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ABSTRACT
Background: Healthy eating is associated with lower risks of disease
and mortality, but the mechanisms underlying these associations are
unclear. Age is strongly related to health outcomes, and biological
age can be estimated using the blood methylome.
Objectives: To determine whether healthy eating patterns are
associated with methylation-based measures of biological age.
Methods: Among women in the Sister Study, we calculated
scores on 4 recommendation-based healthy eating indexes [Dietary
Approaches to Stop Hypertension diet, Healthy Eating Index–
2015, Alternative Healthy Eating Index (aHEI-2010), and the
Alternative Mediterranean diet] using a validated 110-item Block
FFQ completed at enrollment. Genome-wide DNA methylation
data were generated using the HumanMethylation450 BeadChip on
whole blood samples collected at enrollment from a case-cohort
sample of 2694 women and were used to calculate 4 measures of
epigenetic age acceleration (Hannum AgeAccel, Horvath AgeAccel,
PhenoAgeAccel, and GrimAgeAccel). Linear regression models,
adjusted for covariates and cohort sampling weights, were used to
examine cross-sectional associations between eating patterns and
measures of biological age.
Results: All 4 healthy eating indexes had inverse associations with
epigenetic age acceleration, most notably with PhenoAgeAccel and
GrimAgeAccel. Of these, the strongest associations were for aHEI-
2010 [per 1-SD increase in diet quality, PhenoAgeAccel β = −0.5
y (95% CI: −0.8 to −0.2 y) and GrimAgeAccel β = −0.4 y (95%
CI: −0.6 to −0.3 y)]. Although effect modification was not observed
for most lifestyle factors, in analyses stratified by physical activity,
the benefits of a healthy diet on epigenetic age acceleration were
more pronounced among women who did not meet physical activity
guidelines (reporting <2.5 h/wk of exercise).
Conclusions: Higher diet quality is inversely associated with
methylation-based measures of biological age. Improving diet could
have the most benefits in lowering biological age among women with
lower levels of physical activity. This trial was registered at clinical
trials.gov as NCT00047970. Am J Clin Nutr 2022;115:171–179.
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Introduction
Better diet quality is associated with decreased risks of

cardiometabolic disease, cancer, and death (1–8). The biological
mechanisms that link diet quality and disease risks are complex
and may involve epigenetic modifications (9). This hypothesis
is supported by studies showing that DNA methylation at
individual cytosine-phosphate-guanine (CpG) sites in candidate
gene regions can mediate the relationship between diet quality
and the prevalence of metabolic diseases and cancer (10, 11).
Although studies of individual CpGs can provide a useful
means of exploring biological mechanisms, other epigenetic-
based metrics that combine large sets of CpGs and are designed
to estimate biological age, also known as epigenetic clocks, may
provide a novel view into the pathways that link diet and disease.

Several epigenetic clocks have been developed; some were
designed as predictors of chronological age, whereas others were
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designed as predictors of mortality. Perhaps the most utilized
of the age predictors are the Hannum (12) and Horvath (13)
epigenetic clocks, which were developed using DNA methylation
from blood (Hannum) or dozens of tissues (Horvath). In contrast,
the CpGs used in the PhenoAge clock (14) were selected to
predict PhenoAge, a score designed using a combination of
clinical measures as a predictor of all-cause mortality. Finally, the
GrimAge clock (15) was developed using panels of CpGs, each
correlated with concentrations of different circulating proteins
or other measures, which were combined with chronological
age and sex to produce a predictor of age-related disease and
mortality. All of these clocks produce epigenetic age estimates
that are highly correlated with a person’s chronological age.
People whose epigenetic age is older than their chronological
age (termed “positive age acceleration”) are hypothesized to
be biologically older and have an elevated risk of disease,
whereas those with younger epigenetic ages relative to their
chronological age are hypothesized to be biologically younger
and have a decreased risk. Positive age acceleration metrics
from the various epigenetic clocks are reported to be associated
with a variety of disease-associated environmental exposures
and unhealthy lifestyle factors, as well as increased age-specific
disease incidence and mortality (16–25).

In prior studies, associations between diet and age acceleration
metrics have predominately focused on individual dietary
components, such as food items or specific nutrients (14, 15, 26,
27). For example, fish and poultry intakes have been reported
to be inversely associated with age acceleration metrics (26),
whereas red meat intake has shown positive associations (14, 15).
A limitation of these studies is that by focusing on individual
food components, the broader beneficial effects of an improved
diet may be missed. We hypothesize that better diet quality,
as determined by different recommendation-based guidelines,
will be associated with lower age acceleration, with stronger
associations for the epigenetic clocks designed as predictors
of mortality. Here, we use a population of women to examine
how different dietary indexes are related to age acceleration as
determined by various epigenetic clocks.

Methods

Study population

The Sister Study is an ongoing, longitudinal cohort of 50,884
women from the United States recruited between 2003 and 2009
designed to identify novel environmental and biological risk
factors for breast cancer (28). Eligible women were between
ages 35 and 74 and had a biological sister previously diagnosed
with breast cancer but were themselves free of breast cancer.
At enrollment, women completed a computer-assisted telephone
interview that included information on lifestyle factors and
demographics. A questionnaire on dietary factors was self-
completed and retrieved during a home visit where written
informed consent, anthropomorphic measurements, and whole
blood samples were collected (28). Information about obtaining
Sister Study data can be found at https://sisterstudy.niehs.
nih.gov/English/researchers.htm. The study was approved by
the Institutional Review Boards of the National Institute of
Environmental Health Sciences and the Copernicus Group.

Dietary assessment and healthy eating index calculation

Dietary data were collected using a modified version of the
validated 110-item 1998 Block FFQ (29), which has been shown
to be valid and reliable among a population of women with
similar characteristics (30). The questionnaire was structured to
measure average food consumption in the prior 12 mo, which
was calculated by multiplying the frequency of consumption (9
possible frequencies ranging from “never” to “every day”) by
the specified quantity (3 or 4 choices per each food item or
group of similar food items). Based on information obtained
via the FFQ, food groups were created using the Food Patterns
Equivalents Database, and nutrient consumption was estimated
using the Food and Nutrient Database for Dietary Studies, which
the USDA developed for US women (31).

The FFQ data were then used to calculate scores on 4
recommendation-based dietary indexes: the Dietary Approaches
to Stop Hypertension (DASH) diet operationalized by Fung
et al. (32), the Healthy Eating Index (HEI) 2015 (33), the
Alternative Healthy Eating Index (aHEI) 2010 (34), and the
Alternative Mediterranean (aMed) diet developed by Fung et
al. (35). The DASH diet includes various foods and nutrients
known to be protective against hypertension (36). For the DASH
diet components of fruits, vegetables, whole grains, nuts and
legumes, and low-fat dairy, those in the lowest quintile of intake
were assigned 1 point and an additional point was assigned for
each increasing quintile. For red and processed meat, sugar-
sweetened beverages, and sodium, those in the highest quintile
of intake were assigned 1 point and an additional point was
assigned for each decreasing quintile. The DASH diet component
scores were summed, with a potential range between 8 and 40.
The HEI-2015 is a summary score for adherence to the USDA
2015–2020 Dietary Guidelines for Americans (33). It is based
on intakes of total fruits, whole fruits, total vegetables, greens
and beans, total protein foods, seafood and plant proteins, whole
grains, dairy, fatty acids, refined grains, sodium, added sugars,
and saturated fats. Each component received a score, with higher
scores assigned for more favorable intakes. The first 6 items
carried a maximum score of 5 points each, whereas intakes of the
other items carried a maximum score of 10 points each. The total
HEI-2015 score had a potential range between 0 and 100. The
aHEI-2010 incorporates additional evidence on diet and health to
better predict chronic disease (34). This score is based on intakes
of 11 foods and nutrients. Higher scores were assigned for higher
intakes of vegetables, fruits, whole grains, nuts and legumes,
PUFAs, and omega-3 fatty acids, whereas lower scores were
assigned for higher intakes of sugar-sweetened beverages, red and
processed meats, trans fatty acids, and sodium; moderate intake
was rewarded for alcohol. Each component received a score from
0 (least favorable) to 10 (most favorable), with partial scores that
were proportional to intake. Component scores were summed for
a total aHEI-2010 score with a potential range between 0 to 110.
Finally, the Mediterranean diet incorporates foods found to be
protective against heart disease and other chronic diseases (37,
38). The aMed diet is based on 9 components. For vegetables,
fruits, legumes, nuts, whole grains, fish, and the MUFA to SFA
ratio, intake above the median was assigned 1 point; for red
and processed meats, intake below the median was assigned 1
point; and for alcohol, moderate intake was assigned 1 point. The
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aMed diet component scores were summed for a potential range
between 0 to 9 points.

DNA methylation processing and age acceleration
calculation

In July 2014, to determine whether leukocyte DNA methy-
lation profiles are markers of breast cancer risk, a case-cohort
subsample of 2878 self-identified non-Hispanic White women
was selected for genome-wide DNA methylation analysis. To
limit confounding by ancestry, only self-identified non-Hispanic
White women were eligible for selection. Overall, 1336 women
were randomly selected (approximately 3%) from the eligible
women enrolled in the Sister Study. Another 1542 women
were also chosen because they were diagnosed with incident
breast cancer between enrollment and the end of February 2014
(39).

DNA methylation assessment procedures have been pre-
viously described (40). DNA methylation preprocessing was
completed using the ENmixR package (Xu, Niu, Taylor; Bio-
conductor, https://www.bioconductor.org/packages/release/bioc
/html/ENmix.html), which included: reducing background noise
using the ENmix method (41); correcting fluorescent dye
bias using the regression on logarithm of internal control
probes method (42); and quantile normalization to make overall
array fluorescence intensity distributions comparable between
arrays and to reduce Infinium I and II probe design-type bias
using the regression on correlated probes method (43). Of the
2878 genomic DNA samples assayed on Illumina’s Infinium
HumanMethylation450 BeadChip, 102 were excluded because
they failed quality control checks (39). Of these samples, 91
had a mean bisulfate intensity less than 4000 or had greater
than 5% of probes with low-quality methylation values (detection
P > 0.000001, <3 beads, or values outside 3 times the IQR),
4 were outliers for their methylation beta value distributions, 1
had missing phenotype data, and 6 were from women whose
date of breast cancer diagnosis preceded blood collection. For
the remaining 2776 samples, 4 epigenetic clocks (Hannum,
Horvath, PhenoAge, and GrimAge) were obtained using an
online calculator (https://dnamage.genetics.ucla.edu/home).

Age acceleration, as a general concept, is defined as the
difference between the estimated epigenetic age and observed,
chronological age (44). An age acceleration value is quantified
for an individual as the residual from a linear regression model
using the entire sample population, where epigenetic age, based
on a single epigenetic clock, is treated as the dependent variable,
and observed, chronological age is treated as the independent
variable. For each of the 4 epigenetic clocks (Hannum, Horvath,
PhenoAge, and GrimAge), separate regression models were
performed to generate their 4 corresponding metrics of age
acceleration for the study population (i.e., Hannum AgeAccel,
Horvath AgeAccel, PhenoAgeAccel, and GrimAgeAccel
(12–15).

Statistical analysis

In all analyses, to account for the case-cohort sampling
scheme, we applied inverse probability of selection weights,
thereby standardizing the DNA methylation subsample to

TABLE 1 Weighted participant characteristics for women selected into the
Sister Study methylation subsample (n = 2694)

DASH diet, mean score ± SD 24 ± 5
Healthy Eating Index–2015, mean score ± SD 72 ± 9
Alternative Healthy Eating Index–2010, mean score ± SD 61 ± 11
Alternative Mediterranean diet, mean score ± SD 4.2 ± 2
Total calories, mean kcals ± SD 1630 ± 559
Age, mean y ± SD 56 ± 9
BMI, mean kg/m2 ± SD 27 ± 6
Waist-to-hip ratio, mean ratio ± SD 0.8 ± 0.1
Parity, mean live births ± SD 2.0 ± 1
Physical activity, mean METs/wk ± SD 52 ± 32
Physical activity, mean h/wk ± SD 2.9 ± 3
Alcohol consumption, mean drinks/wk S± D 2.9 ± 4
Educational attainment, %

High school diploma/GED or less 16.5
Some college/Bachelor’s degree 59.7
Advanced degree 12.8

Smoking status, %
Never 52.7
Former 40.0
Current 7.3

Menopause status, %
Premenopausal 32.6
Postmenopausal 67.4

Abbreviations: DASH, Dietary Approaches to Stop Hypertension;
GED, General Educational Development; MET, metabolic equivalent task.

approximate the entire population of self-identified non-Hispanic
White women enrolled in the Sister Study. We describe the
sample population’s characteristics using survey-weighted means
and SDs or survey-weighted proportions. We examined the
dietary indexes’ distributions using weighted histograms and we
calculated correlations with chronological age separately for the
4 epigenetic clocks and 4 age acceleration metrics using weighted
Pearson correlation coefficients. Weighted correlations were also
examined among the dietary indexes and the age acceleration
metrics.

We used separate weighted linear regression models to inves-
tigate associations between the 4 dietary indexes (independent
variables: DASH diet, HEI-2015, aHEI-2010, aMed diet) and
the 4 age acceleration metrics (dependent variables: Hannum
AgeAccel, Horvath AgeAccel, PhenoAgeAccel, GrimAgeAc-
cel). All models were adjusted for educational attainment (high
school degree/equivalency or less, some college or bachelor’s
degree, or advanced degree), number of live births, physical
activity (metabolic equivalent tasks/wk), menopause status (pre-
menopausal, postmenopausal), smoking status (never, former,
current), and total caloric intake. Models testing associations
with the DASH diet and HEI-2015 were further adjusted for
recent alcohol use (average drinks per wk). In all regression
analyses, the dietary indexes were transformed to have a mean
of 0 and an SD of 1; thus, all association estimates reported are
based on a 1-SD increase in diet quality. To examine whether
women with the highest diet qualities drove associations, we
substituted a 4-level, categorical variable for the continuous
dietary quality indexes described above; significant linear trends
were determined by treating the dietary index quartiles as
ordinal, using the significance cut point of a P value ≤0.05.
In supplemental analyses, we additionally adjusted for the BMI
and waist-to-hip ratio by including these continuous variables in
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Sister Study (full sample)
n = 50,884

Selected for DNA methyla�on
assessment
n = 2878

Passed quality control
n = 2776

Complete FFQ data
n = 2738

Not extreme outliers for
AgeAccel variables

n = 2735

Dietary indexes calculated
n = 2724

Complete covariate informa�on
n = 2694

Not selected for DNA methyla�on
assessment
n = 40,006

Failed DNA methyla�on
quality control

n = 102

Incomplete or missing
FFQ data
n = 38

AgeAccel > 4 SDs from mean
n = 3

Missing dietary index data
n = 11

Missing covariate informa�on
n = 30

FIGURE 1 Flow chart for the study population. Description of the inclusion criteria for the subset of Sister Study participants included in this study.

the models mentioned above (i.e., treating the dietary indexes
as continuous or, when assessing linear trends in the model,
treating the dietary index as a 4-level, ordinal variable). We
examined effect modification by lifestyle factors using cross-
product terms in the models, treating the dietary indexes as
continuous, with a significant interaction declared at a P value
≤0.05. We examined associations in stratified analyses by
physical activity [below recommended CDC guidelines (<2.5 h
per wk) compared with meeting recommended guidelines (≥2.5
h/wk)] (45), BMI (<30 compared with ≥30 kg/m2), educational
attainment (high school or less compared with college or more),
menopause status (pre- compared with postmenopause), and
smoking status (ever compared with never) in the models treating
the dietary indexes as continuous. Among the 2776 women
with available DNA methylation data, we excluded women
with extreme age acceleration values (greater than 4 SDs from
the mean; n = 3), incomplete FFQ data (n = 38), missing
dietary indices (n = 11), or missing covariate information
(n = 30; Figure 1). Our final analytic set included 2694 women.
All analyses were conducted using Stata version 16 (Stata
Corp).

Results
By design, all women selected into the Sister Study’s DNA

methylation subsample self-identified as non-Hispanic White.
Overall, the women had a mean age of 56 y (± 9 y), and a
majority attended at least some college, were never smokers,
and were postmenopausal at enrollment (Table 1). The weighted
mean (± SD) dietary index scores were 24 ± 5 for the DASH
diet, 72 ± 9 for HEI-2015, 61 ± 11 for the aHEI-2010, and
4.2 ± 2 for the aMed diet (Table 1; Supplementary Figure
1). In general, the dietary indexes were positively correlated
with each other; the DASH diet and HEI-2015 scores had the
strongest correlation (weighted ρ = 0.78) and the HEI-2015
and aHEI-2010 scores had the weakest (weighted ρ = 0.59;
Supplementary Figure 2). The epigenetic age estimates from
the 4 clocks were all positively correlated with chronological
age, with the GrimAge clock showing the strongest correlation
(weighted ρ = 0.92; Supplementary Figure 3). As expected,
the age acceleration estimates were not meaningfully correlated
with chronological age (Supplementary Figure 4) but were
positively correlated with each other (Supplementary Figure
5). The strongest correlation was for Horvath AgeAccel and
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FIGURE 2 Associations between recommendation-based diets and the 4 measures of epigenetic age acceleration. Plots display the β-coefficients and 95%
CIs from adjusted linear regression models, which represent the adjusted mean difference for the 4 individual AgeAccel metrics per 1-SD increase in diet
quality, for the (A) DASH diet, (B) Healthy Eating Index–2015, (C) Alternative Health Eating Index–2010, and (D) Alternative Mediterranean diet (n = 2694).
Abbreviation: DASH, Dietary Approaches to Stop Hypertension.

PhenoAgeAccel (weighted ρ = 0.50) and the weakest was for
Horvath AgeAccel and GrimAgeAccel (weighted ρ = 0.11;
Supplementary Figure 5).

In weighted linear regression models adjusted for con-
founders, all dietary indexes were inversely associated with
the PhenoAgeAccel and GrimAgeAccel metrics (Figure 2).
The strongest associations were observed for the aHEI-2010
[per 1-SD increase in diet quality; PhenoAgeAccel β = −0.5
(95% CI: −0.8 to −0.2; P = 0.002) and GrimAgeAccel β =
−0.4 (95% CI: −0.6 to −0.3; P = 2.3 × 10–8)]. A higher
aHEI-2010 score was also inversely associated with Hannum
AgeAccel (per 1-SD increase; β = −0.3; 95% CI: −0.4 to
−0.0; P = 0.05). In analyses of the dietary index quartiles, the
aHEI-2010 showed significant trends with Hannum AgeAccel,
PhenoAgeAccel, and GrimAgeAccel, whereas the HEI-2015
and the DASH and aMed diets showed significant trends only
with GrimAgeAccel (Table 2). Although further adjustment
for the BMI and waist-to-hip ratio attenuated associations,
the aHEI-2010 remained inversely associated with Hannum
AgeAccel, PhenoAgeAccel, and GrimAgeAccel and the HEI-
2015, DASH, and aMed diets remained inversely associated with
GrimAgeAccel (Supplementary Table 1).

Stratification by common lifestyle factors revealed that the
inverse associations of PhenoAgeAccel with the DASH diet
and aMed diet were stronger among women who did not
meet physical activity recommendations [DASH diet, <2.5

h/wk β = −0.7 (95% CI: −1.1 to −0.3), ≥ 2.5 h/wk β

= 0.1 (95% CI: −0.4 to 0.6; P-interaction = 0.04); aMed
diet, <2.5 h/wk β = −0.7 (95% CI: −1.1 to −0.2), ≥2.5
h/wk β = 0.2 (95% CI: −0.4 to 0.7; P-interaction = 0.04);
Figure 3]. Although a similar pattern was observed for Phe-
noAgeAccel associations with HEI-2015, the interaction was not
statistically significant [<2.5 h/wk β = −0.5 (95% CI: −1.0
to −0.1), ≥ 2.5 h/wk β = 0.1 (95% CI: −0.4 to 0.6); P-
interaction = 0.16]. BMI did not modify associations between
diet quality and the Horvath AgeAccel, PhenoAgeAccel, or
GrimAgeAccel metrics (Supplementary Figure 6). However,
the BMI did appear to modify associations between the HEI-
2015 index and Hannum AgeAccel [<30 kg/m2 β = 0.1 (95%
CI: −0.2 to 0.4 kg/m2), ≥30 kg/m2 β = −0.5 (95% CI: −0.9
to −0.1 kg/m2); P-interaction = 0.03; Supplementary Figure 6].
Diet quality associations with Hannum AgeAccel also varied
by smoking status, such that the inverse associations with the
aHEI-2010 and aMed were stronger among never smokers [aHEI-
2010, never smokers β = −0.5 (95% CI: −0.9 to −0.2), ever
smokers β = 0.0 (95% CI: −0.4 to 0.4; P-interaction = 0.01);
aMed, never smokers β = −0.4 (95% CI: −0.8 to −0.0), ever
smokers β = 0.1 (95% CI: −0.4 to 0.5; P-interaction = 0.02);
Supplementary Figure 7]. Age acceleration associations with
the dietary indexes did not vary by educational attainment (Sup-
plementary Figure 8) or menopause status (Supplementary
Figure 9).



176 Kresovich et al.

TABLE 2 Association estimates (and 95% CIs) for relationships between recommendation-based diet quartiles and epigenetic age acceleration metrics
(n = 2694)

Dietary index score quartiles P linear-trend

DASH diet 10–211 22–25 26–28 29–37
Hannum AgeAccel 0 − 0.6 (−1.2, 0.1) − 0.4 (−1.1, 0.3) − 0.1 (−0.9, 0.7) 0.82
Horvath AgeAccel 0 − 0.1 (−0.8, 0.5) − 0.4 (−1.1, 0.3) − 0.4 (−1.1, 0.4) 0.20
PhenoAgeAccel 0 − 1.3 (−2.1, −0.4) − 1.2 (−2.0, −0.3) − 0.8 (−1.8, 0.1) 0.10
GrimAgeAccel 0 − 0.8 (−1.2, −0.4) − 0.8 (−1.2, −0.4) − 1.1 (−1.6, −0.7) 1.6 × 10–6

HEI-2015 40–661 67–73 74–79 80–95
Hannum AgeAccel 0 − 0.3 (−1.0, 0.4) − 0.2 (−0.9, 0.5) − 0.4 (−1.1, 0.3) 0.34
Horvath AgeAccel 0 − 0.1 (−0.8, 0.5) 0.1 (−0.6, 0.8) 0.1 (−0.6, 0.8) 0.71
PhenoAgeAccel 0 − 1.1 (−2.0, −0.2) − 1.0 (−1.9, −0.1) − 0.8 (−1.8, 0.1) 0.09
GrimAgeAccel 0 − 0.5 (−0.9, −0.1) − 0.7 (−1.2, −0.3) − 0.9 (−1.3, −0.6) 1.3 × 10–6

aHEI-2010 27–521 53–60 61–69 69–100
Hannum AgeAccel 0 − 0.5 (−1.2, 0.3) − 0.3 (−1.0, 0.4) − 0.9 (−1.6, −0.2) 0.02
Horvath AgeAccel 0 − 0.2 (−0.9, 0.4) − 0.4 (−1.0, 0.3) − 0.2 (−0.9, 0.5) 0.48
PhenoAgeAccel 0 − 1.2 (−2.1, −0.4) − 0.9 (−1.8, −0.1) − 1.5 (−2.3, −0.6) 0.004
GrimAgeAccel 0 − 0.2 (−0.6, 0.2) − 0.6 (−1.0, −0.2) − 1.0 (−1.4, −0.5) 1.6 × 10–6

aMed diet 0–31 4–4 5–6 7–9
Hannum AgeAccel 0 0.3 (−0.4, 0.9) − 0.1 (−0.7, 0.5) − 0.9 (−1.8, −0.0) 0.11
Horvath AgeAccel 0 0.2 (−0.5, 0.9) − 0.1 (−0.7, 0.6) − 0.0 (−0.8, 0.8) 0.90
PhenoAgeAccel 0 0.2 (−0.7, 1.1) − 0.3 (−1.1, 0.5) − 0.9 (−2.0, 0.2) 0.12
GrimAgeAccel 0 − 0.1 (−0.5, 0.3) − 0.7 (−1.0, −0.3) − 1.1 (−1.6, −0.6) 1.8 × 10–6

Abbreviations: aHEI, Alternative Healthy Eating Index; aMed, Alternative Mediterranean; DASH, Dietary Approaches to Stop Hypertension; HEI,
Healthy Eating Index; MET, metabolic equivalent task.

1Represents the referent category against which the other quartiles are compared. Estimates were obtained using separate linear regression models,
treating the individual AgeAccel metrics as the dependent variables and the diet index score quartiles (treating the lowest as the referent category) as the
independent variables. Models were adjusted for educational attainment (high school, college, advanced degree), parity (live births), physical activity
(METs/wk), smoking status (current/former/never), menopause status, and caloric intake. Models for DASH and the HEI were additionally adjusted for
alcohol intake (drinks/wk).

Discussion
We found that a higher diet quality was only weakly associated

with the 2 epigenetic clocks designed as predictors of chronolog-
ical age but has strong inverse associations with the 2 epigenetic
clocks designed as predictors of mortality. In a stratified analysis,
physical activity appeared to modify the relationships of the
DASH diet and aMed diet with PhenoAgeAccel, such that inverse
associations between diet quality and age acceleration were only
observed among women who did not meet physical activity
guidelines. Overall, our study shows that diet quality is related
to the subset of epigenetic clocks designed to reflect mortality
risks, and suggests that improving diet quality may have the most
benefits in lowering the biological age for women with lower
levels of physical activity.

Previous investigations into the relationship between diet and
methylation-based measures of biological age have primarily
focused on individual food items and nutrients (14, 15, 26,
27). The most consistent association has been for red meat
intake, which appears to be positively associated with the
Horvath AgeAccel, PhenoAgeAccel, and GrimAgeAccel metrics
(14, 15, 26, 27). Among women enrolled in the Women’s
Health Initiative, both fruit and vegetable intakes have been
reported to be negatively correlated with Hannum AgeAccel and
GrimAgeAccel (15, 26); however, the association with vegetable
intake was not replicated in a subsequent Australian cohort
study (27). Despite the inconsistent findings for vegetable intake,
consistent negative correlations have been reported between
circulating carotenoid concentrations and all 4 age acceleration
metrics (14, 15, 26).

Our study focused on established healthy eating dietary
indexes (32–35), which may provide more integrated assessments
of food and nutrient intakes (46). Consistent with earlier null
reports from the Melbourne Collaborative Cohort Study and
the European Project on Nutrition in Elderly People clinical
trial (27, 47), we found little evidence that the dietary indexes
were associated with either the Hannum or Horvath AgeAccel
metrics, which are based on the epigenetic clocks developed
solely as predictors of chronological age. Conversely, we found
robust associations between all 4 dietary indexes and the
PhenoAgeAccel and GrimAgeAccel metrics, which are the
epigenetic clocks developed as predictors of mortality. Prior
studies have reported that PhenoAgeAccel and GrimAgeAccel
are associated with other lifestyle factors, including body
composition and physical activity (18), and such factors might
interact with diet. We found some evidence for an interaction,
with inverse associations between diet quality and PhenoAge
Accel most apparent in women with lower levels of physical
activity. These findings introduce the hypothesis that the health
benefits of physical activity and diet quality may operate on the
same epigenetic pathways that are captured by the PhenoAge
clock.

Our study is not without limitations. First, our study is cross-
sectional, with both diet and age acceleration assessed at enroll-
ment. While the beneficial health effects of a good diet are well
known, there is also evidence that poor health is associated with
lower adherence to healthy eating (48–50). Another limitation
is that our sample population only included self-identified non-
Hispanic White women. This design limits potential confounding
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FIGURE 3 Associations between recommendation-based diets and the 4 measures of epigenetic age acceleration, stratified by physical activity level. Plots
display the β-coefficients and 95% CIs from adjusted linear regression models, which represent the adjusted mean difference for the 4 individual AgeAccel
metrics per 1-SD increase in diet quality, for the (A) DASH diet, (B) Healthy Eating Index–2015, (C) Alternative Health Eating Index–2010, and (D) Alternative
Mediterranean diet among women who did not meet physical activity guidelines (<2.5 h/wk, black lines; n = 1541) and for women who did (≥2.5 h/wk,
gray lines; n = 1153). Significant statistical interactions determined by cross-product terms were observed for physical activity on the relationships between
PhenoAgeAccel and the DASH diet (P-interaction = 0.04) and the aMed diet (P-interaction = 0.04). Abbreviation: DASH, Dietary Approaches to Stop
Hypertension.

by ancestry or sex, but associations among other races/ethnicities
or men cannot be examined. Although our use of an FFQ
to assess diet has the potential for exposure misclassification,
misclassification of healthy eating by FFQ tends to be more
common among racial/ethnic minorities than Whites (51). Given
that our sample population is fairly homogenous, we believe any
exposure misclassification would most likely be nondifferential,
potentially biasing results towards the null. Finally, although
we investigated several recommendation-based healthy eating
patterns, the diet indexes were strongly correlated, making it
difficult to determine whether some specific dietary patterns are
more beneficial than others.

In summary, we found that healthy eating patterns are
associated with some methylation-based measures of biological
age. The benefits of healthy eating appear to accrue particularly
in women reporting lower levels of physical activity. These
findings support the hypothesis that a higher diet quality may
slow aging and lower disease and mortality risks. Prospective
studies with DNA methylation and diet quality measurements at
multiple time points can help clarify any remaining questions
about directionality, and interventional studies can address the
reversibility of biological age effects.
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