
Research Article
Deep Learning-Assisted Repurposing of Plant Compounds for
Treating Vascular Calcification: An In Silico Study with
Experimental Validation

Chia-Ter Chao ,1,2,3 You-Tien Tsai,3 Wen-Ting Lee,4 Hsiang-Yuan Yeh ,4

and Chih-Kang Chiang 2

1Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
2Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
3Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
4School of Big Data Management, Soochow University, Taipei, Taiwan

Correspondence should be addressed to Hsiang-Yuan Yeh; hyyeh.richard@gmail.com

Received 6 July 2021; Revised 24 October 2021; Accepted 13 November 2021; Published 5 January 2022

Academic Editor: Vladimir Jakovljevic

Copyright © 2022 Chia-Ter Chao et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Background. Vascular calcification (VC) constitutes subclinical vascular burden and increases cardiovascular mortality. Effective
therapeutics for VC remains to be procured. We aimed to use a deep learning-based strategy to screen and uncover plant
compounds that potentially can be repurposed for managing VC. Methods. We integrated drugome, interactome, and
diseasome information from Comparative Toxicogenomic Database (CTD), DrugBank, PubChem, Gene Ontology (GO), and
BioGrid to analyze drug-disease associations. A deep representation learning was done using a high-level description of the
local network architecture and features of the entities, followed by learning the global embeddings of nodes derived from a
heterogeneous network using the graph neural network architecture and a random forest classifier established for prediction.
Predicted results were tested in an in vitro VC model for validity based on the probability scores. Results. We collected 6,790
compounds with available Simplified Molecular-Input Line-Entry System (SMILES) data, 11,958 GO terms, 7,238 diseases, and
25,482 proteins, followed by local embedding vectors using an end-to-end transformer network and a node2vec algorithm and
global embedding vectors learned from heterogeneous network via the graph neural network. Our algorithm conferred a good
distinction between potential compounds, presenting as higher prediction scores for the compound categories with a higher
potential but lower scores for other categories. Probability score-dependent selection revealed that antioxidants such as
sulforaphane and daidzein were potentially effective compounds against VC, while catechin had low probability. All three
compounds were validated in vitro. Conclusions. Our findings exemplify the utility of deep learning in identifying promising
VC-treating plant compounds. Our model can be a quick and comprehensive computational screening tool to assist in the
early drug discovery process.

1. Introduction

The ectopic deposition of calcium apatite crystals in vascular
walls, or vascular calcification (VC), emerges as a silent killer
for populations with chronic kidney disease (CKD), diabetes
mellitus (DM), and those of advanced age [1]. VC can be
detected in as early as the fourth decade of life and becomes

nearly universal in those older than 65 years, progressing
from the abdominal aorta to the ascending aorta at a later
time [2]. Meta-analyses showed that the prevalence of coro-
nary or aortic VC reached as high as 65% to 70% [3, 4]. VC
leads to vascular stiffening, reducing major vessel compli-
ance and increasing cardiac afterload, culminating in myo-
cardial hypertrophy, heart failure, and cardiovascular
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mortality. Patients with CKD are at a particularly high risk
[5], and they frequently develop occult vascular pathologies
especially VC. The perverse influences conferred by VC
therefore warrants complete understandings of its patho-
physiology and fuel searches for potential candidates to treat
VC [6, 7].

Processes responsible for the development and aggrava-
tion of VC include not only passive calcium deposition but
also active osteoid secretion by resident cells (especially vas-
cular smooth muscle cells (VSMCs)) [8]. The adverse micro-
environment, including dysregulated mineral metabolism-
related hormones (fibroblast growth factor-23 (FGF-23),
parathyroid hormone, and vitamin D), divalent ion imbal-
ances, and/or the downregulation of mineralization inhibi-
tors prompts the trans-differentiation of VSMCs into
osteoblast-like cells with a secretory phenotype [9]. Uremic
toxins [10] and epigenetic machineries (microRNAs and
methylation abnormalities) [11] also participate in the pro-
gressive courses of VC. The complex pathogenesis of VC
creates an unformidable challenge for identifying effective
therapeutics. Despite the uncovering of potential candidates,
very few enter clinical trials and none is recommended by
international guidelines [12]. Therapeutic nihilism therefore
prevails regarding how to treat VC [13].

The advancement in computational biology and high-
throughput platform for target/molecule screening greatly
facilitates our understanding of disease pathophysiology
and novel treatment identification, including VC [14]. Com-
pounds of either synthetic origin or natural molecules have
been shown to be a rich reservoir for procuring potential
therapeutic candidates [6]. Druggable targets inherent to
the pathogenic landscape of VC can also be discovered
through similar strategies. Using a transcriptomic approach
followed by experimental validation, we previously showed
that astaxanthin might beneficially influence VC severity
through its action toward superoxide dismutase 2 (SOD2)
[15]. Machine learning, a new strategy and expanding
research discipline that trains computers to learn from mas-
sive data, emerges as a promising tool to help mine patterns
or linkages [16]. The application of machine learning to the
field of medicine has fueled and accelerated the progress of
precision medicine. Existing literature concerning the use
of machine learning in VC studies unanimously focuses on
image interpretations and cardiovascular risk stratification,
but rarely on plausible therapeutic candidate selection [17].
Furthermore, the process of new drug discovery is costly
and time consuming with low success rates. We need more
economically efficient ways such as existing drug repurpos-
ing, which aims at maximizing the potential usage of existing
drugs [18]. As the effective clinical treatment for VC remains
a largely undercharted field, we aimed to use a deep
learning-based strategy to screen and identify existing com-
pounds capable of being repurposed for managing this
dreadful disorder.

2. Material and Methods

2.1. Overall Workflow of Database Integration and Deep
Learning. We used the representation learning strategy,

which is aimed at providing a meaningful embedding vector
for each node in heterogeneous graphs in order to facilitate
the binary classification application of the drug-disease asso-
ciation [19, 20]. A gross overview of our workflow is illus-
trated in Figure 1. In step 1, we combined the drugome,
interactome, and diseasome information from different bio-
medical database to analyze drug-disease associations. In
step 2, we learned a high-level description of the local net-
work architecture and features of the entities using a deep
representation learning. This step encoded the content
embedding for each node; for instance, the drug might have
its own chemical structure for functionality and interactions
with its confirmed or predicted target proteins as a subnet-
work. In step 3, we learned the global embeddings of the
nodes derived from the heterogeneous network using the
graph neural network architecture, which was treated as an
input into a classification task. This step aggregated the con-
tent embeddings from different neighbors and then com-
bined them together by considering different impacts from
different nodes. In step 4, we applied a random forest classi-
fier to predict novel associations based on the embedding
vectors of the selected drugs and the disease(s) of interest.

2.2. Integrating Heterogeneous Biological Information
between Drugs and Diseases. The fields of “network medi-
cine” and “system biology” are gaining tractions in the
recent years. An emerging application of such strategy is to
uncover novel associations based on a diverse spectrum of
relationships between drugs and diseases [21]. We gathered
networks connecting drugs, interactomes, and phenotypes
from different biomedical databases and also incorporated
heterogeneous information for considering vast arrays of
attributes or contents associated with each node in
Figure 2(a). The descriptions of each drug were gathered
from 2D chemical structures in PubChem, drug-target asso-
ciations in Comparative Toxicogenomics Database (CTD)
[22], DrugBank databases [23], and functional annotations
in Gene Ontology (GO). The CTD database provides the
disease phenotype-genotype associations and disease
phenotype-drug associations. We curated 9,726 drugs,
25,482 target proteins, and 7,238 diseases, while interactions
among proteins of human origin were extracted from Bio-
Grid containing 15,352 unique proteins and 281,862 interac-
tions. We used the enriched GO annotations, which were
statistically significant GO terms with a p value < 0.01 for
compounds recorded in the CTD database.

2.3. Structural Characteristic Embeddings of Chemical Drug
Using the End-to-End Transformer. Cheminformatics is
aimed at integrating chemistry with information science
techniques based on interactions, structural characteristics,
and functional properties [24]. We extracted the Canonical
Simplified Molecular-Input Line-Entry System (SMILES)
format of the drugs from the PubChem database. The struc-
ture of the end-to-end transformer deep neural network is
shown in Figure 2(b). We applied the pretrained end-to-
end transformer to 83,000,000 SMILES collected from Pub-
Chem to obtain the structural characteristic embedding vec-
tors of each drug using the end-to-end transformer deep
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neural network based on their frequency and sequential
order of each SMILES character. An encoder layer with
self-attention operation mapped the SMILES sequence into
the latent space based on its relationship with other charac-
ters [25]. A decoder layer had similar structures to encoder
layers, and the output of the final decoder layer was the same
as the input sequence (Figure 2(b)). The output of the final
encoder layer provided the structural characteristic embed-
dings of a chemical compound, representing the abstract fea-
tures for describing the structural characteristics of a
chemical drug. We further applied the t-distributed stochas-
tic neighbor embedding (t-SNE) algorithm to visualize com-
plex high-dimensional content embedding vectors in a two-
dimensional space.

2.4. Functional Characteristic Embeddings of Chemical
Compounds. To study functional properties, we gathered
drug-GO term relationships as bipartite graphs and har-
nessed node2vec, an algorithmic framework for learning
the functional characteristics embeddings of the chemical
drug in bipartite networks [26]. We first used a biased ran-
dom walk algorithm to sample sequential paths with differ-
ent lengths to capture indirect relationships, or high-order
dependencies in the bipartite graph. We treated the sequen-
tial paths as sentences in natural language and applied the
Skip-gram model to generate low-dimensional and real vec-
tor space representing the functional characteristics embed-
dings of each chemical compound. Importantly, compounds
with similar functional properties could be mapped closer to
each other on the latent space.

2.5. Representative Learning of Nodes in Heterogeneous
Network Using Graph Neural Networks. Besides the chemical
structural and functional characteristic embedding vectors
of drugs, the embedding vectors of the diseases and proteins

are also learned from disease-gene and drug-target protein
interaction networks using the node2vec algorithm. After
obtaining initial embedding vectors, we summarized a
graph-level latent vector considering the heterogeneous
structural information via graph deep neural network archi-
tectures (GNN) as in Figure 2(c) [27]. We analyzed the
latent vectors with the geometric relationships which
reflected the topological relationships between nodes. GNN
iteratively updated the initial embedding vectors learned
from the features of the nodes by propagating the informa-
tion from their neighbors based on the attention mechanism
[27, 28]. An aggregation function took the current embed-
ding vectors of the neighbors of a node and created compre-
hensive node embedding that maximized effects from the
neighborhoods of nodes with different weights as global
embedding vectors.

2.6. Random Forest Classifier for Binary Classification
between Drugs and Diseases.We combined the drug and dis-
ease global embedding vectors together as the input of the
random forest classifier for predicting associations between
drugs and diseases (Figure 3). We adopted known drug-
disease associations in CTD as the gold standard and applied
fivefold cross-validation to evaluate the performances of our
constructed model. We randomly split all known drug-
disease associations into five equal-sized subsets, combined
four subsets as the training set, and treated the other subset
as the testing set. We estimated the average of performances
ranging from 0.65 to 0.76 using the area under the receiver
operating characteristics curve (AUC) value on 5-fold
cross-validations. Plant compounds with a probability score
predicted by our model higher than 0.5 were selected for
testing in experimental models of VC, as detailed below.
We also selected one candidate with a low probability score
for validation.

2.7. Comparing the Embedding Vectors Based on Different
Information: The Similarity-Based Strategy. We used a
similarity-based strategy to compare the embedding vectors
based on different information supported. Similarity-based
compound virtual screening using the sparse and binary fin-
gerprint or functional annotation is one of the fundamental
methods of preclinical drug discovery. This strategy har-
nessed computational approaches to predict properties and
potential biologic effects of compounds. For comparison
purpose, we used the aforementioned dense embedding vec-
tors based on structural (SMILES-only) using end-to-end
transformers and chemical functional activities (GO annota-
tions-only) derived from the node2vec algorithm. We chose
the cosine similarity measurement to formulate the diversity
via the angular between different vectors in the embedding,
and the score lied within the interval ½0, 1�, where the value
0 or 1 indicated an extremely dissimilar or extremely similar
probability to the reference standards, respectively. Particu-
larly, the diversity mainly provided a representative model
with more complement information for the machine learn-
ing process [29]. We considered two structural embedding
vectors to be significantly similar if the cosine similarity

Drug Protein Disease

Representation learning based on local features

Representation learning based on network information

Machine learning model

Drug Protein Disease

Binary classification of drug-disease associations

Different dimensions of
Biomedical database

Figure 1: A schematic overview of our workflow.
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heterogeneous network and representation learning with their local content features. (b) The end-to-end transformer for chemical
SMILES representation learning. (c) Aggregating the local content features to global features through the heterogeneous network using
the graph neural network. CTD: Comparative Toxicogenomic Database; SMILES: Simplified Molecular-Input Line-Entry System.
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scores were above 0.85 between them, according to prior
reports [30].

2.8. Testing Compounds for Therapeutic Use against the
Predicted Phenotype, VC. We harnessed an experimental
model of VC established previously [10, 11, 15] for testing
identified compounds. Briefly, a VSMC cell line, A7r5,
between 3 and 6 passages was obtained from American Type
Culture Collection, plated onto 24- and 6-well plates, and
cultured with Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with fetal bovine serum (FBS),
streptomycin/penicillin in 5% ambient CO2 under 37°C.
For the induction of biomineralization, culture media of cells
reaching 80% confluence were switched to conditioned ones
containing 2.5 to 3mM inorganic phosphate and adjuvants,
resembling the calcification-prone milieu observed in
patients with CKD or those of advanced age. Condition
media were exchanged every 2 days. After 7 days of treat-
ment, cells would exhibit morphological alterations from
being spindle-shaped to assuming a flattened and distended
contour, accompanied by prominent extracellular calcium
deposition. We qualitatively examined the extent of VC
using Alizarin Red staining, with calcifying regions showing
reddish areas in nodular aggregates.

For quantitative examination of VC severity, we used the
acid elution method; 0.6N hydrochloric acid was added to
the treated and control group cells and sustained overnight
followed by phosphate-buffered saline (PBS) wash. A cal-
cium detection kit (ab102505; Abcam, Cambridge, UK)
was then applied, in which chromogenic agents were
admixed with eluents. We detected absorbance at 575 nm
using a spectrophotometric reader, and results were normal-
ized to cell counts obtained after trypsinization by trypan
blue counting using a hemocytometer.

In order to test whether selected chemicals exhibited
potential for treating VC, we compared calcification quanti-
tation results between the control group, the calcified group,
and the calcified group treated with the designated mole-
cules, using Student’s t-test. Sulforaphane, daidzein, and cat-
echin were obtained from Sigma (SI-S6317, SI-D7802, and
SI-C1788; St Louis, MO, USA). For calcium quantitation,
experiments were obtained in repeated experiments.

3. Results

From the cross-linked database, we collected 6,790 drugs
with available SMILES data in PubChem and 11,958 GO
terms to analyze the features of compounds. A local embed-
ding vector among nodes learned by an end-to-end trans-
former network and the node2vec algorithm and
aggregated the information for global embedding vectors
from a heterogeneous network via the graph neural network.
A binary classification algorithm of drug-disease associa-
tions was conducted for triaging compounds. We focused
on natural compounds from plants as the sources of new
therapeutic drug candidates, a strategy also adopted by
others [31]. For test candidate selection, we referred to the
CTD database, in which compounds exhibiting a direct evi-
dence for a drug-disease association were marked as having
a potentially “therapeutic role.” For other compounds not
listed in the CTD database, we considered them to have
unknown drug-disease associations, and these compounds
were assigned a probability score predicted by our model.

We randomly selected 30 plant-derived compounds after
an extensive review of phytomedicinal reports [32], in con-
junction with results derived from structure-only embedding
vectors and those from functional annotation-only embed-
ding vectors. We examined the similarity scores between
any two out of these 30 compounds to see the diversity
among different groupings. This was visually displayed by
applying t-SNE plots with different feature embedding vec-
tors supported and observing whether compounds belong-
ing to the same category might come close together but
different categories remained separated in the t-SNE plots.
We found it difficult to differentiate between different cate-
gories of compounds in the t-SNE plots based only on chem-
ical structure (SMILES) embedding vectors (Figure 4(a), A)
or functional annotations feature embedding vectors
(Figure 4(b), A), since the similarity scores were mostly
low between any pair of compounds. Some of the plant-
derived compounds with cosine similarity of their structural
embedding vectors were above 0.85, but similar structural
embedding vectors of the drug compounds did not always
reflect similar functional bioactivities in general
(Figures 4(a), A and 4(b), A). Clusters of potential com-
pounds (red circles, green triangles, and blue circles) tended
to mix together without a clear distinction in the 3-
dimensional t-SNE plots (Figures 4(a), B and 4(b), B). The
first two t-SNE dimensions did not provide a clear separa-
tion between clusters, especially when labels were not used
for the t-SNE algorithm. It is likely that the biological asso-
ciations between drugs and diseases are quite complex and
that unidimensional groupings based on structure or
function-based strategies may not be able to reveal the exact
landscape of patterns responsible for the observed drug-
disease associations. On the other hand, the cosine similarity
scores among our global embedding vectors became more
diverse than those using structure or functional vectors
(Figure 4(c), A). Ours conferred a greater distinction
between potential compounds, presenting as higher similar-
ity scores for the same vector-based categories of com-
pounds but lower scores for different compound categories.

Y
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Disease-drug link
prediction model

Drug

Disease

Protein

Figure 3: Binary classification of drug-disease associations based
on the embedding vectors of the selected compounds and the
disease(s) of interest.
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Figure 4: Continued.
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Figure 4: The cosine similarity scores and t-SNE projection of different feature representations among 30 plant-derived compounds based
on (a) chemical SMILES embedding vectors, (b) GO functional embedding vectors, and (c) global embedding vectors. Compounds with a
higher probability score predicted by our model, and also, direct evidences in CTD and published reports were shown in red circles. This
with a higher probability score but without evidence supported were in blue circles, while the rest with a low probability score were
represents by green triangles. CTD: Comparative Toxicogenomic Database; GO: Gene Ontology; SMILES: Simplified Molecular-Input
Line-Entry System; t-SNE, t-distributed stochastic neighbor embedding.
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Results on a t-SNE plot illustrated the better differentiation
ability between 3 groups of compounds (Figure 4(c), B)
compared to the traditional approaches (Figures 4(a), B
and 4(b), B).

The probability scores of the 30 plant compounds pre-
dicted by our classification model are listed in Figure 5(a).
Three categories were recognized, including those with pos-
sible drug-disease relationship (probability scores > 0:5) and
were affirmed in CTD or existing reports (shown in red),

those with possible drug-disease relationship but never
tested before (shown in blue), and those without drug-
disease relationship predicted (score < 0:5) while also with-
out prior evidence (shown in green). Compounds within
the red category (Figure 5(a)) have already been validated
in the existing literature and were compatible with our pre-
diction results, so we did not choose test candidates from
this category. To examine the validity of our model, we pur-
posefully selected three compounds, two from the blue

DrugID DrugName Probability
C056165 Acetovanillone 0.98
D003474 Curcumin 0.88
C016766 Sulforaphane 0.86
C033607 Puerarin 0.78
D008687 Metformin 0.78
C050414 Celastrol 0.72
D009020 Morphine 0.7
D044945 Proanthocyanidins 0.68
D011794 Quercetin 0.68
D013331 Strychnine 0.68
C063170 Ginkgo Biloba Extract 0.64
C005948 Astaxanthin 0.64
D001285 Atropine 0.64

D000077185 Resveratrol 0.62
D004809 Ephedrine 0.62
D011803 Quinine 0.6
C013738 Zingerone 0.58

D000077276 Lycopene 0.58
C006452 Allicin 0.56
C041376 Rosmarinic acid 0.56
C004742 Daidzein 0.55
D034341 Aristolochic acids 0.46
C030374 Indole 0.44
D002392 Catechin 0.4
C018584 Linalool 0.38
D002338 Carotenoids 0.38
D004074 Digitoxin 0.32
D012459 Salicylates 0.3
D000872 Anthocyanins 0.22
D014975 Lutein 0.12

(a)

NDUFS1

SOD2
CAT

SOD1

BCL2NOX4

CTGF

LRRK2

(b)

JUN
TP53

MAPK1

MAPK3

MMP3

FOS

EGFR

(c)

Figure 5: Results of our machine learning-based model including (a) the probability scores of the 30 plant compounds predicted by our
model and the interactome analyses of (b) sulforaphane and (c) daidzein regarding relevant expressions in pathogenic molecules
involved in VC.
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category (possible drug-disease relationship but without
prior evidence) and one from the green category (with low
probability and without evidence, either) for experimental
validation (Figure 5(a)). The former group included sulfo-
raphane (probability score 0.86, the highest ranked one in
blue category) and daidzein (probability score 0.54, the low-
est ranked one in blue category), and the latter group
included catechin (probability score 0.4, in green category)
(Figure 5(a)). The selection of sulforaphane and daidzein
was based on the presumption that those with the highest
and lowest probability scores in the blue category could
encompass the entire spectrum of candidates with plausible
therapeutic efficacy but without experimental evidence.

Sulforaphane is an antioxidative nutraceutical enriched
in cruciferous vegetables [33], and daidzein is a plant-
origin isoflavone [34]. Catechin, a green tea constituent
[35], serves as a comparator with an estimated neutral effect.
None of these molecules has been tested for effects against
VC in the existing literature. Functional annotation and
interactome analyses showed that sulforaphane
(Figure 5(b)) and daidzein (Figure 5(c)) could influence
the expressions of various genes that played an important
pathogenic role during the course of VC [6].

3.1. Comparing Our Approach to Other Machine Learning or
Predictive Approaches. We evaluated the performance of our
approach by comparing our results with those from the
state-of-the-art drug-disease association prediction methods.
We adopted the Laplacian regularized sparse subspace learn-
ing (LRSSL) benchmark dataset including 3,051 drug-
disease associations between 763 FDA-approved drugs and
681 diseases [36]. We constructed three models by combin-
ing one of the drug similarities metrics of the chemical sub-
structures (SCMFDD-Chem), protein domains of drug-
targeted proteins (SCMFDD-Domain), gene ontology infor-
mation of drug-targeted proteins (SCMFDD-GO), and dis-
ease semantic similarity metrics in SCMFDD method [37].
We adopted F1-measure (F1) as the primary metric, which
was defined as the harmonic mean of recall and precision
in highly skewed gold standard benchmark datasets. The
results, outlined in Table 1, showed that our approach
achieved a F1 of 0.724, which was higher than those from
the previous studies. These data strongly support the reli-
ability of our model in predicting drug-disease interactions.

Previous studies mainly focused on matrix factorization
methods for drug or disease similarity matrix. We also
applied the fusion approach introduced by Wang et al.
[39] to all drug-related and disease-related similarity matri-
ces to construct two fused drug and disease similarity matri-
ces. Then, we used traditional machine learning
classification models such as random forest for drug-
disease association prediction. F1-measure (F1) was used
as the primary metric as well. Results are outlined in
Table 1, which showed that the representation learning
using GNN could capture more semantic meaning of drug
and disease than similarity metrics fusion method could do.

3.2. Testing the Therapeutic Efficacy of Selected Candidates.
Prominent calcification could be observed in VSMCs sub-
jected to conditioned media, both under gross and micro-
scopic examinations (Figures 6(a) and 6(b)). VC in vitro
manifested as reddish-brown appearing calcification nodules
scattered throughout the examined fields (Figures 6(a) and
6(b)). Quantitatively, a 5- to 8-fold increase in the amount
of calcium deposited occurred in the calcification group
compared to that in the control group (Figures 6(a)–6(c)).

After adding 0.1μM sulforaphane, significantly fewer
calcification nodules were found under gross and micro-
scopic examination, with around 40% to 50% reduction in
the eluted calcium amount (Figure 6(a)). Similarly, 10μM
daidzein prominently attenuated the extent of calcification
in treated VSMCs, with 30% to 40% lower calcium deposi-
tion compared to the nontreated group (Figure 6(b)). How-
ever, when adding catechin to calcified VSMCs ranging from
5 to 10μM, there was no significant change in the extent of
calcification nodule development (Figure 6(c)). Calcium
quantitation results also revealed insignificant differences
between catechin-treated and nontreated groups
(Figure 6(c)).

4. Discussion

In the current study, we combined a deep learning approach
and experimental studies to unravel potential therapeutic
compounds capable for treating VC. We harnessed multiple
data sources, including CTD, DrugBank, PubChem, OMIM,
and BioGrid, for retrieving chemical structures, genomic/
protein/functions/disease relationships and their mutual
interactions to expand the biologic landscape being inte-
grated. CTD, as the anchor source for platform integration,
suited our aim ideally since CTD is a prestigious literature-
based database containing an extensive list of chemicals,
genomics, phenomics, diseases, and exposomic information
[22]. Through representation learning from deep neural net-
work architectures, we curated a machine learning model for
scoring to each compound regarding their probability of
having a therapeutic relationship with VC. We subsequently
tested candidate compounds with a plausible effect and
those with a low probability in a well-established in vitro
VC model. We were able to show that the predicted com-
pounds worked well, while low probability compound exhib-
ited a neutral effect. Our findings can be inspiring both from
the methodological comprehensiveness and the validity of

Table 1: The performance comparison with the state-of-the-art
drug-disease association prediction methods.

Method tested F1
LRSSL [36] 0.202

SCMFDD-Chem [37] 0.303

SCMFDD-Domain [37] 0.309

SCMFDD-GO [37] 0.314

Fusion+RF [38] 0.580

Ours 0.724

GO: Gene Ontology; LRSSL: Laplacian regularized sparse subspace learning;
RF: random forest; SCMFDD: similarity constrained matrix factorization
method for the drug-disease association prediction.
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predicted compounds and serve as an example for the utility
of deep learning in identifying promising agents to treat vas-
culopathy. The representation learning and deep learning
model can be a quick and inexpensive computational screen-
ing tool to assist in the early drug discovery process.

Previous studies integrated multiple sources of drugs,
genomic, and disease phenotype features such as drug target
proteins, side effects, chemical fingerprints and omics data,
and the network measurements of the interaction network
for drug-disease interaction prediction. Moreover, existing
approaches considered the similarity information of drug
or disease for investigating common characteristics without
considering the topological information between drugs and

diseases [36, 37, 40–42]. Therefore, there is ample need for
developing a graph-based model to capture the heteroge-
neous information from the network. Therefore, in this
study, we established and validated a representation learning
model using GNN for drug-disease association prediction in
order to achieve drug repurposing.

Effective drug screening and applicability repurposing
remains a daunting task for scientists. A “chemogenomic”
approach has long been used to predict potential drug com-
pounds that exhibit efficacy against certain diseases/pheno-
types based on chemical-protein interactions and
structure-activity relationships [43]. Since the inception of
high-throughput screening, the popular approach evolves
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Figure 6: Validating the positively predicted candidates (a) sulforaphane, (b) daidzein, and (c) catechin, a candidate with a neutral effect in
an in vitro vascular calcification model. Calcification nodules were stained using Alizarin Red staining and imaged without (upper row) and
with different magnification levels (mid and lower rows) under microscopic examinations. Comparisons of calcium deposition quantities
were done between groups using Student’s t-tests. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001. C: catechin; Ctrl: control; Daid: daidzein; HP: high
phosphate; Sulf: sulforaphane.

11Oxidative Medicine and Cellular Longevity



to studying diseases/phenotypes using mass profiling of cel-
lular/tissue/biological fluid samples from diseased and non-
diseased populations, followed by data alignment and
comparison, screening for differentially expressed genes/
mRNAs/noncoding RNAs/proteins/metabolites, effect size
ranking, with or without further input from other adjunct
data sources. Results from this newer approach assist greatly
in uncovering influential signaling pathways or mediators
that count for the disease/phenotype of interest [44]. This
strategy can be credited for its straightforwardness and
speed in pathogenesis investigation, and its results expect-
edly facilitate the choice of candidates targeting the newly
identified pathways. However, a vital linkage between the
identified pathogenic signaling and the selection of candi-
date drugs is frequently made arbitrarily, attenuating the
probability of uncovering novel treatment molecules. More-
over, the conventional high-throughput screening approach
rarely addresses the role of compound structures in mecha-
nistic explanations and forgoes the chance of yielding more
drug candidates if researchers put little emphasis on the
importance of chemical structures in drug screening [45].
In this study, we planned to reap the benefits from both
the chemogenomic approach and the phenotype-based
high-throughput screening approach, through creating an
arching linkage between the structure-activity-relationship
and amassing big data from multiple omic disciplines,
accomplished by machine learning. A similar approach has
been promoted for antineoplastic drug and more recently
in antiviral drug virtual screening [46]. In addition, the pro-
cess of drug repurposing for VC can be further sharpened by
combining therapeutic responses with molecular markers
for classifying the severity of VC [47, 48].

The strength of our strategy lies in the application of
deep learning to selecting therapeutic compounds, an
approach that contrasts sharply with other studies harnes-
sing machine learning and big data in the field of VC.
Indeed, a recent state-of-the-art review about machine learn-
ing and artificial intelligence applicability in cardiovascular
calcification addresses mostly calcification imaging and
quantification, early diagnosis, and outcome prediction
[49]. Regarding new therapeutic candidate screening,
researchers rarely utilized the machine learning-based
approach. Luechtefeld and colleagues used an expanded
database of candidate molecules in combination with toxico-
logical features extracted from sources of regulatory author-
ities to predict whether candidates exhibit health hazards
[50]. They derived fair results based on such approach.
However, VC-targeting therapeutic compound screening
using a network medicine and machine learning-based
approach had not been attempted before. From this perspec-
tive, we believe that our findings have their merits and shed
light on future VC treatments.

The efficacy of three compounds predicted by our algo-
rithm was validated in this study. Sulforaphane is a metabo-
lite originating from the myrosinase-assisted hydrolysis of
glucoraphanin, which is predominantly found in broccoli
cultivars and rapidly absorbed into the body [51]. Sulforaph-
ane has been shown to arrest cell cycles through modulating
cyclin expressions, inducing cancer cell apoptosis through

altering redox balance and activating caspases, inhibiting
histone deacetylase, and inducing autophagy [52]. Sulfo-
raphane also activates nuclear factor-erythroid 2-related fac-
tor 2 (Nrf2) and indirectly suppresses nuclear factor-κB
(NF-κB) activity, exhibiting a salutary effect in CKD, an
important VC risk factor [53]. Prior studies showed that sul-
foraphane reduced VSMC oxidative stress and attenuated
VSMC proliferation as well as phenotype switching [54].
Daidzein, a soybean-derived isoflavone and phytoestrogen,
has been known to possess estrogenic effect through its bac-
terial metabolite equol, anti-inflammatory effect, and antios-
teoporotic efficacy [55]. Daidzein, along with other
phytoestrogens like genistein, was shown to ameliorate
DNA damages in VSMCs and decrease neointima prolifera-
tion [56, 57], but none evaluated its effect on VSMC calcifi-
cation. We were able to demonstrate for the first time that
sulforaphane and daidzein could ameliorate VC in addition
to VSMC proliferation/migration inhibition, which has not
been reported before. These findings support the utility of
our cross-platform algorithm. On the other hand, catechins,
the main antioxidants contained in green tea, exhibit vari-
able degrees of reactive oxygen species neutralization and
are touted to have benefits against cancer and neurodegener-
ative disorders [58]. Our algorithm successfully identified
this class of compounds as having a lower probability of
working against VC, supporting the differentiation ability
of our algorithm.

According to experiences from synthetic biology, espe-
cially structure-based predictions based on machine learning
techniques similar to ours, synthetic bioactive compounds
may not necessarily exhibit the same biologic effects (thera-
peutic or toxicity ones) as their parent compounds [59].
Moreover, the components of incorporated database and
network references in the prediction models also influence
the applicability of findings across different compounds.
Nonetheless, we have integrated a wide array of biomedical
database, containing natural neutraceuticals/pharmaceuti-
cals and synthetic bioactive compounds as well. We believe
that results from our machine learning-based prediction
model can be applicable to both natural and synthetic com-
pounds. In addition, among the three natural compounds
tested in this study, sulforaphane has been shown to exhibit
a fair oral bioavailability, while daidzein, a flavonoid with
polyphenol structure and catechin, both have poor oral bio-
availability and possibly suboptimal absorption [60–62].
Theoretically, the oral administration of these compounds
may suffer from inadequate therapeutic efficacy partially
attributable to these pharmacokinetic disadvantages. How-
ever, newer techniques have emerged to facilitate the absorp-
tion and distribution of these bioactive compounds, such as
liposomal formulation and other nanocarrier-loaded formu-
lation. Therefore, the therapeutic potential of compounds
identified in this study remains promising in the future.

Our study has its strengths and limitations. The integra-
tion of multiple database and dimensions for virtual drug
screening greatly enhanced our ability to detect potentially
useful therapeutic compounds for VC. The verification of
such effects in experimental models supported the credibility
of our algorithm. However, several remaining issues needed
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further adjudication. First, we did not verify the therapeutic
responses of these compounds using in vivo models, and
there is a possibility that these compounds may not survive
in vivo tests. Second, VC is a heterogeneous disease entity,
and it is plausible that an individual compound may work
against VC of a certain pathogenic subtype only but not
others. Finally, our algorithm was not expected to be fixed,
since the inclusion of more dimensions in data integration
or other data sources might sharpen the prediction ability
and derive different sets of prediction. More are still needed
in order to pursue clinically meaningful treatment for VC.

5. Conclusion

In conclusion, we established a prediction algorithm for
identifying novel therapeutic compounds against VC, by
integrating megadatabase including CTD, DrugBank, Pub-
Chem, OMIM, and BioGrid, incorporating chemogenomic
components and multiple omic data sources. Several poten-
tial candidates were predicted as being efficacious based on
scoring thresholds. We validated three out of the predicted
compounds, 2 with a positive effect and 1 with a neutral
effect, and affirmed our prediction results in experimental
studies. We believe that our approach can be credible and
facilitate the subsequent selection of optimal therapeutic
compounds for VC, a dreadful vascular complication with
gender differences and complex pathophysiology [63, 64].
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