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Abstract

In this survey, we provide a detailed review of recent advances in the recovery of continuous 

domain multidimensional signals from their few non-uniform (multichannel) measurements 

using structured low-rank matrix completion formulation. This framework is centered on the 

fundamental duality between the compactness (e.g., sparsity) of the continuous signal and the 

rank of a structured matrix, whose entries are functions of the signal. This property enables 

the reformulation of the signal recovery as a low-rank structured matrix completion, which 

comes with performance guarantees. We will also review fast algorithms that are comparable 

in complexity to current compressed sensing methods, which enables the application of the 

framework to large-scale magnetic resonance (MR) recovery problems. The remarkable flexibility 

of the formulation can be used to exploit signal properties that are difficult to capture by current 

sparse and low-rank optimization strategies. We demonstrate the utility of the framework in a wide 

range of MR imaging (MRI) applications, including highly accelerated imaging, calibration-free 

acquisition, MR artifact correction, and ungated dynamic MRI.
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I. INTRODUCTION

The slow nature of signal acquisition in magnetic resonance imaging (MRI), where the 

image is formed from a sequence of Fourier samples, often restricts the achievable spatial 

and temporal resolution in multi-dimensional static and dynamic imaging applications. 

Discrete compressed sensing (CS) methods provided a major breakthrough to accelerate the 

magnetic resonance (MR) signal acquisition by reducing the sampling burden. As described 
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in an introductory article in this special issue [1] these algorithms exploited the sparsity of 

the discrete signal in a transform domain to recover the images from a few measurements.

In this paper, we review a continuous domain extension of CS using a structured low-

rank (SLR) framework for the recovery of an image or a series of images from a few 

measurements using various compactness assumptions [2]–[22]. The general strategy of the 

SLR framework starts with defining a lifting operation to construct a structured matrix, 

whose entries are functions of the signal samples. The SLR algorithms exploit the dual 

relationships between the signal compactness properties (e.g. sparsity, smoothness) and the 

rank of the lifted matrix. This dual relationship allows recovery of the signal from a few 

samples in the measurement domain as an SLR optimization problem.

While this strategy may seem contrived, the main benefit of this framework is its remarkable 

flexibility in exploiting the compactness properties of a variety of signal structures, 

including continuous-domain real-world signals that classical approaches have difficulty 

capturing. For example, SLR approaches can recover continuous domain images from a 

few Fourier measurements with minimal discretization errors, unlike compressed sensing 

approaches. The SLR methods can account for signals with an infinite number of signal 

discontinuities that are localized to a curve/surface, which is more general than signals 

with a finite number of isolated signal discontinuities considered in recent super-resolution 

methods [23]. In addition, the SLR schemes come with fast algorithms that are readily 

applicable to large-scale imaging applications such as static and dynamic MRI, unlike 

super-resolution methods [23] that rely on semi-definite programming. Another example 

of SLR methods is the recovery of images from their multichannel measurements with 

unknown sensitivities [5], [9], [13], [18]. These schemes rely on the low-rank structure of 

a structured matrix, obtained by concatenating block Hankel matrices, which are obtained 

from each channel image. It is difficult for classical convex compressed sensing algorithms 

to exploit such complex relations between multichannel measurements. The SLR schemes 

have also been recently extended to recover an ensemble of images that lie on a smooth 

surface in high-dimensional space. Current subspace model or a union of subspace model 

is not efficient in capturing the above property; inspired by kernel methods [24], one can 

define a non-linear mapping that will transform the smooth surface to a subspace. In SLR 

approaches, this structure can be exploited by the construction of a structured matrix, whose 

columns are non-linearly transformed signal samples.

The SLR framework is closely related to the extensive work on linear prediction in 

MRI, which was often formulated using structure low-rank matrix [2]–[4], [6], [7]. Early 

work in the context of MRI dates back to 1985 in the context of MR spectroscopy [2], 

followed by its generalization to MRI by modeling the images as piecewise 1D polynomials 

by Liang et al. [3]. The finite rate of innovation (FRI) theory [25] also considers the 

recovery of piecewise polynomials and similar models from a finite number of samples. 

Multichannel linear predictive relations were introduced in the parallel MRI context in [4], 

[6], while linear-predictive k-space relations resulting from support and phase constraints 

were introduced in [7]. The readers are referred to [22] in the same special issue, which 

is focused on a more elaborate review of linear prediction approaches and their history 
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in the MRI context. We will review recent development in the low-rank structured matrix 

approaches for MRI.

1. The early 1-D approaches [3], [25] are generalized to multidimensional 

continuous domain signals [7], [9], [10]. Theoretical guarantees are also 

available for multidimensional signals, whose discontinuities are localized to sets 

of infinite size, but of zero Lebesgue measure (e.g., curves in 2D and surfaces in 

3D) [10].

2. Low-rank matrix recovery algorithms with recovery guarantees are used to 

recover signals from nonuniform measurements [7], [9], [15], as opposed to 

the explicit annihilating filter estimation from the uniform sampling setting in the 

classical FRI [3], [25]. Note that an earlier work in this respect goes back to the 

work by Dologlou et al [26].

3. The framework is generalized to the recovery of signals from non-uniform 

multichannel measurements with unknown channel responses, facilitating the 

reduction in samples and calibration-free recovery in a unified matrix completion 

framework [5], [6], [9], [13], [18].

4. The non-linear generalization of FRI theory enables the recovery of points 

on smooth surfaces in high-dimensional spaces, which facilitates the joint 

reconstruction of an ensemble of images from their few measurements [21].

5. The main practical benefit of SLR schemes is their ability to capture a broad 

range of signal priors, resulting in a wide range of applications, including static 

MRI [5], [7], [9], [15], [16], dynamic MRI, diffusion MRI [18], MR artifact 

correction [17], parallel MRI [5], [6], [9], multi-contrast image recovery [19], 

spectroscopic imaging [11], [27], and field inhomogeneity compensation [28], 

[29].

The above generalizations come with theoretical recovery guarantees [14], [16], and fast 

algorithms [9], [15]. In addition, this framework provides rich insights in the deep links 

between 1-D FRI sampling theory [25], CS [30], low-rank matrix completion, and super-

resolution theory [23].

II. OVERVIEW

A. Image acquisition in MRI

In this section, we will briefly describe the image formation in MRI and introduce notations 

and terminologies used throughout the paper.

1) Single-channel MRI measurements: The image acquisition in MRI constitutes 

the sampling of the Fourier transform of the image f (x). The measurements in the Fourier 

domain (also referred to as k-space) are denoted by

f(k) = [ℱf](k): = ∫ f(x)e−i2πkTxdx . (1)
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Here, x ∈ ℝd, d = 2,..., 4 and k ∈ ℤd denote the image domain and k-space coordinates, 

respectively. The goal of MR image recovery is then to reconstruct f(x) from the above 

measurements, which are measured on a sparse subset of the Fourier domain.

2) Multichannel measurements : Modern scanners acquire the Fourier domain data 

using multiple receive coils to accelerate the acquisition. These receive coils have different 

spatial sensitivity patterns, thus providing complementary information. The measurement 

from the i-th coil is the Fourier transform of the coil-sensitivity weighted image and is 

denoted by

f i(k) = ℱfi (k), where fi(x) = si(x)f(x); i = 1, ⋯, Nc . (2)

Here, si(x) denotes coil sensitivities, fi(x) denotes the coil-sensitivity weighted image, and 

Nc is the number of receive coils. The goal of parallel MR image (pMRI) recovery is then 

to reconstruct f(x) from a few measurements with or without the knowledge of the coil 

sensitivities.

While the term multichannel measurements typically implies the multi-coil measurements 

described above, we will use the term in a broader sense. As discussed later, different 

k-space regions are often acquired with slightly different acquisition conditions in MRI. The 

distortions can often be modeled as spatial weighting terms, similar to coil sensitivities. 

For example, the signals corresponding to the odd-only and the even-only lines of k-space 

often differ in phase errors; we consider it a two-channel acquisition with unknown spatial 

weighting terms.

B. Structured Low-Rank methods: Bird’s-eye view

The SLR framework offers a versatile toolbox that exploits a variety of properties 

of continuous domain multichannel signals without the need for discretization. The 

SLR algorithms rely on a lifting of the original signal to a matrix (see Fig. 1); the 

structure of the matrix depends on the specific signal properties (e.g., continuous domain 

sparsity, multichannel relations). The framework relies on the duality relations between the 

compactness of the signal (e.g., sparsity) and the rank of the lifted matrix.

Interpolation via structured low-rank matrix completion: In several accelerated 

MRI acquisitions, the measurements from the full k-space locations are not available. When 

the signal samples are acquired in a non-uniform fashion, one can rely on a structured low-

rank matrix completion to interpolate the missing entries in the lifted matrix. Specifically, 

this entails determining a matrix with the lowest rank that preserves the structure of 

the lifted matrix and is consistent with the measured matrix entries. Once the matrix is 

completed, one can perform inverse lifting to recover the samples of the continuous domain 

signal (see Fig. 1.(a)). We term this class of methods as interpolation schemes [5], [7], [9], 

[15].

Extrapolation using two-step SLR algorithms : In some applications, a certain 

limited region of k-space is acquired without any under-sampling (usually referred to as the 
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calibration region, typically in the low-frequency regions). The super-resolution approaches 

in signal processing [23] aim to extrapolate these Fourier coefficients to high-frequency 

regions, thus recovering the images at higher resolution. The SLR extrapolation strategy is to 

estimate the null space of the lifted matrix from the fully sampled rows (indicated by the red 

boxes in Fig. 1.(b)). Given the null space filters, one can (i) estimate a signal model based on 

the roots of the null-space filters, followed by linear estimation of the unknown signal model 

parameters, or (ii) perform linear prediction to extrapolate the high-frequency samples from 

the measured ones subject to the null-space constraints [3], [4], [10].

III. SIGNAL EXTRAPOLATION USING SLR

We will now focus on specific continuous domain signal models and reveal their connection 

to the lifted matrices that facilitates the recovery of the continuous domain signal. In this 

section, we will focus on SLR extrapolation where the low-frequency Fourier region is fully 

sampled as in Fig. 1.(b).

A. FRI theory for piecewise smooth 1D signals

This approach [2], [3], [25] is a generalization of Prony’s method to continuous domain 1-D 

signals. Consider the recovery of r-stream of Diracs f (see Fig. 2.(a)) at locations xj, j = 1, .., 

r with weights wj:

f(x) = ∑
j = 1

r
wj δ x − xj , xj ∈ [0, 1] . (3)

The discrete Fourier transform of the above continuous domain signal is a linear 

combination of complex exponentials with frequencies αj = e−i2πxj, specified by

f[k] = ∑
j = 1

r
wj αj

k, ∀k . (4)

The classical Prony’s results [25] rely on the annihilation of such exponential signals by

ℎ(z) = ∏
j = 1

r
1 − αjz−1 = ∑

n = 0

r
ℎ[n]z−n, (5)

such that the associated (r + 1)-tap filter ℎ[n] annihilates the Fourier samples f :

(ℎ ∗ f)[k] = 0, ∀k (6)

This linear convolution relation (6) can be re-expressed in the matrix form (see Fig. 1) to 

solve for ℎ:
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f[0] f[1] ⋯ f[r]
f[1] f[2] ⋯ f[r + 1]

⋮ ⋮ ⋱ ⋮
f[r − 1] … ⋯ f[2r − 1]

H[r + 1]
[2r] (f)

ℎ[r]
⋮

ℎ[0]
h

= 0.
(7)

Here, the notation H[r + 1]
[2r] (f) represents the linear convolution matrix, which is defined for 

the 2r samples of f  to be convolved with a filter of size r + 1; here [r] denotes the set 0, 

1, .., r. Note that H[r + 1]
[2r] (f) is a Hankel structured matrix and that the matrix lifting thus 

originates from the linear convolution embedded in (6)-(7) and is illustrated in Fig. 1. The 

relation (7) can be used to identify h. Once this linear-prediction filter h is available, the 

linear predictive relations (6) can be used to extrapolate the signal samples f[k]; k = 0, .., 2r 
− 1 to any extent in Fourier space.

1) Theoretical Guarantees: Based on (7), the filter h can be estimated as a null-space 

vector of the lifted matrix as shown in Fig. 1(b). If 2r signal consecutive samples are 

available, the null-space vector is unique [3], [25]. Note from (5) that the roots/zeros of ℎ(z)
will specify αj in (4). One can then solve a system of equations with r unknowns to recover 

the wj in (3); this estimation is unique with 2r measurements.

2) Spatial annihilation relations: The above results can be generalized to recover 

piecewise constant signal f (see Fig. 2.(a)), with r discontinuities located at tj; j = 1, .., 

r. The derivative of the signal, denoted by ∂f, is a periodic stream of Diracs as in (3). 

The above theory can be adapted to this setting by considering the Fourier coefficients 

of the derivative of f(x) as illustrated in Fig. 2(a). The Fourier domain convolution based 

annihilation relations can also be viewed as space domain multiplication-based annihilation 

relation

∂f(x) ⋅ ℎ(x) = 0 (8)

as shown in Fig. 2(a). Here, the space domain function ℎ(x) is the Fourier transform of 

the filter h[n] that annihilates the Fourier coefficients of f. The zeros of ℎ overlap with the 

location of Diracs or the location of the discontinuities of the piecewise constant signal [3]. 

We will now use this spatial domain annihilation relations to extend the 1-D results to higher 

dimensions.

B. Piecewise smooth signals in higher dimensions

We now review how to extend the classical 1-D FRI theory to recover the piecewise constant 

images f(x) shown in Fig. 2(b). We assume that the Fourier samples are available in a 

rectangular region Γ ⊂ ℤ2 [10]. Note that the edges of f consist of a set of curves, denoted by 

C. Extending the space domain annihilation relation in (8), we assume the edge locations of 

the image to be represented by the zero level-sets of a 2-D bandlimited function ℎ [10] :
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C = {x |ℎ(x) = 0} (9)

where

ℎ(x) = ∑
k ∈ Λ

ℎ[k]exp ikTx (10)

is bandlimited to a rectangular region Λ ⊂ ℤ2. The bandwidth of ℎ, denoted by |Λ|, is a 

measure of the complexity of the edge set [10], [31], which generalizes the notion of sparsity 

in compressive sensing.

Similar to (8), we have space domain annihilation relation (see Fig. 2(b)) specified 

by ∇f ⋅ ℎ = 0; the Fourier transform of this relation provides the 2-D Fourier domain 

annihilation relations similar to (6):

∑
k ∈ Λ

∇f[l − k]ℎ[k] = 0, ∀l ∈ Γ ⊖ Λ . (11)

Here, Γ is the set of Fourier measurements of f. Note that the convolution of ∇f with h at 

a location k requires the samples of ∇f within the set k + Λ, where the addition amounts 

to the translation of the set Λ to the location k. Since we only have the Fourier samples of f 
within Γ, the convolutions specified by (6) can only be evaluated within the set Γ⊖Λ, which 

is the morphological erosion of the set Γ by Λ. Similar to (7), the convolution relation in 

(11) can be rewritten in the matrix form similar to (7) as

HΛ
Γ iωxf

HΛ
Γ iωyf

VΛ
Γ(f)

h = 0,
(12)

where h represents the vectorized filter coefficients. Here, HΛ
Γ iωxf  is the matrix 

corresponding to the 2-D convolution of iωxf , and VΛ
Γ (f) is a composite matrix obtained 

by stacking the block Hankel matrices vertically as shown in Fig. 3.(a).

1) Theoretical Guarantees: The filter h, and equivalently the edges of f can be 

estimated from (12) as the null-space vector of VΛ
Γ (f). It is shown in [10, Theorem 1] 

that VΛ
Γ (f) will have a unique null-space vector when the uniform Fourier samples of f  are 

available within 3Λ, which is the three-fold dilation of Λ. The piecewise constant signal will 

then be uniquely identified from its Fourier measurements within 3Λ [10, Theorem 4].

Note that the piecewise constant signal model in this section assumes a finite or infinite 

number of signal discontinuities, supported on a set of zero measure. This framework is 

more general than [23], which assumes a finite number of isolated discontinuities. We note 

that even more general continuous domain models [7], which assume the signal support 
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to be a region of non-zero measure, do exist. Since such models have infinite degrees of 

freedom, it is difficult to guarantee the recovery of such a signal from finite measurements.

C. Exponential 1-D signals

Recovery of exponentially decaying signals are of interest in MRI since the temporal 

evolution of MRI signals in the presence of chemical shifts, field inhomogeneity and 

multiple relaxation mechanisms can be modeled as a linear combination of exponentials 

[2], [11], [27]. Specifically, the 1-D exponential signal at the spatial location x evolving as a 

function of time can be expressed as

f(x, t) = ∑
j = 1

r
aj(x) βj(x) t; t = 1, .., T , (13)

where the goal is to estimate the exponential parameters from their time series. Since 

the relation in Eq. (5) is true for the above signal model, one can build Hankel matrices 

H[r]
[n] fx  of the form (7) of each pixel at location x, analogous to the description in Section 

III-A. Following (4)-(7), these matrices will have a null space vector parameterized by the 

exponential parameters. The roots of the null space vector are estimated using singular value 

decomposition (SVD), which are used to identify the exponential parameters. These sub-

space strategies based on SVD of H[r]
[n] fx  is widely used in the context of MR spectroscopy 

[2], [11], [27].

IV. SIGNAL INTERPOLATION USING SLR

This section shows how the extrapolation-based approaches in the previous section can be 

extended to the non-uniform setting. As discussed in Fig. 1, we will exploit the duality 

between the rank of the lifted matrices and the compactness priors to fill in the missing 

entries. Note that such sampling patterns are of high relevance in CS applications. The 

generalization of SLR can be acheived with the theoretical performance guarantees that is 

similar to that of the standard CS approaches [30].

A. Piecewise smooth 1-D signals

Consider the signal model in Section III-A with r Diracs. Consider a Hankel structured 

matrix H[d]
[n](f) ∈ ℂ(n − d) × d with d > r. Then, the authors in [14] showed that

rank H[d]
[n](f) = r . (14)

Similar observation was made in early work [3]. The authors of [14] further showed that 

(14) holds for general FRI signals with the minimum annihilating filter size of r + 1 on 

its spectral domain. This property is useful for recovering sparse signals from Fourier 

measurements. Specifically, let χ be a multi-set consisting of random indices from {0,..., 

n − 1} such that |χ | = m < n. Then, as shown in Fig. 1.(a), we can interpolate f[k] for all 

k ∈ 0, …, n − 1  from the sparse Fourier samples exploiting (14):
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minimize
g ∈ ℂn

‖H[d]
[n](g)‖∗ subject to Pχ(g) = Pχ(f) . (15)

where ∥ ⋅ ∥∗ denotes the matrix nuclear norm. Here, Pχ denotes a projection operation to 

the set χ. Instead of using the nuclear norm, a similar problem was solved by nonconvex 

optimization method [7], [26].

1) Theoretical Guarantees: If the sampling pattern satisfies the incoherence condition 

with the parameter ρ, then there exists a constant c such that f  is the unique minimizer to 

(15) with probability 1 − 1/n2 [14], provided

χ ≥ c ρ rlogαn, (16)

where α = 2 if the discontinuities are located on uniform grid; α = 4 for general continuous 

domain signals. This suggests a near-optimal performance similar to the discrete-domain CS 

approaches [30].

B. Piecewise smooth multidimensional signals

We now consider the recovery of the Fourier samples of the piecewise constant image 

described in Section III-B on Γ ⊂ ℤ2. We consider matrices VΛ1
Γ (f) shown in (12), where Λ 

⊂ Λ1. It is shown in [10] that

r = rank VΛ1
Γ (f) = Λ1 − Λ1 ⊖ Λ . (17)

It is also shown in [10] that there is a duality relation between the above rank and the 

smoothness of the edge set of the images. The low-rank structure of VΛ1
Γ  enables the 

recovery of f  on Γ using SLR.

1) Theoretical Guarantees: The results in [16, Theorem 4] show that the SLR 

algorithm recovers the true Fourier samples f[k]; k ∈ Γ from its uniform random 

measurements on χ ⊂ Γ with probability exceeding 1 − |Γ|−2, provided

χ ≥ c ρ cs r log4 Γ , (18)

where r is defined as in (17), cs = |Γ | / Λ1 , c is a universal constant, and ρ > 1 is an 

incoherence measure depending on the geometry of the edge set defined in [16]. Note that 

the result bears remarkable similarity to (16), in the case of continuous domain signals not 

on the grid.

C. Exponential signals with spatially smooth parameters

The approaches in Section III-C considered the pixel-by-pixel recovery of exponential 

parameters at each spatial location x from their uniform samples. The recovery of 
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exponentials from non-uniform k − t domain samples is key to accelerating the acquisition 

in several MR applications. Note that the coefficients of the annihilation filters hx[z] depend 

on the exponential parameters at the specific pixel location x. In imaging applications, the 

exponential parameters are often spatially smooth. The spatial Fourier transform of the filter 

coefficients can be assumed to be support limited to a 3-D cube of size Λ. The annihilation 

relations thus can be compactly expressed as

HΛ
Γ(f)h = 0, (19)

where HΛ
Γ (f) is the block Hankel matrix corresponding to the 3-D convolution of f[k, n]

with the filter h. Similar to the discussions in Sections IV-A and IV-B, the matrix HΛ1
Γ (f) is 

low-rank if Λ ⊂ Λ1. Thus, the recovery of the 3-D data set from its undersampled k-t space 

measurements can be posed as a structured low-rank problem.

V. RECOVERY OF MULTICHANNEL MRI DATA

We now consider the recovery of multichannel data using calibration-based and calibration-

free strategies, which are analogous to the extrapolation and interpolation methods discussed 

above.

A. Blind multichannel deconvolution

In the blind multichannel deconvolution problems in signal processing, subspace techniques 

such as the eigenvector-based algorithm for multichannel blind deconvolution (EVAM) [32] 

rely on multichannel annihilation relations. Specifically, the multichannel measurement for 

blind multichannel deconvolution problem is given by fi = s i ∗ f , i = 1, ..., Nc, where Nc 

denotes the number of channels, s i denotes the unknown convolution kernels, and f  is the 

unknown underlying signal. The goal of the blind multichannel deconvolution problem is to 

estimate f  and s i from f i.

EVAM [32] relies on the cross-channel annihilating filter relations:

f i ∗ s j − f j ∗ s i = 0, ∀i ≠ j . (20)

Assuming that the convolution kernel sj can be represented by the d-tap filter, the above 

convolution relations can be compactly represented in the matrix form as

HΛ
Γ f i ∣ HΛ

Γ f j
s j

−s i
= 0. (21)

We now show that the extension of this work to the MRI setting is similar to the popular 

parallel MRI schemes [5], [33], which were discovered independently without realizing this 

connection.
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B. Calibration-based parallel MRI recovery

The space domain annihilation relations fi(x) ⋅ sj(x) − fj(x) ⋅ si(x) = 0 corresponding to (20) 

were used in [34].

The Fourier domain annihilation relations between each pair of channels as in (21) implies 

that the matrix formed by linearly stacking the Hankel matrices of fi, i = 1, ... Nc

LΛ
Γ f1, .., fNc = HΛ

Γ f1 HΛ
Γ f2 … ∣ HΛ

Γ fNc (22)

is low-rank [4]–[6], [9], [13], [18], [26].

In calibration-based parallel MRI, one often acquires the central Fourier regions in a fully 

sampled fashion. In this case, one can estimate the null space V from the central regions 

similar to the approach in Fig. 1.(b). Once the null space filters are available, the relation 

LΓ
ΛV = 0 can be used to complete the full matrix (22) from its partial entries. Consider one 

column of V, denoted by v = w1
T w2

T … ∣ wNc
T T

; each vector wi is of dimension |Λ|. The 

relation LΛ
Γ f1, .., fNc v = 0 can thus be written as

f1 ∗ w1 + f2 ∗ w2 + …fNc ∗ wNc = 0, (23)

where * denotes linear convolution. The above equation implies that the k-space sample 

of the first coil can be predicted as the linear combination of the nearby samples in all 

the channels, which is essentially the simultaneous auto calibrating and k-space estimation 

(SAKE) model [5], [33]. The generalized auto calibrating partially parallel acquisitions 

GRAPPA approach, which preceded SAKE [5], [6], can be viewed as an approximation of 

this linear prediction relation. See [13] for a more detailed review of similar multichannel 

methods.

C. Calibration-less multichannel recovery

The above calibration-based framework is extended to non-uniformly sampled k-space data 

in [5], [6] using the SLR framework, analogous to the interpolation strategies discussed 

in Section IV. The recovery can be interpreted as the rank-deficiency of LΛ
Γ f1, .., fC . 

Accordingly, [5], [9], [13] use the the following low-rank matrix completion to estimate the 

missing k-space data without any calibration data:

min
g1⋯gNc

rank LΛ
Γ g1, .., gNc subject to Pχ gi = Pχ fi ; i = 1, ⋯, Nc .

To further exploit the annihilation relationship from the FRI model in addition to the 

multichannel annihilating relationship, the authors in [9] solve the optimization problem 

(24) after the k-space weighting.
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VI. SLR RECOVERY: FAST ALGORITHMS

We will explain the algorithms in the context of a simple Hankel matrix lifting. Earlier 

algorithms [5]–[7] relied on non-convex rank constrained formulations:

min
g ∈ ℂn

Pχ(g) − Pχ(f) 2
2 such that rank H[d]

[n](g) ≤ r, (24)

where r is a pre-defined parameter. Here, Pχ denotes a projection operation to the set χ. 

Convex unconstrained formulations of the form

min
g ∈ ℂn

λ H[d]
[n](g) ∗ + Pχ(g) − Pχ(f) 2

2 . (25)

where ∥ ⋅ ∥∗ denotes the matrix nuclear norm and λ denotes the regularization parameter 

are recently being used in applications due to their ability to converge to global minima.

A. Iterative singular value shrinkage

The formulation in (25) can be solved using the singular value thresholding scheme [8]. 

Specifically, the algorithm alternates between lifting the original signal f  to form H(f), 
followed by singular value soft shrinkage of H(f) to obtain Q and un-lifting Q to impose 

the Hankel structure and enforce data consistency. A challenge with this scheme is the 

high computational complexity and memory demand, especially for multichannel recovery 

problems.

In [5], [7], the authors used the hard thresholding as a singular value shrinkage operation 

within a similar iterative optimization framework.

B. UV factorization

To reduce the computational cost, the authors in [9], [35] used the following observation:

∥ A ∥∗ = min
U, V:A = UVH

∥ U ∥F
2 + ∥ V ∥F

2 ,
(26)

to realize an SVD-free structured rank minimization algorithm. The nuclear norm 

minimization problem can be solved by replacing the nuclear norm term by the above 

relation. The constraints are enforced using an alternating direction method of multipliers 

(ADMM) algorithm, whose complexity is determined by the rank. So for sparse signals, a 

significant computation gain can be obtained.

C. Generic iterative reweighted annihilating filter (GIRAF) algorithm

Both of the above strategies rely on the explicit lifting of the signal to the large Hankel 

matrix, which makes the memory demand and computational complexity of the algorithms 

high. The GIRAF algorithm avoids the lifting steps altogether and reduces the number of 

SVD steps; it solves the problem in the original signal domain, thus realizing an algorithm 

that is comparable in computational complexity to compressed sensing methods [15]. The 
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GIRAF algorithm uses the iterative re-weighted least-squares [36] strategy, which majorizes 

the nuclear norm penalty as ∥ A ∥∗ ≤ AQ
1
2 F

2
, where Q = A∗A − 1

4 . The ith iteration of 

this algorithm updates Q as Qi + 1 = H[d]
[n](g)∗H[d]

[n] gi
− 1

4 , followed by the minimization of 

a quadratic cost function to solve for gi+1 obtained by replacing the nuclear norm in (25) 

by ‖H[d]
[n](g)Qn‖F

2
. The GIRAF algorithm relies on fast Fourier transforms to evaluate the 

matrix vector product between H[d]
[n](g) and each column of Q; this approach exploits the 

convolutional structure of H[d]
[n](g). We note that this approach does not require the creation 

or storage of the large structured matrix, but works directly with the signal samples of g. 

The MATLAB implementation of the GIRAF algorithm is available at https://github.com/

cbig-iowa/giraf.

D. Algorithms for non-convex SLR formulations

All of the above algorithms are designed for convex formulations (25). The early algorithms 

[5], [6] relied on successively solving

gn + 1 = min
g ∈ ℂn

Pχ(g) − Pχ(f) 2
2 + λ g − ℳr gn

2, (27)

where Mr gn  is the approximation of the nth iterate gn such that H[d]
[n](g) is of rank r. 

Recently, the multiplicative majorization strategy in the GIRAF algorithm [15] has been 

adapted into the LORAKS setting to realize faster algorithms.

VII. GENERALIZATION TO MACHINE LEARNING

A. Recovery of point clouds on surfaces: non-linear generalization of union of subspaces 
model

We will now consider a non-linear generalization of the FRI theory discussed above, which 

will facilitate the recovery of surfaces or points living on surfaces from a few noisy samples. 

The main motivation is the joint recovery of an ensemble of images (e.g.g images in a 

cardiac MRI time series) from their noisy and undersampled measurements. This approach 

is a non-linear generalization of the popular union of subspaces model, which represents the 

images as a sparse linear combination of some basis images.

We model the surface as the zero level set of a bandlimited function as in Section IV-B. For 

simplicity, we will explain the approach in 2D. Consider an arbitrary point x on the curve 

ℎ(x) = 0, where h(x) is specified by (10). The space domain annihilation relation translates to 

cTϕΛ(x) = 0, where

ϕΛ(x) = exp jk1
Tx … exp jk Λ

T x T
(28)
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is a non-linear mapping or lifting of a point x to a high-dimensional space [21] (see Fig. 

4) of dimension |Λ|. Since this non-linear lifting strategy is similar to feature maps used in 

kernel methods [24], we term ϕΛ(x) as the feature map of the point x.

Let us now consider a set of N points on the curve, denoted by x1, ⋯, xN. The above 

annihilation relations can be compactly represented as cTΦΛ(X) = 0, where

ΦΛ(X) = ϕΛ x1 ϕΛ x2 … ϕΛ xN (29)

is the feature matrix of the points. The results in [21] show that if the number of samples 

exceeds a bound that depends on the complexity of the curve, it can be uniquely estimated.

We have shown in [21] that if we choose a feature map with a bandwidth of Λ1 such that Λ 
⊂ Λ1, the feature matrix satisfies the relation similar to (17):

rank ΦΛ1(X) ≤ Λ1 − Λ1 ⊖ Λ . (30)

Generalizing the SLR approach in Section IV, we recover the samples on the curve/surface 

from a few measurements corrupted by noise [21] by solving an optimization problem:

minimize
X

λ‖ΦΛ1(X)‖∗ + ∥ A(X) − b ∥2 . (31)

We use an iterative-reweighted least-squares (IRLS) algorithm [36] that relies on the 

kernel trick [24] for recovery. Specifically, the algorithm alternates between a quadratic 

optimization scheme and the evaluation of the graph Laplacian matrix; the algorithm may be 

interpreted as a the discretization of the manifold by a graph, whose connectivity is specified 

by the distances on the manifold/surface. Note that unlike the approaches in Section IV, this 

algorithm is non-convex. Hence, the above optimization problem cannot be guaranteed to 

achieve the global minimum. Despite the lack of guarantees, the algorithm was able to yield 

good performance in applications, as seen in Fig. 4 and Fig. 8.

B. Relation to Deep Convolutional Neural Networks

One of the interesting twists of the SLR approach is its relation to deep neural networks. 

Specifically, in the recent theory of deep convolutional framelets [37], the authors showed 

that a deep neural network can be interpreted as a framelet representation whose basis can be 

obtained from Hankel matrix decomposition. Moreover, in a recent follow-up study [38], the 

authors further revealed that the recified linear unite (ReLU) plays a key role in making the 

representation adaptive to input by providing combinatorial basis selection.

Specifically, for a given Hankel matrix H(f), let us consider two matrices Φ⊤ and Ψ whose 

dimensions are determined such that they can multiplied to the left and the right of the 

Hankel matrix, respectively. Furthermore, suppose there exists matrices Φ and their duals Ψ

satisfying the frame condition ΦΦ⊤ = I, ΨΨ⊤ = I, where the superscript ⊺ denotes the matrix 

transpose and I refers to an identity matrix with appropriate size. The existence of such 
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matrices can be trivially shown as infinite number of orthonormal matrices satisfy the frame 

condition. In fact, the frame condition allows overcomplete representation. Then, it is easy to 

show

H(f) = ΦCΨ⊤ , where C = Φ⊤H(f)Ψ. (32)

One of the most interesting observations in [37] is that (32) can be equivalently represented 

by encoder and decoder convolution structure:

C = Φ⊤(f ∗ α(Ψ)) , f = (ΦC) ∗ β(Ψ) (33)

where α(Ψ) and β(Ψ) are the encoder and decoder layer multichannel convolution filters 

obtained by rearranging Ψ and Ψ, respectively [37]. This observation led to the findings that 

Φ⊤ and Φ correspond to the pooling and unpooling layers, respectively [37].

However, to satisfy the frame conditions, the number of output filter channels should 

increase exponentially, which is difficult to satisfy in practice [37]. Moreover, in contrast 

to SLR approaches, the exact decomposition of the Hankel matrix in (33) is not interesting 

in neural networks, since the output of the network should be different from the input due 

to the task-dependent processing. Moreover, the representation should be generalized well 

for various inputs rather than a specific input at the training phase. In a recent extension of 

the deep convolutional framelets [37], the authors revealed that the convolutional framelet 

representation is indeed combinatorial due to the combinatorial nature of ReLU. Specially, 

for the case of an encoder-decoder convolutional neural network (CNN) without a skipped 

connection it was shown that the CNN ouput g can be represented as follows [38]:

g = ∑
i

〈bi(f), f〉bi(f), (34)

where bi(f) and bi(f) denote the ith columns of the B(f) and B(f) matrices given by

B(f) = E1Σ1(f)E2⋯Σκ − 1(f)Eκ, (35)

B(f) = D1Σ1(f)D2⋯Σκ − 1(f)Dκ, (36)

where Σl(f) and Σl(f) denote diagonal matrices with 0 and 1 values that are determined 

by the ReLU output in the previous convolution steps; El (resp. Dl) denotes the l-th layer 

encoder (resp. decoder) matrix that is composed of pooling matrix Φl (unpooling matrix 

Φl) and encoder filter matrix Ψl (resp. decoder filter matrix Ψl). Similar basis representation 

holds for the encoder-decoder CNNs with skipped connection [38].

When there are no ReLU nonlinearities and pooling and filter matrices satisfy the frame 

condition for each l, the representation (34) is indeed a convolutional frame representation 

of f as in (33), ensuring perfect signal reconstruction. Even with the ReLU, there exists 

conjugate filter sets that can allows perfect reconstruction condition [37]. However, the 
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explicit dependence of (35) and (36) on the input f due to the ReLU nonlinearity makes the 

neural network representation much richer and adaptive to different input signals, since the 

resulting frame representation in (34) depends on specific input. In this regard, the role of 

ReLU may be similar to the sparsity patterns in compressed sensing MRI, since the sparsity 

pattern determines the difference basis representation of CS for given inputs. Furthermore, 

the number of distinct linear representations increases exponentially with the network 

depth, width, and the skipped connection, thanks to the combinatorial nature of ReLU 

nonlinearities [38]. This exponentially large expressivity of the neural network is another 

important advantage, which may, with the combination of the aforementioned adaptivity, 

explain the origin of the success of deep neural networks for image reconstruction.

VIII. APPLICATION OF SLR FOR IMPROVED MRI

The main benefit of the SLR framework is its ability to account for a wide variety of 

signal models, facilitating the exploitation of extensive redundancies between their Fourier 

samples. This feature makes SLR applicable to a wide variety of MRI applications, listed 

below.

A. Highly accelerated MRI

During the past few years, different SLR priors were introduced for highly accelerated MRI, 

each designed to exploit specific signal properties.

1) Support/sparsity priors [7]: The signal is assumed to be sparse or support limited 

to a region in low-rank modeling of local k-space neighborhoods (LORAKS), which 

results in annihilation conditions in k-space. The LORAKS scheme formulated the CS-MRI 

problem by using the block Hankel matrix of the images as the prior. The LORAKS 

framework also exploits phase constraints, which are detailed in [7].

2) Transform domain sparsity [3], [9], [10]: The annihilating filter-based low-rank 

Hankel matrix (ALOHA) approach considers general signals that can also be sparse in 

a transform domain. Specifically, the signal f is modeled as Lf = w, where L denotes a 

constant coefficient linear differential equation, often called the whitening operator [14]:

L: = bK ∂K + bK − 1∂K − 1 + … + b1∂ + b0, (37)

and w is an innovation signal composed of a stream of Diracs or 

differentiated Diracs. Evaluating the Fourier transform, we have w: = lf  where 

l (f) = bK(i2πf)K + … + b1(i2πf) + b0 and the associated Hankel matrix H(w) from the 

innovation spectrum w becomes rank deficient. The Fourier coefficients are interpolated 

similar to (15) by minimizing the nuclear norm of a block Hankel matrix whose entries are 

the Fourier coefficients of f  weighted by l .

3) Piecewise smooth signal model [3], [16]: The GIRAF algorithm generalized 

the piecewise polynomial 1-D model [3] to recover piecewise constant multi-dimensional 

signals from their sparse Fourier coefficients by minimizing the nuclear norm of the 
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vertically stacked block Hankel matrices in (12) (see Figure 3.(a)), as described in Section 

IV-B. Each of the block Hankel matrices correspond to weighted Fourier coefficients of the 

signal.

This model was recently extended to represent the image as a linear combination 

of piecewise constant (fpwc) and piecewise linear components fpwl  [20]: 

f(x) = fpwc(x) + fpwl(x). The recovery is posed as:

min
g1, g2 ∈ ℂn

T ∇g1 ∗ + S ∇2g2 ∗ + λ PΩ g1 + g2 − PΩ(f) 2,

where S is the matrix obtained by the vertical stacking of the block Hankel matrices of three 

second degree partial derivatives, denoted by the vector ∇2f. We demonstrate the benefit of 

some of the flavors of the proposed scheme in Fig. 5

B. Calibration-free correction of trajectory and phase errors

The multichannel framework introduced in Section V-C provides a versatile tool to solve 

several calibration problems in MRI, where different k-space regions are acquired from 

different excitations; these datasets will differ in phase errors, which often manifest as 

artifacts. As discussed in Section II-A2, (2) can also be used to model the acquisition 

of multi-shot Fourier data. Specifically, the data is split into multiple groups or virtual 

channels, each corresponding to different distortions. The joint recovery of these groups or 

virtual channels are performed as in (24).

1) Correction of phase errors in multi-shot diffusion MRI [18]: Diffusion MRI 

(DMRI) is a valuable tool for assessing brain connectivity and tissue micro-structure. High-

resolution DMRI is often acquired using multi-shot EPI schemes, where different Fourier 

regions are acquired from different radio-frequency excitation pulses. For example, the even 

lines in a two-shot EPI sequence are collected from one shot, while the odd lines are 

collected in the second shot. Subtle physiological motion between the shots in the presence 

of diffusion encoding gradients manifest as motion induced phase errors between the shots. 

Previous works [18] have shown that these phase errors can be corrected using the SLR 

scheme, even when the data is acquired using 4–8 shots. The results in Fig. 6.(a) shows the 

improved reconstructions offered by this scheme.

2) Compensation of trajectory errors [39]: MRI images can also suffer from 

artifacts, resulting from k-space data of different excitations experiencing different 

distortions. A typical example is radial imaging, where the shifted radial spokes cause 

streaking artifacts. A matrix completion using the low-rank prior [39] is used to jointly 

recover the artifact-free images and the uncorrupted calibration data. Several other groups 

have shown the utility of the low-rank based approach for the correction of trajectory errors 

in EPI and radial setting (not referenced here due to space constraints).
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C. Correction of k-space outliers [17], [40]

Many MRI artifacts from the instability of an MR system, patient motion, inhomogeneities 

of gradient fields, etc. are manifested as outliers in k-space data. Because MR artifacts 

usually appear as sparse k-space components, the artifact-corrupted MRI measurements z(f)
can be modeled as z(f) = x(f) + s(f), where x(f) is a k-space data of an artifact-free image 

and s(f) is the sparse k-space outlier [17]. If the unknown signal can be sparsified by 

applying a whitening operator (37) by performing a lifting to a Hankel structured matrix, we 

can see that

H(y) = H(l ⊙ x)
low‐rank

+ H(l ⊙ s),
sparse

(38)

where l  denotes the spectrum of the whitening operator.

Note that the second term in Eq. (38) is sparse, because the lifted Hankel matrix from sparse 

components is still sparse, as illustrated in Fig. 7. Thus, Eq. (38) becomes a structure for 

sparse + low-rank decomposition, and a modified version of robust principal component 

analysis (RPCA) was used to decompose the low-rank and sparse component of the Hankel 

matrix H(y). After the sparse + low-rank decomposition, the weighted k-space for the 

low-rank component is returned to original k-space by performing an un-weighting [17].

D. Recovery of exponentials

1) Parameter mapping [12], [19]: MR parameter mapping methods, which estimate 

the T1 and T2 relaxation constants, can enable tissue characterization and hence are 

clinically very valuable. However, the the long scan time resulting from the need for 

multiple temporal frames makes these schemes challenging for routine clinical use.

Under-sampling each temporal frame, followed by sparse recovery, has been a popular 

approach to reduce scan time. The spatio-temporal signal can be modeled as an exponential 

with smoothly varying parameters as described in Section IV-C, which facilitates its 

recovery from under-sampled measurements.

2) Field inhomogeneity compensation [28], [29]: MRI schemes such EPI 

are associated with long readouts. The EPI signal at the time point t after the 

excitation is the Fourier sample of the image modulated by a time-evolving exponential: 

ρ[r, n] = f(r)β(r)n, where the exponential parameter β(r) = e− R2
∗(r) + jω(r) T  results from the 

field inhomogeneity and T is the sampling rate in time; f(r) is the true image. The standard 

inverse Fourier transform reconstruction ignoring the exponential term thus recovers the 

field inhomogeneity distorted image. We used the approach described in Section IV-C to 

recover the entire time series ρ[r, n] from the Fourier measurements. Post-recovery, the 

image ρ[r, 0] is chosen as the un-distorted signal. Since there are two complex unknowns 

f(r) and β(r) at each pixel, we use two shifted EPI readouts to recover the time series [29]. 

The results of this approach are shown in Fig. 6.(b).
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E. Free-breathing and ungated cardiac MRI [21]—In cardiac MRI clinical practice, 

breath-held cardiac cine MRI is the standard protocol to evaluate cardiac function. Many 

subject groups cannot tolerate the breath-holds, which disqualifies such patients for cardiac 

MRI exams. While free-breathing and ungated cardiac MRI is the ideal protocol, a main 

challenge is the quite significant acceleration needed to facilitate this scheme. The work 

in [21] used the surface recovery strategy in Section VII-A to recover free-breathing and 

ungated data from highly undersampled measurements with great success as shown in Fig. 

6.(b).

IX. CONCLUSION & FUTURE WORK

The SLR formulation provides a flexible framework to exploit different continuous domain 

signal priors, which are difficult for current discrete compressive sensing frameworks to 

capture. The framework comes with theoretical guarantees and fast algorithms and software, 

making it readily applicable in multidimensional imaging problems including MRI. The 

recent results showed that there are important links between SLR frameworks and machine 

learning approaches. The proposed framework is demonstrated in several challenging MRI 

applications.

In spite of its flexibility and many applications, there are still remaining open challenges, 

some of which will be discussed below.

Sampling patterns:

The single-channel theoretical results (16) and (18) guarantee the recovery of the Fourier 

coefficients of the signals on a grid from a randomly chosen subset of coefficients. The 

results exhibit a log4 dependence on the final grid size, suggesting increasing sample 

demand with larger grid sizes. However, we note from Sections III-A and III-B that once 

the null space is identified, the signal extrapolation to any grid size is possible from the 

low-frequency Fourier samples [10, Theorem 1]. This strongly suggests a variable-density 

sampling approach, which may significantly reduce the sampling demand, and which was 

also confirmed by the empirical results in [16]. More theoretical work in this area is needed 

to determine the best sampling patterns. While empirical results demonstrate the great 

benefit of SLR schemes in multichannel signal recovery from non-uniform samples, this 

problem is not well studied from a theoretical perspective. However, the SLR framework 

can still be adapted to work well through the synergistic combination of multiple signal 

priors (e.g., sparsity and multichannel annihilation priors), achieved by composite lifting 

[18]. More theoretical work is needed on this front to improve the understanding of this 

problem.

Theoretical guarantees and noise performance:

Most of the above analysis assumes that the measurements are noise-free and the underlying 

SLR matrix is low-rank. For example, the multichannel annihilation relationship in (20) is 

valid only for the noiseless k-space measurements. The model mismatch introduces a slow 

decay of the singular value spectrum of the Hankel matrix. The above theoretical results are 

extended to scenarios involving measurement noise in specific SLR models in [14], [16]. 
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However, note that SLR formulations can be obtained from many different redundancies 

within the signal [5], [7], [18], [29]; the generalization of the theoretical robustness results in 

[14], [16] to general SLR schemes deserves further investigation.

Links between machine learning and SLR:

Although the aforementioned link between the SLR and deep learning is interesting, 

there are still open questions, and more theoretical work is necessary to understand this 

connection. The generalizability, optimization landscape, and expressivity (see the extensive 

list of references in [38]) in the context of machine-learning based reconstruction are not still 

well-understood, which may be an important research direction.
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Fig. 1. 
Illustration of SLR-based interpolation and extrapolation methods in the context of 1-D FRI. 

(a) In SLR interpolation, the data is acquired on a non-uniformly sub-sampled Fourier grid. 

The SLR interpolation scheme relies on a lifting of the signal samples to a Hankel matrix, 

which has missing entries indicated by the hashed boxes. The one-to-one relation between 

the rank of a matrix and the continuous domain sparsity of the space domain signal is 

used to pose the recovery of missing samples as a structured low-rank matrix completion 

(SLRMC) problem in the lifted matrix domain. Specifically, the algorithm determines the 

matrix with the lowest rank that satisfies the Hankel structure and is consistent with the 

known matrix entries. Post-recovery, the matrix is unlifted to obtain the Fourier samples 

of the signal. (b) In SLR extrapolation problems, the low-frequency Fourier coefficients 

of the signal are uniformly sampled. The central fully known matrix region is used to 

estimate the null space of the matrix, which is used to linear-predict/extrapolate the missing 

high-frequency samples. The SLR algorithms that exploit the different signal structures 

differ only in the structure of the lifted matrix; the algorithms are essentially the same.

Jacob et al. Page 24

IEEE Signal Process Mag. Author manuscript; available in PMC 2022 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Illustration of 1-D and 2-D FRI relations. (a) We illustrate Prony’s results in the light 

blue box, which demonstrates the recovery of Diracs at arbitrary locations. The Fourier 

coefficients of this signal consist of complex exponentials denoted by yk in the bottom row. 

Prony’s results show that complex exponentials can be annihilated by the convolution with 

a filter h. This Fourier domain convolution relation can also be viewed as a multiplication-

based annihilation relation in the space domain. These results can be extended to the 

recovery of piecewise constant 1-D signals by considering the derivative. Specifically, the 

derivative of piecewise constant signals consists of a linear combination of Diracs, which 

brings the problem to Prony’s setting. (b). Extension of 1-D FRI to the 2-D setting. The 

gradient of the piecewise constant signal consists of a series of Diracs supported on curves 

and the location of image edges. We observe that the gradient can be annihilated by the 

multiplication by a function ℎ, whose zeros overlap with the image edges. If the ℎ is 

bandlimited, the convolution with the Fourier coefficients of the image with the filter 

coefficients will also be zero. We generalize the notion of 1-D sparsity in FRI with the 

bandwidth of ℎ; a more bandlimited ℎ will correspond to smoother curves, as shown in 

[10]. The above framework can be used to recover continuous domain piecewise constant 

images, whose edges are localized to bandlimited zero-measure curves of infinite support. 

This simple piecewise constant model is extended to more general piecewise smooth models 

in [20].
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Fig. 3. 
Illustration of the matrix lifting operations in 2-D. (a). Vertical stacking of block Hankel 

matrices in (12), which is the matrix form of the convolutional relations in (11). The block 

Hankel matrices HΛ
Γ iωxf  are constructed from the Fourier coefficients of iωxf . Each row 

of HΛ
Γ iωxf  corresponds to a patch of size Λ, drawn from the the Fourier coefficients 

supported in Γ. The number of valid shifts of Λ within Γ is denoted by Γ⊖Λ in (11). (b) 

Linear stacking of block Hankel matrices in (22). The block Hankel matrices of the different 

channels fi are concatenated in a linear fashion to construct the composite lifted matrix. 

When the low-frequency Fourier samples are fully acquired, the corresponding rows of 

the matrices are fully available. This facilitates the estimation of the null-space from these 

regions, which can be used to recover the remaining k-space regions as described in Section 

III. When the Fourier grid is sub-sampled, the matrices can be completed using nuclear norm 

minimization as discussed in Section IV.
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Fig. 4. 
Illustration of the non-linear lifting operation in 2-D, which will map closed union of 

bandlimited curves to union of sub-spaces. (a) Each closed curve is mapped to a subspace. 

The SLR scheme relies on the low-rank structure of the subspace where the lifted points 

live in to recover the curves or denoise the points living on union of bandlimited curves. 

The utility of this scheme in the denoising of shapes is illustrated in (b). The recovery 

is posed as a nuclear norm minimization of the feature maps, which was solved using an 

iterative reweighted least-squares algorithm exploiting the kernel trick [21]. This approach 

is extended to higher dimensions to recover free breathing and ungated cardiac MRI data, 

illustrated in Fig. 8.
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Fig. 5. 
Illustration of different flavors of SLR recovery in a single coil setting. The Fourier 

transform of the image was sampled on the radial grid, which corresponds to an acceleration 

of 4.85. The columns correspond to (a) GIRAF, which assumes a piecewise constant image 

model, where the nuclear norm of the block Hankel matrix in (12) is minimized, (b) GSLR, 

where the image is modeled as the sum of a piecewise constant and piecewise linear 

functions as in (38), (c) S-LORAKS and (d) G-LORAKS [7], (e) total generalized variation 

(TGV), which is a discrete model that represents the images as the sum of piecewise 

linear and piecewise constant factors, and (f) total variation (TV). We note that the Fourier 

domain models (a)&(b) offer better reconstructions compared to their discrete counterparts 

(f) and (e), respectively, which can be appreciated from the zoomed images as well as 

the error images. We note that both (a) and (b) consider the low-rank structure of Hankel 

matrices constructed from weighted Fourier samples; this allows these methods to exploit 

the continuous sparsity of the edges, similar to discrete approaches such as TV or wavelet 

methods. The performance of the algorithms can be further improved by combining multiple 

SLR priors to exploit different signal priors (e.g., piecewise smoothness, multichannel 

sampling, smoothness of phase) [18]. These combinations can be either accounted for by 

different regularization terms or combined into a single nuclear norm penalty of a more 

complex structured matrix obtained by vertical and horizontal stackings to exploit the 

redundancies.

Jacob et al. Page 28

IEEE Signal Process Mag. Author manuscript; available in PMC 2022 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Example applications enabled by the SLR framework. (a) High-resolution four-shot 

diffusion MRI enabled by the SLR framework. The top row corresponds to uncorrected 

four-shot diffusion weighted MRI data from a single diffusion direction. Subtle subject 

motion between the shots results in phase errors between the measured Fourier datasets. 

In addition, eddy current artifacts also manifest as shifts in Fourier space between odd/

even lines. These errors manifest as Nyquist ghosting artifacts in the uncorrected diffusion 

wighted images (DWI) in the top row. The SLR algorithm called MUSSELS [18] recovers 

the eight images, corresponding to each shot and odd/even lines separately, exploiting the 

phase relations between the images. The sum-of-squares combined DWI data from the 

above eight images for each slice are shown in the second row. The information from 

sixty such directions provides the fractional anisotropy diffusion MRI maps shown in the 

bottom row. (b) Correction of B0 distortions in EPI data [29]: the long readouts in EPI often 

result in spatial distortions, resulting from the inhomogeneity of the main (B0) magnetic 

field. Ignoring the B0-induced magnetization evolution during the long EPI readouts will 

be associated with spatial distortions. We reformulated the EPI distortion correction as a 

time-series recovery problem, where multiple images corresponding to different segments of 

the readouts are recovered exploiting the exponential structure of the signal. Note that each 

of the segments are highly undersampled. The missing Fourier samples are filled in using a 

structured low-rank matrix completion.
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Fig. 7. 
(a) Lifting of image with sparse outlier. Noiseless image becomes low-rank Hankel matrix, 

whereas the noisy image becomes a sparse Hankel matrix so that robust principal component 

analysis can decompose the sparse and low-rank Hankel matrices. Then, by unlifting the 

Hankel matrix, we can obtain the noiseless k-space data and the clean images. (b) Example 

of MR artifact removals: (left) noisy images, (center) noisy k-space, and (right) decomposed 

sparse k-space outliers.
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Fig. 8. 
Illustration of SToRM algorithm [21] described in Section VIII-E. The SToRM algorithm 

exploits the manifold structure of free-breathing and ungated images in high-dimensional 

space. Specifically, each image can be viewed as a smooth function of two parameters: 

the cardiac phase and the respiratory phase. A non-linear transformation specified by 

(29) transforms the data to a subspace. We recover the images from their undersampled 

measurements by exploiting this structure, which is compactly captured by nuclear norm of 

the feature matrix. We solve the optimization problem using an IRLS algorithm that uses the 

kernel trick, which eliminates the need to explicitly evaluate the complex features. (a) shows 

the comparisons of SToRM reconstructed images with XD-GRASP, which is an explicit 

binning strategy; XD-GRASP bin the images to distinct cardiac/respiratory phases, followed 

by the total variation recovery of the images. We observe that the implicit binning of the 

data offered by SToRM results in reduced blurring and improved fidelity (b) shows the 

comparisons of SToRM reconstructions (bottom row) with classical breath-held acquisitions 

(top-row) that bins the data from different cardiac cycles. We observe that the image quality 

is comparable, whole SToRM offers real-time imaging capabilities, allowing us to visualize 

cardiac and respiratory functions simultaneously. (a) Comparison
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