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Abstract
Structure-based virtual screening is a key, routine computational method in computer-aided drug design. Such screening can 
be used to identify potentially highly active compounds, to speed up the progress of novel drug design. Molecular docking-
based virtual screening can help find active compounds from large ligand databases by identifying the binding affinities 
between receptors and ligands. In this study, we analyzed the challenges of virtual screening, with the aim of identifying 
highly active compounds faster and more easily than is generally possible. We discuss the accuracy and speed of molecular 
docking software and the strategy of high-throughput molecular docking calculation, and we focus on current challenges 
and our solutions to these challenges of ultra-large-scale virtual screening. The development of Web services helps lower 
the barrier to drug virtual screening. We introduced some related web sites for docking and virtual screening, focusing on 
the development of pre- and post-processing interactive visualization and large-scale computing.

Keywords  Molecular docking · Virtual screening · Supercomputing · Ultra-large-scale computing

1  Introduction

Disease has posed an immense burden to human civiliza-
tions throughout history. At present, COVID-19 has spread 
around the world, with the cumulative number of confirmed 
cases surpassing 166 million worldwide, and the cumulative 
number of deaths exceeding 3.45 million as of May 25, 2021 
(WHO 2021) The development of drugs to treat disease is 
a long and arduous process. However, scientists recognized 
early on that the rational application of computer-aided 
drug design methods can help to improve the efficiency the 

development of new drugs (Vartikatomar et al. 2019). Cur-
rently, new drug development generally follows the process 
shown in Fig. 1. Recent studies have shown that it takes 
more than 10 years to develop a new drug, with an invest-
ment of about $US2–3 billion (Dhasmana et al. 2019). There 
has been considerable research into the development of new 
technologies aimed at increasing the success rate of new 
drug development and reducing the expenses incurred. The 
long timeline and high financial cost of new drug develop-
ment is mainly due to the iterative optimization of lead com-
pounds and the failure of late-stage trials of drug candidates. 
A lead compound is a compound with a desirable biological 
activity and chemical structure. The quality of a lead com-
pound directly affects the quality of the drug candidate and 
is the key to the success of novel drug design. In the process 
of lead compound discovery and optimization, a very impor-
tant research tool is virtual screening technology, which can 
screen out a small number of active molecules from a large 
number of candidate small molecules, narrowing the scope 
for subsequent experimental assays, to improve the hit rate. 

Virtual screening in drug discovery can traditionally be 
divided into two main categories: ligand-based and receptor-
based. The former requires a set of known active ligands 
for 3D quantitative structure activity relationship analysis 
(3D-QSAR), and is commonly used for targeting receptors 
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and optimizing lead compounds (Srinivasarao et al. 2017). 
The latter requires the 3D structure of the receptor and 
ligand molecules to be known. These structures are used 
to perform molecular docking calculations, to predict the 
binding site of the molecules by calculating their binding 
energies in different conformations. Receptor-based vir-
tual screening is often used in the lead compound discov-
ery step. With the development of technologies for protein 
structural science, including cryo-electron microscopy and 
X-ray crystallography, more and more proteins are being 
resolved in three dimensions. It is also possible to predict 
the three-dimensional structure of proteins through homol-
ogy modeling. Receptor-based virtual screening is becom-
ing increasingly important. Molecular docking-based vir-
tual screening is more demanding than ligand-based virtual 
screening in terms of computational resources. In addition 
to protein–ligand docking, molecular docking also covers 
protein–protein docking, protein–peptide docking and other 
large-molecule-related docking problems using biomol-
ecules such as DNA. The use of molecular docking soft-
ware for virtual screening has dominated the literature on 
drug development research since 2000 (Wikipedia 2021), 
and therefore, in this study we focused on protein–ligand 
docking-based virtual screening. High-throughput virtual 
screening (HTVS) can be used to find promising compounds 
from a large molecule library by evaluating their binding 
modes and affinity to a receptor of interest (Dhasmana et al. 
2019). A convenient and easy-to-use web platform is also 
important for general users, especially those who are not 
familiar with Linux operations. In this paper, we describe the 
development of HTVS, especially a new approach to ultra-
HTVS that makes full use of molecular docking methods 
for HTVS in high-performance computing environments.

1.1 � Molecular docking‑based virtual screening 
in drug design

Molecular docking-based virtual screening techniques are 
essential for screening out promising drug precursors from 
the vast amount of structural data available. Improving the 
hit rate of a virtual screening depends on the algorithm used 
by the molecular docking software and on the scale of the 
virtual screening. The ability to quickly screen highly active 
compounds from a large library of small molecules is the 
major goal of virtual screening in drug design. In the follow-
ing sections, the development of molecular docking software 
and HTVS are described.

1.1.1 � Development of molecular docking software

Molecular docking is the process of identifying binding sites 
between two or more molecules using geometric and energy 
matching. The use of this approach can help in the prediction 
of the binding conformation and binding mode or orientation 
between a receptor and a ligand and is especially valuable 
for studying changes of substrate conformation during the 
formation of complexes. Molecular docking is the basis for 
determining the mechanism of binding of drugs to targets 
and is very important for receptor-based virtual screening.

The possibility of a receptor and ligand binding to each 
other and the strength of the binding depend on the change 
in free energy that occurs during the binding process.

where Ki is the binding constant. The enthalpy effect ( Δ
Hbinding) during molecular docking includes the interaction 
energy between the ligand and the receptor, and the interac-
tion energy includes electrostatic, van der Waals, and hydro-
gen bonding interactions.

The enthalpy effect includes the interaction energy of the 
ligand with the solvent and the solvent–protein interaction 
energy. Entropic effects ( ΔSbinding) include entropic changes 
due to molecular rotation and translation, conformational 
changes, hydrophobic interactions, and vibrations. Most 
molecular docking methods ignore the entropic effects and 
only consider the ligand–receptor interaction energy in the 
enthalpy effect.

Molecular docking methods can be broadly classified into 
three categories at different levels of simplification: rigid 
docking, flexible docking and semi-flexible docking (Prieto-
Martínez et al. 2018). Rigid docking means that neither the 
conformation of the receptor nor that of the ligand changes 
during the docking process. Rigid docking is often used 
to examine large systems, such as protein–protein interac-
tions. For example, Juan et al. presented an efficient pseudo-
Brownian rigid-body docking procedure and tested it on 24 
protein–protein docking examples (Juan et al. 2002). Flex-
ible docking, in which the ligand and target structures are 
free to change during the docking process, is generally used 
to examine the recognition between molecules, as it needs 
more computational power (Bonvin 2006). MedusaDock is 
one such flexible docking method, which models the flex-
ibility of both the ligand and the receptor simultaneously, 
with sets of discrete rotamers (Wang 2019). In semi-flexible 

(1)ΔGbinding = −RT lnKi = ΔHbinding − TΔSbinding

(2)Einteraction = EVDW + Eelectrostatic + EH−bond

Fig. 1   Process of drug discov-
ery and development
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docking, the conformation of the target or the ligand is 
allowed to change within a certain range during the docking 
process, usually with the ligand being allowed to be flexible 
while the receptor structure remains rigid. Docking methods 
such as those developed by Morris et al. are commonly used 
for virtual screening calculations in drug discovery, as ligand 
molecules are relatively small, and the impact of examin-
ing conformational changes can be well balanced with the 
overall computational power required (Morris et al. 2009).

The number of software applications for molecular dock-
ing exceeds 100 as of 2019, not including various acceler-
ated docking software versions (Pagadala 2017; Wikipedia 
2021). Table 1 lists 10 commonly used molecular docking 
applications, of which the first five are free and the last five 
are commercial software.

The core of molecular docking software has two aspects: 
a conformational search algorithm and a scoring function 
(Inbal Halperin 2002; Yadava. 2018). The conformational 
search algorithm helps find the optimal binding site for the 
receptor and ligand, while the scoring function is used to 
evaluate the strength of the binding between the docked mol-
ecules. The performance of a conformational search step 
followed by a scoring step is called a run, and molecular 
docking software typically performs multiple runs to over-
come randomness, before outputting the final binding con-
formation, binding energy, and the ranking of multiple runs.

Common conformational search algorithms include sto-
chastic search methods, simulation methods, and systematic 
search methods. Stochastic search methods include simu-
lated annealing, Monte Carlo, genetic algorithms (GAs), and 
Tabu Search. Simulation methods perform structural search 
by means of molecular dynamics or energy minimization. 
Systematic search methods include fragment growth meth-
ods (Inbal Halperin 2002; Yadava 2018).

There are four common scoring functions: force field-
based, empirical, knowledge-based, and machine learn-
ing. Of these, force field-based scoring functions use force 
fields, a collection of equations and associated constants to 
evaluate van der Waals interactions and electrostatic inter-
actions between and within docked molecules. Methods 
such as molecular mechanics energies combined with the 
Poisson–Boltzmann or generalized Born and surface area 
continuum solvation methods are also commonly used to 
evaluate the desolvation energy between ligands and recep-
tors (Pu et al. 2017). Empirically based scoring functions are 
calculated based on the type of interactions counted for the 
docked molecules, such as hydrophobic interactions, hydro-
philic interactions, number of hydrogen bonds, and number 
of rotatable bonds. The coefficients of the scoring function 
are fitted by means of multiple linear regression. Knowl-
edge-based scoring functions originate from the statistical 
mechanics analysis of liquids, also known as the potential 
of mean force scoring function. The fitness is calculated by 

solving for a statistical potential function of protein–ligand 
pairs. The method uses a set of protein–ligand complex 
structures from the PDB database (PDB bank 2021; Ber-
man et al. 2003) as a training set, or “knowledge base”, in 
which the atoms of proteins and ligands are classified into 
a number of simplicial types according to their molecular 
environment, and the distance-dependent potential of each 
possible pair is derived based on the frequency of occur-
rence of the atomic pair. Machine learning-based scoring 
functions use a variety of descriptors, such as electrostatic 
interactions, hydrogen bonding or aromatic stacking, surface 
or shape properties, ligand molecular weight, and rotatable 
bonds, to build a machine learning model, which is then 
used by the machine learning algorithm, a branch of artifi-
cial intelligence focused on the use of data and algorithms 
to imitate the way that human learns, to derive a non-linear 
energy function for the docking score.

Although there are differences in conformational search 
algorithms and scoring functions in different molecular 
docking software, research has indicated that the differences 
in conformational ranking and scoring results between free 
software and commercial software are not significant, and 
there is no one docking software that is superior to the oth-
ers in all respects (Wang et al. 2016). In a virtual screening 
context, consensus docking can improve the reliability of 
docking by using more than one docking program to predict 
the binding pose (Houston et al. 2013).

The speed of individual molecular docking calculation 
depends on the conformational search algorithm used by the 
molecular docking software, the implementation of the pro-
gram, and some parameter settings. For example, AutoDock 
has used the Lamarckian Genetic Algorithm since version 
3.0. This algorithm combines a genetic algorithm for global 
search and a local search for energy optimization and is more 
efficient than traditional GAs and simulated annealing algo-
rithms. For program implementation, MPI, threaded, or GPU 
acceleration can be used. For example, Dock 6 supports MPI 
parallelism, Autodock Vina supports multi-threaded paral-
lelism, and AutoDock GPU (Diogo et al. 2019) implements 
acceleration on the GPU. In terms of parameter settings, by 
limiting the search space to, for example, rigid docking or 
semi-flexible docking, the search freedom is greatly reduced 
compared to that in full-flexible docking, speeding up the 
search. rxDock (Sergio et al. 2014) uses a stepwise scoring 
setting, for example, starting with five runs of docking for 
all ligands, an additional 10 runs for ligands with a score of 
less than a specified binding energy, and a total of 50 runs 
for ligands with a score of less than another lower specific 
energy. In this way, the accuracy of the molecular docking 
is improved, and the computational time consumption is 
reduced by a factor of approximately 7.5.
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Table 1   Some commonly used docking software

Software Algorithm features Home page

AutoDock (Morris et al. 1998; Morris et al. 2009) Lamarckian Genetic Algorithm and empirical bind-
ing free energy function

http://​autod​ock.​scrip​ps.​edu/

AutoDock Vina (Olson 2010) Iterated local search global optimizer, with sophis-
ticated gradient optimization method in its local 
optimization procedure. The derivation of its 
scoring function combines certain advantages of 
knowledge-based potentials and empirical scoring 
functions

http://​vina.​scrip​ps.​edu/

rDock (Sergio et al. 2014) Evolved from RiboDock, rDock uses a combination 
of stochastic and deterministic search techniques 
to generate low-energy ligand pose. rDock 
includes fast intermolecular scoring functions 
(vdW, polar, desolvation) and implements several 
pseudo-energy scoring functions that are added to 
the total scoring function under optimization and a 
restricted search protocol

http://​rdock.​sourc​eforge.​net

Dock 6 (William et al. 2015) Anchor-and-grow search algorithm is a breadth-
first method for small-molecule conformational 
sampling. It utilizes a footprint similarity scoring 
function

http://​dock.​compb​io.​ucsf.​edu/

LeDock (Zhao et al. 2013; Zhao et al. 2011) Simulated annealing and genetic algorithm optimi-
zation. The scoring function, based on AutoDock 
4 scoring function, calculates hydrogen bonding 
penalty associated with ligand binding to improve 
binding

http://​lephar.​com/

Glide (Friesner et al. 2004) Complete systematic search of the conformational, 
orientational, and positional space of the docked 
ligand. Its scoring function, named as Emodel, 
combines empirically based ChemScore function, 
force-field-based terms from the Coulomb and 
vdW interaction energies between the ligand and 
the receptor, and the solvation model

http://​www.​schro​dinger.​com/

Gold (Jones et al. 1997) Genetic algorithm to explore the full range of ligand 
conformational flexibility with partial flexibility of 
the protein. Its scoring function comprised terms 
for hydrogen bonding, pairwise dispersion poten-
tials, and molecular mechanics terms

http://​www.​ccdc.​cam.​ac.​uk/

FlexX (Rarey et al. 1996) Fragment growth method to find the best conforma-
tion and empirical scoring function to compute the 
binding affinity

https://​www.​bioso​lveit.​de/​produ​cts/

Surflex (Jain et al. 2003) Employs a “protomol” that can be automatically 
generated or user defined to generate putative 
poses of molecules or molecular fragments. The 
scoring function, based on Hammerhead scoring 
function, uses an updated and re-parameterized 
empirical scoring function

http://​www.​tripos.​com/

LigandFit (Krammer et al. 2005; Venkatachalam 
et al. 2003)

Shape-directed docking methodology. Ligand 
conformations are generated by a Monte Carlo 
conformational search for generating ligand poses 
consistent with the active site shape. Its scoring 
function is called LigScore, which consist of three 
distinct terms that describe the van der Waals 
interaction, the polar attraction, and the desolva-
tion penalty

https://​www.​3dsbi​ovia.​com/

http://autodock.scripps.edu/
http://vina.scripps.edu/
http://rdock.sourceforge.net
http://dock.compbio.ucsf.edu/
http://lephar.com/
http://www.schrodinger.com/
http://www.ccdc.cam.ac.uk/
https://www.biosolveit.de/products/
http://www.tripos.com/
https://www.3dsbiovia.com/
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1.1.2 � Development of HTVS

The application of molecular docking to HTVS involves a 
receptor performing molecular docking with multiple dif-
ferent ligands over a period of time. The results are ranked 
according to the docking score to identify highly active com-
pounds. There are several approaches to handling HTVS.
i.	 Dividing the docking task into multiple files or folders 

and sequentially calling the molecular docking software 
for calculation

When using AutoDock Vina for HTVS, a certain number 
of small ligand molecules can be cut and stored in different 
file directories in advance, and the software can be invoked 
in each file directory to perform molecular docking opera-
tions. The binding energy of the molecules in the directory 
are calculated sequentially, and the output is provided. When 
there are sufficient computational resources, different file 
directories can be executed independently to optimize the 
computation time. rDock and rxDock software, on the other 
hand, use “sdsplit” to divide a sdf file containing multiple 
ligand files on demand. A sdf file containing 1000 molecules 
may be divided into 10 sdf files, each containing 100 mol-
ecules. Each sdf file can be used to initiate a molecular dock-
ing operation independently on local computing nodes or be 
scheduled to another compute node via a queue scheduling 
system.

	 ii.	 Performing HTVS using docking software

iDock, which is based on the AutoDock Vina software, 
has improved IO usage by using thread pools to manage 
calculation tasks for user-specified molecules in the task 
folder, enabling receptor files and corresponding grid point 
calculation files to be reused. They also adjust docking scor-
ing thresholds dynamically and use step-by-step scoring set-
tings. The iDock software is 7.5 times faster than AutoDock 
Vina.

Vina MPI uses an MPI wrapper to enable the simulta-
neous launching of thousands of parallel AutoDock Vina 
executables and has been run on the Oak Ridge Leadership 
Computing Facility Jaguar and Titan supercomputers. For 
molecules in user-specified task folders, it uses MPI wrap-
pers to execute docking operations on 85,672 cores on the 
OLCF Jaguar and Titan supercomputers for four protein 
molecules and 392,656 ligand molecules (98,164 ligands 
per receptor dock). A total of 14,278 Audodock Vina pro-
gram calls, with each Audodock Vina program using six 
computation threads, were set up, and the total computing 
time was 900 s.

	 iii.	 Building parallel workflows with tools such as GNU 
Parallel

GNU Parallel is a command line tool with the main 
command “xargs”, which can capture the output of 

specific commands to concatenate the execution of differ-
ent commands. GNU Parallel executes jobs in parallel mode, 
depending on the number of CPU threads assigned by the 
user. This tool enables complete and powerful utilization 
of CPU resources. For example, the POAP (Samdani et al. 
2018) workflow software uses GNU Parallel to connect the 
OpenBabel and AutoDock/AutoDock Vina packages to pro-
cess ligand preparation, receptor preparation, docking tasks, 
and result processing via a shell command line.

The above-mentioned approaches can only perform 
HTVS calculations for approximately 106–107 ligand mol-
ecules. Strategies that can handle ultra-HTVS calculations 
are seriously needed.

As well as molecular docking-based HTVS, artificial 
intelligence (AI) techniques are also used for exploring the 
binding possibilities of targets and ligands. For example, 
the MolAICal (Bai et al. 2020) software uses a genera-
tive adversarial network approach to train ligand fragment 
libraries for specific receptors, constructs ligand molecules 
using a fragment growth method, and determines the opti-
mal conformation and binding energy in conjunction with 
molecular docking software. The DEEPScreen (Rifaioglu 
et al. 2020) software was trained individually for 704 targets 
using a deep convolutional neural network approach from 
the SMILES of 2D molecules. Each receptor and at least 100 
active ligands from the ChEMBL (Gaulton et al. 2017) com-
pound library was used for training, and specific predictive 
models were obtained for each target. Because of the poor 
interpretability of AI methods, and the limited accuracy of 
prediction results for molecules with large structural differ-
ences from the training molecules, molecular docking-based 
HTVS rather than AI methods remain the dominant choice 
in drug design.

It is important to increase the number of small molecules 
that can be used for docking. Research shows that the abso-
lute value of binding energies for the top 50 compounds 
increases with the size of the ligand library for HTVS (Gor-
gull et al. 2020). This observation indicates that the screen-
ing of large ligand libraries can identify more effective active 
compounds than can be achieved with a small library. The 
higher the binding affinity of the ligand, the lower the drug 
dose required. Off-target effects are therefore reduced, and 
compounds with favorable pharmacokinetics and low cyto-
toxicity can be identified.

According to chemists’ estimates (Kirkpatrick et  al. 
2004), the number of stable small molecule compounds 
meeting Lipinski’s Rule of Five (Benet et al. 2016) (i.e., a 
molecule with a molecular mass less than 500 Da, no more 
than 5 hydrogen bond donors, no more than 10 hydrogen 
bond acceptors, and an octanol–water partition coefficient 
log P not greater than 5) is around 1060, with the number of 
active molecules smaller than 30 atoms ranging from 1020 
to 1024. With our increasing understanding of the human 
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genome, and the development of structural biology, a large 
number of proteins have been identified as potential drug 
targets. With the ongoing development of technology, 
researchers can generate large numbers of small molecule 
compounds through methods such as fragmentation com-
bination libraries and deep learning (Erlanson et al. 2012; 
Zhavoronkov et al. 2019).

The application of computationally powerful supercom-
puters in drug design has brought new opportunities for the 
discovery of drug precursor structures, enabling a dramatic 
increase in both the speed and success rate of drug design. 
After years of development and iteration, supercomputers 
have now entered the era of exascale computing. Exascale 
computing can provide the capability to tackle challenges in 
scientific discovery and national security at levels of com-
plexity and performance that previously were out of reach 
(ECP 2021). The United States, Japan, and Spain have devel-
oped E-class computing programs, and China also plans to 
deploy and implement large-scale heterogeneous E-class 
supercomputing systems. Theoretically, supercomputers 
could be used to perform ultra-HTVS in a shorter period of 
time than is currently possible. However, some challenges 
will be faced in the process of using supercomputers for 
ultra-HTVS. Supercomputers are good at handling large 
files, but the problem of storing and processing massive 
amounts of small molecule files is challenging. The best 
way in which to effectively use heterogeneous accelerators to 
enhance computational efficiency has not been established. 
It is unclear how to ensure load balancing of computational 
nodes in various situations without causing communication 
pressure on the system. There are significant challenges 
posed by the large number of IO operations on supercomput-
ing file systems. Ultra-high-throughput jobs must be effec-
tively managed, especially in the event of errors. Finally, it 

not clear whether a supercomputing approach can be com-
patible with various clusters and queue scheduling systems 
for fast deployment and use.

Research into solving the above challenging problems to 
improve the efficiency of ultra-HTVS on supercomputers is 
ongoing. For example, the mD3DOCKxb software used by 
Peng et al. on Tianhe-2 involved a novel scalable parallel 
algorithm that can obtain over 80% acceleration on 8000 
nodes, using CPU + MIC co-computing to screen 42 million 
old drug compounds in one day (Peng et al. 2017). Chris-
toph Gorgull et al. published a hyperscale drug discovery 
platform with a VirtualFlow for Virtual Screening module, 
developed using Shell scripts, with task distribution in the 
form of file lists, using 8000 CPU cores and screening about 
1.3 billion compounds in 4 weeks (Gorgull et al. 2020). The 
above two research teams have gone some way to solving the 
challenges encountered in ultra-large-scale virtual screening.

2 � Ultra‑large‑scale virtual screening 
platform using aweVS

In order to address the challenges encountered in ultra-
HTVS on supercomputers, we designed a package named 
aweVS, which utilizes multi-layer databases to dynamically 
distribute the large number of docking tasks (Fig. 2). aweVS 
can integrate all of the docking tasks in the virtual screening 
process, ideally scaling linearly with the number of CPUs 
or GPUs, efficiently handle billions of ligands, minimize 
the input and output loads, and run robustly. It can use dif-
ferent docking software, including heterogeneous accelera-
tion software, and different hardware platforms, including 
various types of heterogeneous GPU platforms, to perform 

Fig. 2   The design architecture 
of aweVS
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ultra-HTVS. aweVS is user-friendly and easy to use for non-
computational scientists.

aweVS uses a combination of multiple tiers of databases 
to manage and distribute docking jobs. At the beginning of 
the program, the “Root Server” gets the first-level tasks from 
the “Root Database” and then disassembles and stores the 
tasks in the “Branch Databases”. After that, each “Branch 
Server” obtains tasks from each “Branch Database” and 
distribute them to the foreman of each compute node for 
execution. In each computing node, the foreman calls mul-
tiple workers to complete the tasks distributed on this node, 
including data acquisition, molecular docking calculation, 
and post-processing analysis of this batch of tasks. During 
task execution, the tasks on each computing node are fully 
loaded, achieving a balanced load. After the tasks on the 
computing node are completed, the foreman on the com-
puting node fetches new computing tasks from the “Branch 
Database” until the tasks are completed, and no new tasks 
exist in the “Root Database” (Fig. 2).

The effective processing of massive files is important for 
stability of the file system of super computers. We com-
pressed the massive files in multiple layers, using multi-
ple databases. the “Root Database” corresponds to the 
top-level ligand directory, which includes several top-level 
compressed files. The secondary compressed file contains 
the molecules to be docked and corresponds to the “Branch 
Database”. At the time of calculation, the foreman on the 
computing node fetches a secondary tar-archive, copies it 
to the local temporary file systems of that compute node, 
and then decompresses it to perform the computation. After 
the calculation is completed, the task is rank ordered, and 
the top 20% of the results are stored in the database, while 
all the output files are deleted. After the TOP N molecules 
are selected after HTVS, re-docking should be done to get 
all needed results. This approach saves storage space and 
reduces the IO pressure on the file system caused by data 
migration.

Network communication between the nodes is required 
to fetch tasks from the database or to save results to the 
database. At the beginning of the computation, nodes con-
currently communicate with the higher-level database, a 
situation that can cause excessive instantaneous communi-
cation loads. For example, if 500 computing nodes fetch 
tasks from one “Branch Database”, there are 500 instantane-
ous communications for the node of the “Branch Database”. 
We included a 100 ms communication delay to reduce this 
instantaneous communication. The computation process 
is performed entirely locally in the computation node, and 
after the task has been computed it communicates with the 
database node to store the results and obtain the next task. 
The computing node communicates with the database node 
every 30 min to update the job time, and only the energy and 
ligand names are retained and stored in the database at the 

end of the task, significantly reducing the amount of data 
transferred across the network.

aweVS automatically scans nodes and quickly restarts 
database services during computation, provides effective 
fault-tolerance management for hardware errors and prob-
lems caused by software computation, and ensures that tasks 
execute automatically to completion. The program shields 
the user from the complexity of the processing details, and 
provides the flexibility to adjust the inputs and running 
parameters using configuration files.

We used aweVS to call Autodock GPU software to com-
plete a virtual screening of over 1.6 billion compounds in 
less than a day, using 26,000 GPU cards (the computing 
performance is between NVIDIA Tesla P100 and V100) on 
a domestic supercomputer. In the future, we expect to be 
able to use this ultra-large-scale virtual screening platform 
based on supercomputers to perform larger and faster virtual 
screening, providing powerful computational simulations for 
drug candidate discovery.

2.1 � Web services for molecular docking‑based HTVS

Molecular docking calculations not only confirm whether a 
receptor and ligand can bind but also determine the binding 
conformation and binding strength. The virtual screening 
of a large number of ligand molecules based on molecu-
lar docking allows the identification of some of the most 
strongly bound ligand molecules by ranking their binding 
strength, which reduces the scope and cost for subsequent 
calculations and experimental activity measurements.

As mentioned above, HTVS plays a significant role in 
the drug development process. During the research process, 
several HTVS may need to be performed for different bind-
ing sites of a target, a process that can be repetitive. HTVS 
calculation usually involves the following steps: obtaining 
the protein structure, performing structural modifications 
and format conversion, defining the binding pocket and size, 
modifying the ligand structure and format conversion, set-
ting the docking parameters, using suitable molecular dock-
ing software to perform molecular docking calculations for 
the receptor and the ligand library, and post-processing the 
results. Post-processing may involve scoring, ranking scores, 
extracting the molecular structure and energy, and visualiz-
ing the binding complex. Some of the pre- and post-process-
ing steps mentioned above, such as structure modification, 
format conversion, and identification of binding pockets, can 
be assisted by auxiliary tools such as PyMOL (Schrodinger 
2015) which provides parameter setup and structure visu-
alization for AutoDock Vina. Other steps of HTVS must be 
done via the Linux command line. This process is difficult 
for biologists or pharmacologists who are not familiar with 
Linux. Pharmacologists, who focus on experimental or clini-
cal research, are often not familiar with the steps of virtual 
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screening, and learning different tools or software can be 
difficult.

With the development of the Internet, Web services for 
HTVS have gradually emerged. A Web service can be used 
to predict the molecular interactions that may occur between 
a target protein and a small molecule. They can effectively 
assist drug development as they lower the barriers to use, 
and increase the efficiency of HTVS. There are several 
websites that provide Web-based protein–ligand molecular 
docking services, most of which run standalone software on 
the server side, and provide an interface and computational 
resources via the Web.

Web services generally fall into two categories. The first 
one is docking of target proteins to individual small mol-
ecules, such as the SwissDock platform run by the Swiss 
Institute of Bioinformatics (based on the software EADock 
DSS software developed by the same research institute) and 
the Achilles Blind Docking server run by the Bioinformat-
ics and High-Performance Computing Research Group at 
the University of Vucón in Spain. Another type of service 
provides screening of target proteins against specific small 
molecule databases. As shown in Table 2, DOCK Blaste 
r (Irwin et al. 2009), based on the DOCK3 software, can 
use PocketPickker (Coleman et al. 2010) to predict binding 
sites and the ZINC database (Irwin et al. 2005) for HTVS. 
Drug Discovery@TACC (Tacc 2021), based on AutoDock 
Vina and the ZINC database, requires user-defined binding 
sites. istar is based on idock and ZINC databases, requires 
user-defined binding sites, and supports a WebGL-based 
visual interface for previewing results. FINDSITE (Zhou 
et al. 2013) is based on FINDSITEcomb and supports ZINC, 
KEGG Compound (Kanehisa et al. 2000), and BindingDB 
databases. iScreen (Tsai et al. 2011) uses PLANTS as the 
molecular docking engine, and the ligand database is the 
TCM@Taiwan database, supporting ab initio ligand design 
with the LEA3D tool.

The above Web services, which implement protein–ligand 
molecular docking services for specific molecular docking 
software and databases, are less involved in interactive pre- 
and post-processing and efficient use of supercomputing 
resources.

Based on our ultra-HTVS software aweVS and the China 
National Grid (CNGrid), which provides unified high-per-
formance computing services based on multiple hetero-
geneous HPCs, we developed a Web server that provides 
easy access to researchers who wish to perform HTVS but 
who do not have the necessary computer resources and/or 
computational biology background. It is a one-stop service 
platform, on which users can pre- and post-process targets 
and ligands visually, and submit jobs to HPCs in CNGrid 
without tedious software installation. The site is currently 
based on the AutoDock Vina software, ZINC and Enamine 
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REAL databases (Enamine 2021; Irwin et al. 2005), and also 
supports user-defined ligand uploads for docking.

Our Web server uses a front- and back-end separated 
Web development model, with the Vue.js framework on the 
front-end for display and Node.js on the back-end to han-
dle the various requests sent from the front-end. MongoDB 
databases (https://​www.​mongo​db.​com) are used to manage 
the ligands database and calculation results, and virtual 
screening tasks are submitted to the HPCs through a REST-
ful API provided by CNGrid. For the pre-processing part 
of the docking calculation, we designed a guided input file 
and parameter preparation step based on the virtual screen-
ing process. The three steps include receptor file prepara-
tion (Fig. 3a), ligand file preparation (Fig. 3b), and docking 
parameter settings (Fig. 3c). The site uses the NGL viewer 
plugin to provide real-time visualization of targets and bind-
ing pockets (Alexander et al. 2016; Hildebrand et al. 2015). 
In the receptor file preparation step, the user can upload 

a PDB file or fill the PDB ID to fetch the initial receptor 
structure. The receptor file preparation step also includes 
modifications to the PDB structure, such as hydrogen and 
charge addition, residue complementation, and other opera-
tions, which are assisted by tools such as AutoDock Tools 
on the back end of the platform. In the ligand preparation 
phase, the ligand structures can be selected from the ZINC 
database, or compressed files uploaded in pdbqt format by 
the user. In the docking parameter setting stage, the position 
of the crystallized ligand with the protein is automatically 
identified as a reference pocket and the size of ligand for 
pocket size, which is shown in the right side of the web page, 
to enable the user to select the proper docking parameters. 
The user can specify the parameter TOP N, which is the 
results of the N top active molecules to be returned after 
virtual screening.

The back-end of the Web server is connected with HPCs 
by a RESTful API from CNGrid. The HTVS calculation is 

Fig. 3   Screenshots of our web site. a Receptor preparation page. b Ligand preparation page. c Parameter setup page. d Results analysis page

https://www.mongodb.com
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completed by aweVS and Autodock Vina. The user can view 
the job status in real time and kill the job if necessary. When 
the job is done, the post-processing program is executed to 
get the TOP N active molecules. The user can analyze the 
binding energies and different conformations intuitively and 
effectively on the website (Fig. 3d).

3 � Conclusions

In this research, we discussed several aspects that affect the 
accuracy, efficiency, and ease-of-use of molecular docking-
based virtual drug screening. With respect to the accuracy 
of the binding affinity calculation, the difference between 
commercial and free software is not significant. Consensus 
scoring can be done by multiple applications to improve the 
calculation accuracy. The docking score of the top active 
compounds improves with the size of the ligand library dur-
ing screening. Efficient screening of chemical spaces on a 
large scale should make full use of the power of supercom-
puters. The development of high-throughput concurrent 
programs to address the challenge of virtual screening at 
an ultra-large scale is required to obtain virtual screening 
results in a limited time frame. In this study, we introduced 
a ultra-large-scale virtual screening platform named aweVS, 
which can integrate all of the docking tasks in the virtual 
screening process, ideally scaling linearly with the number 
of CPUs or GPUs, efficiently handle billions of ligands and 
run robustly.

In addition, web services for molecular docking-based 
HTVS is an effective way to reduce the barriers to HPC 
accessibility and software usage and improve productiv-
ity. Based on aweVS, we developed a web site, which is 
designed based on the characteristics and steps of molecular 
docking calculations, and it can combine calculations and 
data processing to provide an intuitive, efficient, and easy-
to-use virtual screening service for drug discovery.

In the future, some features, such as adaptive determina-
tion of the number of ‘Branch Server’ according to different 
type of super computers, are required to be implemented in 
aweVS. Also, more docking software and databases should 
be added to the web site, and consensus docking should be 
considered.
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