ret-

inal functions [42,43] and the topographic variations in visual processing [34,44] further

emphasize the need for robust simulation tools to overcome uncontrolled experimental cave-

ats. While most modeling frameworks balance the biological details with the model’s complex-

ity, RSME was designed to provide a modeling environment for retinal circuitry, combining a

high level of biological details and support for large-scale retinal circuits. RSME allows build-

ing any neuronal circuit with detailed morphology, biophysical properties, and connectivity

rules. The user can generate visual patterns, stimulate the retinal circuit and acquire the voltage

in each of the neurons’ compartments. RSME can be extended to model other, non-retinal

neuronal circuits, and its visual stimulation module may be used to generate patterns of opto-

genetic activation. Here, we exploited the exploratory power of RSME to decipher the underly-

ing mechanisms of retinal direction selectivity and the origin of SAC CF preference.

SAC CF preference is a key component in the DSGC computation and various hypotheses,

from intrinsic properties to network mechanisms, have been raised over the years to explain

its source. Using RSME, we were able to dissect the network mechanisms, which rely on the
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architecture of SAC excitatory and inhibitory inputs. In the mouse retina, excitatory inputs

from bipolar cells to SAC are concentrated in the 2/3 proximal parts of its processes [10,11,32].

The genetic algorithm identified CF-preferring SACs with a matched input distribution, but it

also demonstrated that CF preference could arise when the excitatory inputs are confined to

an even smaller area around the cell soma. We hypothesize that biological SACs do not imple-

ment the more restricted density profile in order to maximize the excitatory receptive field

area of the SAC. In addition, there is evidence that excitation to SACs is spatiotemporally

diverse, with sustained bipolar cells preferentially innervating SAC proximal processes and

transient bipolar cells innervating processes further from the cell soma [22,32]. EM studies

identified that BC7 and BC5 contact onto Off SAC’s proximal processes and more distal pro-

cesses, respectively [24]. Based on the stratification layers they suggested that the BC7 has a

sustained kinetics, therefore supporting Off-SAC CF preference. Similarly, BC2 and BC3a

were shown to contact onto On SAC’s proximal and more distal processes, respectively [23].

Based on physiology experiments, they concluded that this connectivity pattern also supports

the CF preference in On-SACs. Note that another EM study reported similar anatomical distri-

butions, but arrived at different conclusions, so the existence of the precise spatiotemporal

input remains controversial [11], particularly for On-SACs [22,25]. Using a genetic algorithm,

we demonstrated that this spatiotemporal arrangement of the excitatory inputs is sufficient to

evoke SAC CF preference. When forcing the reversed arrangement on the genetic algorithm,

where transient inputs innervate the proximal processes and sustained inputs innervate pro-

cesses further from the cell soma, no CF preferring SAC was found. This result was obtained

although we kept the anatomical constraint of denser inputs in the proximal processes. Note

that both runs of the genetic algorithm could potentially find a SAC that displays fixed input

kinetics, but such a solution was not found. Although we cannot exclude the option of a strong

CF preference in a SAC with fixed kinetics, the fact that our algorithm run with such fixed

kinetics resulted in only four CF preferring SACs (that were just above the inclusion threshold)

implies a role of precise input kinetics in mediating SAC CF response. Here we used the

genetic algorithm for the optimization process of CF preference in a single SAC. While the

algorithm found several solutions that matched our recorded SACs, the complex parameter

space does not guarantee it identified the full space of valid solutions. Other optimization

approaches, such as approximate Bayesian computation and other simulation based inference

methods may be implemented to overcome this limitation [45,46].

Passive models predict weak CF preference in SAC distal dendrites and a CP preference in

the soma [19]. In our simulation, the precise excitatory inputs found by the genetic algorithm

were enough to trigger a CF preference in the passive SAC soma, in accordance with experi-

mental results [9,15,22,32]. In response to the circular rings, we found that the somatic and

dendritic voltage closely match, in line with a previous study [15]. We expect that when using

a different stimulus, which does not similarly and simultaneously recruit all SAC dendrites,

the voltage recorded in different sections of the SAC will be different.

Reciprocal GABAergic inhibition between SACs have been suggested to contribute to their

CF preference by reducing SAC responses to CP motion [27,47], but opposing evidence was

also found [15,16,29,30]. We revealed that weak reciprocal inhibition strengthened SAC CF

preference but too strong inhibition impaired the CSI values in a portion of SACs. This

impairment tended to occur in simulated SACs with a relatively high density of excitatory

inputs in the distal dendrites, suggesting that a sparse input density in SACs distal dendrites

contributes to maintaining its CF preference in terms of amplitude in the presence of strong

reciprocal inhibition. Finally, using RSME we demonstrated that although reciprocal SAC

inhibition enhances SAC CF response, it cannot generate it in non-CF preferring SACs.
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We tested RSME by recapitulating experimental results, showing that while inhibitory con-

nections within the SAC network somewhat enhance direction selectivity on a uniform back-

ground, they significantly enhance direction selectivity upon a noisy background [29,31]. The

rationale is that the addition of random flickering dots to the background of the moving bars

effectively activates the SACs in the network such that the inhibitory connections between

them are strongly engaged. Chen et al. demonstrated that the SAC-DSGC inhibitory synapse

undergoes a short-term depression, which is more likely to happen on a noisy background.

They suggested that the SAC-SAC inhibition prevents this depression, maintaining null-

motion inhibition to DSGCs and thereby maintaining direction selectivity [31].

We also exploited RSME to test whether a network of SACs that show no CF preference can

induce direction selectivity in DSGCs. Previously, selective reduction of SAC CF preference

via elimination of the SACs’ GABA-A receptors was found to decrease direction selectivity in

the DSGC [29]. Yet, another study that used the same elimination model with optogenetic acti-

vation of SACs showed that although inhibitory inputs to DSGCs were symmetric (indicating

loss of SAC CF preference), direction selectivity in DSGCs was still maintained [30]. Our sim-

ulation results revealed direction selectivity in the DSGC even when its innervating SACs

lacked any directional preference, although this selectivity was reduced compared with the net-

work of CF preferring SACs. The positive effects of reciprocal inhibition on SAC CF prefer-

ence and on the DSGC’s direction selectivity suggests a direct link between the two. Notably,

our results demonstrate that asymmetric SAC-DSGC connections are essential for generating

direction selectivity, as no direction selectivity emerged when SAC-DSGC connections were

randomly distributed.

The extensibility of RSME enables us to further investigate the classic direction selective cir-

cuit at various mechanistic levels and thereby tackle many of the open questions in the field.

First, the intrinsic properties of the SAC, such as differential distribution of ion channels along

its processes [15–17,21], somatic activation of mGluR receptors [20], and the location-depen-

dent expression of chloride transporters [18], have all been suggested to contribute to SAC CF

preference. RSME uses the benefits of NEURON in the implementation of detailed biophysical

properties. Each of the abovementioned intrinsic properties can be applied to the simulation,

allowing the user to differentiate the role of each ion channel and transporter without

compromising on the details of the whole network. Second, SAC network density was shown

to be fundamental for generating direction selectivity in DSGCs [48]. Here we used a coverage

factor of ~10, but SACs are known to have an even higher density in the retina and reach cov-

erage factors of 25–70 [49,50]. RSME can control the SAC coverage factor, thereby exploring

the relationship between DSGC tuning strength and SAC network density. Third, SACs release

both GABA and acetylcholine. While SAC GABAergic input to the DSGC is asymmetric, the

cholinergic input to DSGCs was shown to be symmetric and its role in mediating direction

selectivity remains controversial [2,6,51,52]. Different studies have hypothesized that acetyl-

choline specializes in maintaining direction selectivity for specific stimuli, depending on con-

trast level, stimulus size, background, or spatial frequency [29,51,53–55]. RSME allows the

implementation of acetylcholine as additional output from SACs, independent from its

GABAergic output. Its visual stimulation module can generate and explore a battery of stimuli

and determine the contribution of the cholinergic signal to direction selectivity in different

conditions. Forth, it was shown that direction selectivity is maintained over a wide input

range, such as various speeds or light intensities [12,31,56]. RSME visual stimulation module

can be further used to vary the characteristics of the moving stimuli to dissect the set of mecha-

nisms that enable a stable directional response. Fifth, while asymmetric inhibition is thought

to be the key mechanism for DS, directionally-tuned excitation to DSGCs was also reported

[28,51,52,57–59]. RSME can be used to implement a directional excitatory input to the DSGC
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and test its contribution to the DSGC’s directional preference. Sixth, while we used a relatively

simplified model of the ribbon synapse to reduce the number of parameters we optimized for

in the genetic algorithm, it is possible to incorporate other models in RSME, that better

account for the known complexity of ribbon synapses [60,61]. Finally, the segregation to On

and Off pathways is fundamental to the retinal structure. Here, we ignored the Off layer and

investigated direction selectivity in the On pathway under the assumption that On and Off

inputs are independent and mirror-symmetric. Yet, accumulating evidence hints towards dis-

crepancies in the computations of the On and Off pathways [1], and there is specific evidence

that reciprocal inhibition between SACs, as well as inhibition arising from wide-field amacrine

cells, differentially affect On and Off direction selective computations [29]. RSME supports the

implementation of another layer activated by light decrements, allowing testing the conse-

quences of routing signals from both layers onto a single DSGC.

RSME provides a versatile, accessible framework dedicated to retinal research. Previous

models of the retina used various levels of abstraction. Theoretical models have helped explain

the retina’s neuronal diversity [62,63]. Linear-nonlinear (LN) models have successfully repro-

duced the firing rates of retinal ganglion cells [64,65]. Generalized integrate-and-fire (gIF)

models have captured the influence of spike history and accounted for variability in retinal

responses [66]. Realistic compartmental models have elucidated the contribution of ion-chan-

nels and morphological properties to retinal computations [11,67]. Each of these approaches

advances our understanding of the system. Indeed, end-to-end dissection of retinal functions

and their underlying mechanisms requires multiscale models: combining circuit connectivity

and synaptic dynamics with realistic morphology and biophysics. Although various modeling

frameworks have attempted to simulate such models [68–71], it has been challenging to study

the biophysical mechanisms of retinal function in the context of circuit-level interactions.

RSME incorporates retinal neural networks with precise synaptic connections, detailed mor-

phological, biophysical and topological constraints of each neuron, and allows implementing

various visual inputs. Together, these make RSME an attractive tool for investigating the abun-

dance computations the retina performs, from light adaptation via direction selectivity to

approach sensitivity and motion prediction [72] and evaluate their underlying mechanisms.

RSME is available online at https://github.com/NBELab/RSME [36] and it is documented in a

GitBook available at: https://elishai.gitbook.io/retinal-stimulation-modeling-environment/.

Methods

Ethics statement

All experimental procedures were approved by the Institutional Animal Care and Use Com-

mittee (IACUC) at the Weizmann Institute of Science.

Animals

Trhr-EGFP mice (http://www.mmrrc.org/strains/30036/030036.html) [73] and mGluR2-

EGFP mice [74] were used for recordings from DSGCs and SACs, respectively. Mice were

from either sex and various ages, from 4 weeks to 12 months.

Electrophysiological recordings

Dark-adapted mice were anesthetized with isoflurane and decapitated. The retina was

extracted and dissected in oxygenated Ames medium (Sigma, St. Louis, MO, USA) under dim

red and infrared light. The isolated retina (dorsal part) was then mounted on a 0.22 mm mem-

brane filter (Millipore) with a pre-cut window to allow light to reach the retina and put under
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a two-photon microscope (Bruker, Billerica, MA, USA) equipped with a Mai-Tai laser (Spec-

tra-physics, Santa Clara, CA, USA) as previously described [32,75]. For SAC recordings, we

used mGluR2-EGFP mice [74] and for DSGC recordings, we used TRHR-EGFP mice [73],

which express GFP in SACs and posterior preferring DSGCs, respectively. GFP-expressing

cells were targeted for recordings with the laser wavelength set to 920 nm to minimally activate

photoreceptors using a 60x water-immersion objective (Olympus, Tokyo, Japan). The isolated

retina was perfused with warmed Ames solution (32–34˚C) and equilibrated with carbogen

(95% O2:5% CO2).

Current-clamp recordings from both SACs and DSGCs were made using 5–9-MO glass

pipettes containing (in mM): 110 KCl, 2 NaOH, 2 MgCl2, 0.5 CaCl, 5 EGTA, 10 HEPES, 2

ATP, 0.5 GTP and 2 Ascorbate (pH = 7.2 with KOH; Osmolarity = 280). Extracellular spike

recordings from DSGCs were made in loose cell-attached mode using a pipette filled with

Ames solution. Data were acquired using pCLAMP10, filtered at 2 kHz and digitized at 10

kHz with a MultiClamp 700B amplifier (Molecular Devices, CA, USA) and a Digidata 1550

digitizer (Molecular Devices). The electrophysiological data of SAC recordings presented here

combines published and new data [32]. All DSGC recordings are new data.

Experimental light stimuli

Visual stimuli were generated using MATLAB and the Psychophysics Toolbox. Stimuli were

projected to the retina by a monochromatic organic light-emitting display (OLED-XL, 800 x

600 pixels, 85 Hz refresh rate, eMagin, Bellevue, WA, USA) as previously described [32]. SAC

CF preference was assessed by the presentation of expanding and collapsing rings centered on

the SAC soma, projected via a 20x objective for 5 sec and repeated five times in a pseudo-ran-

dom order. The spatial frequency of the rings was 450 μm/cycle and the temporal frequency

was 2 Hz, resulting in 900 μm/sec velocity. The SAC soma was masked by a 25 μm radius grey

spot [9] and the first cycle was removed from the analysis. DSGC directional tuning was

assessed by its responses to bars moving in the preferred and null directions (900 μm/sec;

300 μm width; 1200 μm length) repeated four times in a pseudo-random order. DSGCs’ spike

properties were extracted from their response to a 2-sec static bright spot (100 μm diameter)

centered on the cell soma and projected through a 60x objective.

Data analysis

SAC tuning was assessed by their CF preference index (CSI):

CSI ¼
RðexpÞ � RðcolÞ
RðexpÞ þ RðcolÞ

where R(exp) and R(col) are the amplitudes of the response to expanding and collapsing rings,

respectively. SAC response kinetics were assessed using the response rise time, measured as

the delay between the initial response (20% of the peak) and the maximum point [32]. The

20% increase was chosen rather than the 0 time point as it is probably a better estimation

(although arbitrary) of the initial effective transmission. The peak timing was chosen as it rep-

resents the time of maximal inhibitory release. The rise times were then used to calculate the

rise-time index (RTI) as a measure of directional asymmetries in SAC response kinetics:

RTI ¼
rtðcolÞ � rtðexpÞ
rtðcolÞ þ rtðexpÞ

where rt(col) and rt(exp) are the rise times calculated in response to collapsing and expanding

rings, respectively. Similar measurements were used for experimental and simulation data.
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To calculate the parameters of DSGC’s spiking, we measured the baseline voltage of the

cells as the mean voltage 0.5 sec before spot illumination following the removal of fast-spiking

events. Spikes evoked during the 2 seconds of light presentation were detected and removed,

and the remaining voltage trace was filtered (Savitzky-Golay filter, 3rd order). Traces that

showed a baseline >-45 mV were removed. The spiking threshold was calculated as the maxi-

mum depolarization on which the evoked spikes were riding. 151 spikes were detected for this

analysis, from 15/16 intracellularly recorded DSGCs: one cell was removed from the study due

to low spiking amplitudes (<50 mV).

For simulated DSGCs, direction selectivity was assessed by two parameters: direction selec-

tive index (DSI) and PD activation. DSI was evaluated by:

DSI ¼
RPD � RND

RPD þ RND

where RPD and RND are the areas between the voltage trace and -60 mV in the preferred and

null direction, respectively. Note that we chose to include the subthreshold activity in this mea-

surement as in most cases the null motion evoked no suprathreshold events and this would

normally lead to a DSI of 1 and prevent appreciating the tuning sharpness in the different con-

ditions. PD activation was measured as the area under the voltage trace and above the spiking

threshold in the preferred direction. The threshold was set to 11 mV above minimum voltage

to fit with our experimental measurements.

The sustained transient index (STI) was calculated for each synapse by simulating its

dynamics based on release probability and refilling rate for 250 ms. Since the synapses are sto-

chastic, we simulated each synapse 50 times and averaged the peristimulus time histogram

(PSTH) (with 10 ms bins). Using the PSTH, we calculate the sustained transient index:

STI ¼
steady state

peak

where the peak was set to the value in the first bin after the simulation starts, and the steady-

state was assigned to the value in the last PSTH’s bin.

We made a 2d interpolation table for the sustained transient index over the entire range of

release probabilities (1.56 × 10−4, 0.25) and refilling rates (5.12 × 10−5, 1.0) with 51 equally log-

arithmically spaced points along each axis. We estimated the index for each synapse by first

calculating its release probability and refilling rate (both depend on distance from the soma)

and then using linear interpolation over the table.

RSME framework

RSME encapsulates NEURON [76] and its XML-based specification interface was inspired by

NeuroML and used SBML (Systems Biology Markup Language) for the description of mathe-

matical models [33,77]. RSME initialization follows a top-down approach and is defined in 5

layers:

i. Meta parameters. Simulation unique identifier, simulation duration, and XML file paths

for layers II-V. Model parametrization is based on a series of four XML files, providing

input for stimulation patterns as well as architectural, morphological, and biophysical speci-

fications (S1 Fig). The simulation duration used in this work was 1,500 ms.

ii. Visual stimulation. Stimulation parameters include stimulation type (e.g., moving bars or

circular moving rings), stimulation field (size and location), spatial and temporal frequen-

cies (when applicable) and duration. The stimulation pattern is parsed and conveyed into a
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gray-scale array, specifying the illumination level for each point in space and time (S1 Fig,

right). The visual stimulation is transferred to the cells via the light- and dark-activated syn-

apses (see Biophysical properties).

iii. Network architecture. Inspired by NeuroML, RSME uses populations of identical neu-

rons, assigned with cell ID (defined in layer IV) and spatial arrangement. An arrangement

can be specified by indicating a location in 3D space for each cell or using a template for an

entire cell population. For example, cells can be arranged in a grid or layers of grids,

defined by grid location, the number of cells and spacing. RSME supports multiple popula-
tions in a single run, and connectivity rules can be defined within a population of neurons

(termed intra-synapses) or between populations of neurons (termed projections). Synaptic

connections obey the connectivity rules and are restricted to intersections between the

pre- and post-synaptic cell. Intersections are identified based on spatial proximity within a

threshold value. Note that a simulation may contain all types of retinal neurons, starting

with photoreceptors and ending with retinal ganglion cells. However, depending on the

investigated cells and circuits, one may omit the populations of photoreceptors and even

bipolar cells to speed up simulation run-time. In this case, synaptic inputs to the simulated

cells should be designed to mimic input from bipolar cells (S1 Fig). The simulations

described in this work used this option.

iv. Cell morphology. Each cell’s morphology is assigned with a unique identifier (ID). Mor-

phology for each cell can be either defined using a raw reconstruction file (asc, swc file-

types) or precompiled morphology reconstruction (NEURON Hoc file). Since cell

reconstruction tools often have a limited resolution, RSME supports morphology ad hoc

correction functions.

v. Biophysical properties. Each cell population is defined with its ion channels and cellular

properties, including cytoplasmic resistivity, membrane capacitance and conductance

dynamics of the various channels. Each channel can be distributed either uniformly or fol-

lowing a density function. All mathematical functions (e.g., density and distribution func-

tions) are defined using the Systems Biology Markup Language (SBML), a widely accepted

standard for bioinformatics [77]. For example, one can electronically isolate the soma with

low potassium conductivity or define a high conductance of Nav1.8 sodium channels in dis-

tal dendrites (S2B Fig). This layer is also used to specify synapse properties. RSME supports

retina-tailored specifications such as light- and dark-activated synapses. Dark-activated

synapses can be defined directly on photoreceptors, mimicking the photoreceptor’s dark

current. When the simulation omits photoreceptors and bipolar cells, light- and dark-acti-

vated synapses can be defined to mimic the input coming from On and Off bipolar cells,

respectively. In this case, the distribution of the light- and dark-activated synapses should

follow the anatomical inputs from bipolar cells, and their activation is determined by the

spatiotemporal pattern of the visual stimulation. Since different bipolar cells show different

response kinetics [78], RSME enables the definition of each synapse’s transient/sustained

properties, indicating the temporal dynamics of the response relative to stimulus

presentation.

RSME implements a flexible visualization tool for model exploration. 2-dimensional mor-

phological projections can be visualized for each layer in either full (all sections are shown) or

soma mode (where only somas and bounding boxes are shown, S3 Fig). Cell morphologies

with synapse locations and weight distribution can also be visualized so that each cell in the

model can be visualized as a whole–from cytoplasmic resistance to channel distribution
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(S2 Fig). RSME can generate a series of images listing all defined properties for each cell with a

single command line. See the project’s Github for further information.

Single-cell SAC modeling

To assess the CF preference of simulated SACs, we generated a visual stimulation pattern of

expanding and collapsing rings. The stimulation field was set to 315 x 315 μm, and the rings’

position was centered on the cell soma; in our simulation, this location was x = 135 μm and

y = 125 μm. Stimulus frequency was set to 2 Hz. Visual stimulation was defined to operate via

bipolar cell synapses. These functions, called alternating_expanding_circles and alternating_-
collapsing_circles, are provided in the Stimuli_visual_pattern library, which we designed as

part of RSME. These visual patterns are defined using functional programming: the functions

calculate the phase of the current stimuli and return another function, which given a phase

and location, returns the appropriate illumination value. For expanding rings, the illumination

phase is defined as (t−delay)mod(2�timec)<timec, where t is the current simulation time, delay
is the prespecified delay time for the stimulation (set to 0 in our simulation), timec is half the

stimulation period, and mod is the modulus operator. The illumination phase is similarly

defined for collapsing rings with the< operator changed to>. Within an illumination phase,

we defined an effective circular field by scaling the stimulation field by
ffiffiffi
2
p

to account for the

fact that a circle should expand far enough to cover a squared area of illumination. Other sup-

ported features are given in the project’s documentation file. Here, network specification

included a single instance of a SAC, defined in the morphology specification file. We also

defined an ad-hoc morphological correction function, which divided all sections’ radii by two

to correct mislabeled morphology tracing.

SAC cytoplasmic specific resistance was set to 75 ohm�cm and specific capacitance was

1 μF/cm2. Section’s conductance was set to 0.00006 S/cm2 and resting potential to -60 mV.

These parameters resulted in input resistance of 84 MO, within the experimental range

observed in SAC neurons (S4 Fig). Each SAC had 1013 compartments.

Bipolar cell synapses onto the SAC neurons were modeled using a double exponent func-

tion (NEURON’s Exp2Syn, [76]) with a rise and decay time of 0.89 ms and 1.84 ms, respec-

tively [79] and reversal potential of 0 mV. The synaptic conductance of each synapse was set to

determine the connectivity strength. The simulation we used included On SACs and their

inputs from On bipolar cells. During light offset, each synapse recruited 70 vesicles available

for release [37]. During illumination, vesicles were released at each time step from this pool

with some probability (p), and the pool size decreased accordingly. In parallel, the pool was

replenished with a refilling rate (r). Each vesicle release results with an activation of the

BP-SAC synapse. Once the visual signal changed from light to dark, the readily releasable pool

of each synapse was reset to 70. For each synapse, p and r were set by the following functions:

p ¼ min k transition start point þ release probability �
d
m

� �

; 1

� �

� Vintensity

r
k transition start point � refilling rateþ refilling rate � 1 �

d
m

� �

; k transition start point <
d
m

refilling rate k transition start point >
d
m

8
>><

>>:

where d is the location of the synapse (0–210), m is the kinetic transition endpoint

(k_transition_end_point), Vintensity is the intensity of the visual input 2[0,1], refilling_rate
and release_probability are parameters that set the starting set point for p and r, and
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k_transition_start_point (kinetic transition start-point) dictates how p and r change with dis-

tance from the soma. The resulted kinetics were sustained-release around cell soma, and a

gradual shift from sustained to transient at a distance k_transition_start_point from cell soma,

which continued to change up to k_transition_end_point, from which the most transient kinet-

ics is kept constant. For the reversed kinetics, we set d to 210-d.

The biophysical specification included bipolar cell synapse distribution and passive param-

eters. The distribution of the bipolar cell synapses was defined (per μm) using the following

rule:

maxf1 � ðscaling factor � ð0:5 � ð1þ tanh ðx � anatomical transition pointÞÞÞ þ offsetÞ; 0g

where x is the distance between a particular section and the soma. scaling_factor, anatomical_-

transition_point and offset are paramteres. The density at the soma (proximal density) is

obtained by x = 0, and the density at the distal process is simplified to:

1 � ðscaling factor þ offsetÞ

The values of these parameters were tuned using the genetic algorithm to maximize SAC

CF preference in response to expanding and collapsing rings.

Genetic optimization

We used a genetic algorithm to maximize SAC CF preference. GAs are used to provide opti-

mized solutions to intricate nonlinear and nonconvex problems. A genetic algorithm usually

comprises four genetic operators: crossover and recombination, mutation, and selection.

Driven by natural selection, a group (or generation) of possible candidate solutions evolves

toward better solutions (examined using some objective function). The key parameters

involved are population size, the probability of crossover, the probability of mutation, the

selection method and the number of generations [80].

We implemented the genetic algorithm using DEAP [81], the parameters for the first gener-

ation were selected from the following boundaries, but parameters were allowed to exceed

these boundaries in the following generations if feasible according to biology (e.g., anatomi-
cal_transition_point<dendritic length):

refilling rate ¼ ð0:01; 1Þ½vesicles per ms�

release probability ¼ ð0:01; 0:75Þ

k transition start point ¼ ð0:01; 0:5Þ½fraction of dendritic length�

k transition end point ¼ ð2; 210Þ½mm�

synaptic conductance ¼ ð0:0001; 0:2Þ½nS�

anatomical transition point ¼ ð2; 210Þ½mm�

scaling factor ¼ ð0:01; 0:4Þ

offset ¼ ð0:1; 0:99Þ
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The target of the GA was chosen based on manual inspection and was set to maximize the

following three objectives: (1) The difference between the maximal voltage that the SAC neu-

ron reached during the centrifugal stimulus to that from the centripetal stimulus: AmpCF-

AmpCP. (2) The difference between the rise time for the centripetal response and the centrifu-

gal response (rise time defined as the time from 20% of the peak to the maximum point):

RTCP-RTCF. (3) The difference between the maximal voltage for the centrifugal stimulus and

-10 mV. If the maximal difference was below -10 mV, this objective was set to zero. This crite-

rion was meant to prevent non-physiological depolarizations above -20 mV. Additionally, in

individuals where the difference between the maximal voltage for the centrifugal and the cen-

tripetal stimuli was lower than 0.04 mV, all objective values were set to -50. The weights of

objectives 1–3 were 1, 0.3, and 0.08, respectively.

We started the genetic algorithm with a population of 100 individuals and ran it for 20–45

generations. The crossover and mutation probabilities were set to 0.4. For the crossover opera-

tion, we used mutFlipBit [81]. The mutation operation was applied by replacing the mutated

variable with a variable sampled from a normal distribution with a mean and standard devia-

tion equal to the mutated variable and half of the mutated variable, respectively. We used three

different selection algorithms, Non-dominated Sorting Genetic Algorithm-II [82], Indicator-

Based Evolutionary Algorithm [83], and one in which the individuals were ranked according

to their total score. In one case, we run the algorithm with a fixed k_transition_end_point =

135 μm. All three algorithms produced similar results.

SAC network modeling

We tested the SAC network with expanding and collapsing rings. Both visual stimulation pat-

terns were defined similarly to the single-cell simulations except for the stimulus’s center,

which was set here to x = 260 μm and y = 250 μm to match the location of the central SAC in

the network. The network was specified as two overlaying grids of cells. The first grid of cells

was defined as a 3x3 2D grid (9 cells), with the bottom-left cell located at (0,0,0), and all other

cells were organized with a 125 μm spacing between neighboring cell bodies horizontally and

vertically. The second grid of cells was defined as a 2x2 2D grid (4 cells), where the bottom-left

cell was cornered at (62,67,0) μm coordinate. Spacing between the cells was identical to the

first grid. Overall, the network featured 13 SACs and the responses of the SAC in the center

were analyzed and used in this study. Overall, we generated 76 networks, each based on a sin-

gle well-performing SAC that resulted from the genetic algorithm and followed the anatomical

constraints. For each network, all SACs had the same input distribution and kinetics.

SAC-SAC GABAergic connections were modeled using a double exponent (NEURON’s

Exp2Syn point process). Each synapse’s rise and decay times were 3 ms and 30 ms, respec-

tively, and the reversal potential was -75 mV. When the voltage at the presynaptic section

increased above -50 mV, the synapse was activated at 200 Hz. This parameter was set to match

experimental results by Lee and Zhou who measured the inhibitory current in a postsynaptic

SAC while clamping a presynaptic SAC to different voltages [27]. There, clamping the presyn-

aptic SAC to -40 mV evoked a current of ~150 pA when clamping the postsynaptic SAC at -5

mV. When we repeated these experiments on different pairs of SACs in the simulation with

the above parameters and 0.1 nS conductance, we found that the required current to clamp the

postsynaptic SACs was 196±130 pA (mean±std), in the range of the experimental results.

SAC-DSGC modeling

The SAC-DSGC model was defined similarly to the SAC network specified above, with the

addition of a single DSGC which was centered at (0,0,0). We only used the On layer to simplify
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the simulation. The DSGC’s passive parameters were identical to those of the SAC, excluding

the resting potential which was set to -52 mV (S9 Fig). The DSGC had 1013 compartments

and was defined with NEURON’s hoc file (available through Neuromorpho.org; ID:

NMO_05318).

The visual stimulation in this case was a bar moving in the predefined preferred and null

directions, twice in a row, with and without static noise in the background. Similar to the

expanding and collapsing rings, the alternating_bar function returns a function that calculates

the illumination level for each point in the network space at any given time. The bar’s length

was 250 μm and its width was 600 μm; its motion velocity was set to 1000 μm/sec; and an x

perimeter defined the area in which the bar is moving (here, 500 μm). The bar’s leading-edge

location was calculated using t�velocity and the location of its trailing edge was calculated by

adding the bar’s length to the leading-edge location. The bar was set to change its direction

every (x perimeter + bar size)/bar velocity. To generate a visual stimulus where spots randomly

flicker in the background of a moving bar, we defined a configurable mechanism for spots gen-

eration. Specifically, we regenerated 30 spots (25 μm in radius), randomly distributed across

the field of view, in each flickering phase (15 Hz). For comparison between responses to pre-

ferred and null motion, we excluded the response to the first cycle which includes the response

to the appearance of the stimulus (Fig 6).

Note that the SACs and DSGC are not logically co-located in the same coordinate system.

However, we can logically align them as we connect the two populations with synapses. Syn-

apse formation was based on the x-y intersection (minimal distance of 5 μm) and the probabil-

ity function of synapse formation between SAC and DSGC was set to the inverse cosine of the

similarity between the direction of the SAC process (relative to the soma) and the preferred

direction of the DSGC. The logical alignment was defined at x = 135 μm and y = 100 μm (so

the DSGC’s soma was aligned to the soma of the central SAC).

The conductance of the SAC-SAC inhibitory synapse was fixed on 0.1 nS based on our sim-

ulation results (Fig 5) and in accordance with Lee & Zhou, who measured inhibitory conduc-

tance between pairs of neighboring SACs [27]. Here, we assumed ~20 contacts between

neighboring SACs. SAC-DSGC inhibitory synapses had a reversal potential of -60 mV and the

conductance was fixed on 0.5 nS based on experimental data: Wei and colleagues reported a

~9 nS inhibitory conductance between null-side SAC and DSGC pairs [5]. Assuming ~14 con-

tacts between pairs [5], each synapse is estimated to be ~0.6 nS, which is in the range of the

synaptic conductance we used. Parameters for the SAC were chosen from the results of the

genetic algorithm (see simulated SAC 1 in Figs 3 and 5B), defined with

refilling rate ¼ 3:7 vesicles per ms

release probability ¼ 0:08

k transition start point ¼ 0

k transition end point ¼ 135

synaptic conductance ¼ 0:0025 nS

anatomical transition point ¼ 102 mm

scaling factor ¼ 0:254
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Offset ¼ 0:6144

Runtime, data processing and visualizations

We used MATLAB, python and NumPy [84] for data processing. Figures and neuron mor-

phology visualizations were created using Matlab, Matplotlib [85], seaborn [86], Blender-

NEURON, and processed in Adobe Illustrator.

With a conventional MacPro featuring 2.6 GHz 6-Core Intel Core i7, 16 GB 2400 MHz

DDR4 memory, and Intel UHD 630 1536 MB Graphics card, we measured a simulation run-

time of: 70.659 sec for a single SAC, 421.465 sec for the SAC network, and 492.357 sec for the

SAC network with the DSGC. Please note that this runtime was measured after precompiling

the visual stimulation data to determine the visual input to each neuronal compartment at

each time step. On first runs, this compilation of visual data must be obtained. We measured a

visual stimulation compilation time of 612.862 sec for a single SAC, 1216.572 sec for a network

of SAC and 1503.471 sec for the SAC network with the DSGC.

Computer simulation

All simulations were run using NEURON 7.7 [76] with step time of 0.025ms. Genetic algo-

rithm simulations were performed on the Blue Brain V supercomputer based on the HPE SGI

8600 platform hosted at the Swiss National Computing Center in Lugano, Switzerland. Each

compute node was composed of an Intel Xeon 6140 CPU @2.3 GHz and 384 GB DRAM. All

other simulations were performed on a 2.6 GHz 6-Core Intel Core i7, 16GB RAM, Mac

computer.

Supporting information

S1 Fig. RSME top-down approach toward modeling. Modeling is initiated with XML-based

specification. The visual stimulation pattern is precompiled to improve run time over multiple

simulation runs. Parameters are parsed within RSME, which initializes a logger and supporting

data entities and creates the model. Model creation is executed with NEURON and includes

morphology instantiation and the definition of sections’ biophysics and synapses. RSME

implements a visual stimulation pattern module, in which inputs such as expanding/collapsing

rings and moving bars are provided to the network as structured light patterns. The model is

simulated using NEURON’s solver, and the results are retrieved for analysis.

(EPS)

S2 Fig. Synaptic input definition and biophysical specifications. a. An example synapse den-

sity pattern on a reconstructed SAC (Neuromorpho.org; ID: NMO_50993), where synapses

are defined to 30% of the proximal sections (dark red shaded area), 10% of the distal section

(light red shaded area), and linearly distributed in between. Synapse density is provided in an

XML file, which is parsed and implemented by RSME. b. Example distributions of section’s

passive conductance, reversal potential (gpas, epas), and conductances of potassium, sodium

and calcium channels (gkdr, gkv3, gNav1.8, Cai). Values are according to SAC biophysical proper-

ties in [11]. Parameter distributions are specified in XML using SBML and parsed within

RSME, which provides distributed mapping of the parameters and visualization.

(EPS)

S3 Fig. Cell morphology and arrangement. (Top) Soma plots for a SAC population com-

prised of two grids (containing 16 and 9 SACs) (left) and a single DSGC (right). Somata are

indicated with dots and colored boxes indicate the size of the cell, demonstrating the
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overlapping regions between cells and the two grids arrangement of the cells. (Bottom) full

morphological plots for the SAC network (left) and DSGC (right).

(EPS)

S4 Fig. SAC passive properties. a. Model of a 3D reconstructed SAC (Neuromorpho.org; ID:

NMO_139062). b. (Left) Different current injections and the corresponding voltage deflec-

tions for a simulated SAC which morphology is shown in a. (Right) The change in voltage as a

function of the current that was injected to the simulated SAC; from the slope of this curve we

can extract the input resistance of the cell (84 MO). c. The capacitance (left), time constant

(middle) and resistance (right) of recorded SACs (N = 24). Values were extracted from the

voltage response of the cells to a pulse of -5 pA during recordings.

(EPS)

S5 Fig. Genetic Algorithm parameter search. a. Initiation of the genetic algorithm popula-

tion with 100 randomly selected individuals, each with eight parameters (see Methods). b.

Illustration of the second generation. The best individuals from Gen 0 are copied to Gen 1 and

the rest are a combination of different individuals from the previous generation (illustrated by

individuals with combinations of colors). Random jitter (mutations) was added to some of the

individuals. c. Same as in b for the Xth generation. d-f. Progression of GA maximization of the

different objectives, as a function of generation number: the difference between the maximal

voltage during the centrifugal and centripetal stimuli: AmpCF-AmpCP (d); the difference

between the rise time during the centripetal and centrifugal stimuli: RTCP-RTCF (e); and the

difference between the maximal voltage during the centrifugal stimulus and -10 mV. If the

maximal voltage was below -10 mV, this objective was set to zero. This criterion was meant to

prevent non-physiological depolarizations above -20 mV (f). Higher values indicate a stronger

centrifugal preference. g-i. Same as (d-f) but with the reversed input kinetics. Here, no CF pre-

ferring SACs were found, as reflected by the rise time differences in h and the response ampli-

tude difference in g.

(EPS)

S6 Fig. A scatter matrix of parameters from the genetic algorithm and convergence analy-

sis. The genetic algorithm was initiated to have a uniform distribution of parameters on all

eight dimensions. In the lower left half of the figure, the first generation shows the extent of

these in blue, and in green are the parameters in the 1st to 45th generation, which resemble

SACs in their input-output characteristics (see Methods). The upper right half of the figure

illustrates the extent of middle 80% of the cells from every 9 generations. Here we see that

already after the first 9 generations, the region of solutions stabilizes, and doesn’t continue to

significantly change over the generations of the genetic algorithm. This suggests that the

genetic algorithm has found a region of the parameter space which is well-performing. The

two example SACs from Fig 3 are also depicted. Note that their anatomical transition point

and scaling factor parameters reside outside the high-density region of parameter space where

most well performing cells are. This is due to the biological constrains which were not consid-

ered by the algorithm. As specified in the Results, all our example SACs met the biological cri-

teria: higher density of excitatory inputs at ~70% of the proximal dendrites (anatomical

transition point), and a significant difference between proximal and distal input densities (scal-

ing factor).

(EPS)

S7 Fig. Effect of SAC-SAC inhibition depends on the density of excitatory inputs in SAC

distal processes. a-d. Two example SACs with similar excitatory input kinetic distribution

and different input densities are affected differently by reciprocal inhibition between SACs. a.
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Left: input density of excitatory synapses. Right: Kinetics of synaptic input color coded by dis-

tance from soma. b. Voltage waveforms in response to CF (red) and CP (blue) motion, with

increasing reciprocal inhibition. c, d. Same as a and b for a different SAC. Note that while the

SAC in (a, b) reduced its CSI with inhibition weight, the SAC in (c, d) maintained positive CSI

values. e. CSI values vs. density of excitatory inputs in the distal dendrites (given in synapse/

μm). The simulation predicts that weak reciprocal inhibition in the SAC network enhances

SAC CF preference in terms of response amplitude. When inhibition is strengthened, this

enhancement is not increased, and a portion of the cells even reveal a decrease of CSI value.

This decrease results from a suppression of the response amplitude due to the strong inhibition

(b). Here, we show that SACs that have sparse inputs in the distal dendrites tended to maintain

a positive CSI, while SACs that have more dense inputs in the distal dendrites tended to reduce

their CSI. Note that according to EM studies the input density in the distal dendrites does not

go down to zero [11,24].

(EPS)

S8 Fig. Reciprocal inhibition is not sufficient to evoke centrifugal preference in non-CF

preferring SACs. a. Left: Probability of excitatory synapses as a function of distance from

soma for an example simulated SACs that did not display CF preference. Center: the color-

coded kinetics of the simulated SAC excitatory inputs along the processes. Right: the voltage

recorded from the soma of the simulated SAC in response to expanding (red) and collapsing

(blue) rings. The CSI and RTI values are noted on the right. b, c. The CSI and RTI values of a

population of non-CF preferring SACs (n = 12).

(EPS)

S9 Fig. DSGC spiking properties. a. Example intracellular current-clamp recordings from a

DSGC in response to presentation of a 2-sec bright spot (100 μm diameter). One repetition is

shown in black, superimposed on nine other repetitions in grey. The Blue horizontal line

denotes the baseline voltage of the cell (average of all traces), and the red line indicates the

threshold for spiking. b. Average waveform of all cells (n = 15 DSGCs), aligned to the peak of

the first spike evoked in response to spots presentation. c, d. Same as (a, b) but with gabazine

application (5 μm; n = 10 DSGCs). Note that while resting potential increased in the presence

of the GABA blocker, the spike threshold did not change.

(EPS)

S1 Data. Source data SI_EphysData. Electrophysiology data recorded from SACs and

DSGCs.

(ZIP)

S2 Data. Source data SI_DSGC_simulation. Data from simulation of a DSGC embedded in a

SAC network.

(ZIP)

S3 Data. Source data SI_GA_SingleSAC&Network. Data from simulation of SACs generated

by the genetic algorithm and of SAC responses within a SAC network.

(ZIP)
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