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ABSTRACT

The health and economic devastation caused by the COVID-19 pandemic has created a significant global
humanitarian disaster. Pandemic response policies guided by geospatial approaches are appropriate ad-
ditions to traditional epidemiological responses when addressing this disaster. However, little is known
about finding the optimal set of locations or jurisdictions to create policy coordination zones. In this
study, we propose optimization models and algorithms to identify coordination communities based on
the natural movement of people. To do so, we develop a mixed-integer quadratic-programming model
to maximize the modularity of detected communities while ensuring that the jurisdictions within each
community are contiguous. To solve the problem, we present a heuristic and a column-generation algo-
rithm. Our computational experiments highlight the effectiveness of the models and algorithms in var-
ious instances. We also apply the proposed optimization-based solutions to identify coordination zones
within North Carolina and South Carolina, two highly interconnected states in the U.S. Results of our case
study show that the proposed model detects communities that are significantly better for coordinating

pandemic related policies than the existing geopolitical boundaries.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

COVID-19 triggered devastating social and economic impacts
around the world in a short amount of time. As of November
2021, more than 46 million have contracted the virus, and over 750
thousand people have died in the U.S. alone (CDC, 2021). Although
pandemics are primarily a public health crisis, subsequent eco-
nomic, social and political consequences are also significant. The
total cost of COVID-19 in the U.S. is estimated to be more than $16
trillion (Cutler & Summers, 2020), larger than the costs of any pre-
vious manmade or natural disasters. The initial response to COVID-
19 and the associated fiscal actions and lockdowns have resulted in
$11.7 trillion, or close to 12% of global GDP, of negative economic
impacts in the initial phase of the pandemic as of September 2020
(IMF, 2020). Further, the COVID-19 pandemic has had knock-on ef-
fects on other humanitarian disasters worldwide through restricted
travel and support for ongoing relief efforts, because governments
are looking inwards at protecting their own citizens and economies
while pledging little for required international humanitarian sup-
port (The Lancet, 2020). Therefore, it is critical for decision-makers
to respond with policy measures that save lives, contain economic
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fallout, and speed up recovery to minimize negative pollical and
social impacts (Tanrisever, Shahmanzari, Eryarsoy & Sensoy, 2021).

In addition to any national vaccination effort, coordination of
nonpharmaceutical interventions (NPIs) across governmental ju-
risdictions has been recommended as a critical element to com-
bat the contagious disease, especially in decentralized and federal
countries (OECD, 2020; Ruktanonchai, Floyd, Lai & Steele, 2020).
Applying a broad and uniform NPI, such as full lockdowns, simul-
taneously in all regions may not be ideal and sometimes practi-
cal (if not impossible), as communities within a state or country
may be at a very different level of an outbreak (Dhillon & Karan,
2020). This is highlighted by Dr. Anthony Fauci, U.S. President’s
Chief Medical Advisor and Director of the National Institute of Al-
lergy and Infectious Diseases: "We have to realize that we're a large
country that has outbreaks in different regions, different states, differ-
ent cities, that have different dynamics, and different phases in which
they are in." (Watts, 2020). However, although decentralized gov-
ernments may benefit from the flexibility of having customized re-
sponses within each jurisdiction, a lack of policy coordination may
hinder the effectiveness (Gordon, Huberfeld & Jones, 2020), as the
viruses do not stop at the jurisdictions’ boundaries. Indeed, recent
studies show significant policy differences from one region to an-
other (Holtz, Zhao, Benzell & Aral, 2020). In the U.S., for exam-
ple, the pandemic response is assigned to states and subsequent
municipalities. Federal agencies, such as the Centers for Disease
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Control and Prevention (CDC) and Federal Emergency Management
Agency (FEMA), have limited authority to mandate local authorities
to take united actions (Gordon et al., 2020). In this setting, two
neighboring jurisdictions with a high social connection may have
drastically different policies, such as closure or opening of restau-
rants and gyms, at the same time, rendering the effort to stop dis-
ease spreading ineffective.

Current research shows that a "place-based approach,” where
policies are customized and coordinated across interconnected lo-
cations, is effective in response to a contagious disease like COVID-
19 (OECD, 2020). In a recent study, Ruktanonchai et al. (2020) find
that appropriate coordination across countries that are intercon-
nected by people movement can significantly increase the effec-
tiveness of NPIs. The authors show that a resurgence of COVID-19
could happen five weeks earlier in Europe if well-connected coun-
tries end their interventions without coordinating with neighbors.
Other studies have also shown that population mobility is an in-
fluential force in the transmission of COVID-19 (Chang, Pierson,
Koh & Leskovec, 2021; Kraemer, Yang, Gutierrez & Scarpino, 2020).
Moses (2021) recommends algorithmic thinking to reduce chaos
and slow-downs in the COVID-19 vaccination rollout. Shahzamal,
Mans, de Hoog and Jurdak (2020) develop an effective vaccina-
tion strategy, called the individual’s movement-based vaccination
strategy, where individuals are vaccinated based on their move-
ment relative to public places without the need for detailed con-
tact tracing information. Therefore, detecting communities based
on the natural movement of people can be more effective for coor-
dinating NPIs and vaccination campaigns, compared to relying on
predefined geopolitical boundaries or at a national level.

Despite the importance of identifying coordination groups to
combat a pandemic based on the natural movement of people,
studies about finding the optimal set of locations or jurisdictions
to create such groups are limited. In this study, we focus on
identifying optimal coordination communities for applying NPIs
and deploying vaccination strategies based on population mobility.
To this end, a new mixed-integer quadratic-programming model
based on the modularity maximization problem is developed. The
model uses population mobility to identify highly interconnected
locations and joins them to form coordination communities. The
model guarantees that coordination communities are geographi-
cally contiguous, an important factor for effective coordination. It
also allows for adjusting the number of jurisdictions assigned to
a coordination community based on the policymakers’ preferences.
To our knowledge, such a community detection model based on
the natural movement of people that guarantees the contiguity of
communities does not exist. Due to the complexity of the prob-
lem, we develop a column-generation algorithm to solve the prob-
lem. The column-generation approach is coupled with an iterative
pricing procedure to improve its performance. A heuristic algo-
rithm is also developed to find high-quality initial solutions for the
mixed-integer quadratic programming model and the column gen-
eration algorithm. In particular, we find that using the proposed
heuristic algorithm as an initial solution can significantly boost
the performance of the commercial solver to solve the mixed-
integer quadratic programming model. The computational results
show that the proposed solution methods are capable of efficiently
solving instances of various sizes.

The remainder of this paper is structured as follows. The the-
oretical background is presented in Section 2. Section 3 presents
the problem description and model formulation, and the column-
generation algorithm is described in Section 4. We apply the model
and algorithms to identify coordination communities using U.S.
mobility data in Section 5 and present a case study in Section 6.
Finally, Section 7 summarizes our findings and provides future re-
search directions.
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2. Theoretical background

In the search for optimal pandemic management, it has be-
come clear that policy coordination across agencies and levels of
government is necessary (Holtz et al., 2020). From the infectious
disease epidemiological viewpoint, existing geopolitical or admin-
istrative borders are entirely arbitrary, as viruses can easily spread
across cities, counties, states, and countries. Using commuting data,
Laroze, Neumayer and Plimper (2021) show the spread of COVID-
19 is spatially dependent across local districts in England be-
tween March and June of 2020. Fajgelbaum, Khandelwal, Kim and
Schaal (2020) argue that spatially differentiated lockdowns can be
substantially better economically compared to blanket lockdown
orders. Furthermore, studies have shown that, because of mis-
matches between administrative structure and optimal governance,
existing jurisdictional boundaries can act almost as a barrier to
key elements of effective pandemic management (e.g., Ki, Kwak &
Song, 2020), and Trein, Biesbroek, Bolognesi and Meyer (2021) sug-
gest that policy coordination and integration should consider such
specific context. Examining the patterns of population movement,
effectively captured by mobile phone data, can reveal coordination
zones for optimized pandemic policy (Glaeser, Gorback & Redding,
2020; Holtz et al., 2020).

The problem of identifying optimal coordination zones based on
the natural movement of people is grounded on two independent
but connected streams of research: community detection in com-
plex networks and districting problems. Table 1 summarizes the
relevant prior studies and highlights the key themes and charac-
teristics of these two streams.

Community detection aims to identify sub-networks or lo-
cal communities based on relationships/interactions between the
nodes such that nodes within the same community are more con-
nected among themselves than with nodes in other communities
(Newman, 2006; Newman & Girvan, 2004). Identifying local com-
munities reveals how a complex network is organized and can help
decision-makers to focus on the sub-regions (Fortunato & Hric,
2016), because sub-networks often have different properties at the
local level than at the level of the entire network (Newman & Gir-
van, 2004). In practice, the community detection problem and its
extensions have been used in different fields, including detecting
partitions of the human brain (Ashourvan, Telesford, Verstynen and
Bassett, 2019), and maximizing the spread of influence in social
networks in viral marketing (Huang, Shen, Meng & He, 2019).

Despite its wide applications, a precise or universally accepted
definition of what creates a community is not available, and as
a result, a variety of methods for detecting and measuring the
quality of communities has been proposed, tested, and imple-
mented (Fortunato & Hric, 2016; Rosvall, Delvenne, Schaub & Lam-
biotte, 2019). The most popular methodologies for solving commu-
nity detection problems are optimization-based models, in which
communities are identified based on maximizing a quality func-
tion (Lancichinetti & Fortunato, 2009; Fortunato & Hric, 2016). The
modularity function, developed by Newman and Girvan (2004),
evaluates weights of links between nodes inside the same com-
munities relative to weights of links between nodes in the sep-
arate communities and is among the most commonly used in
such optimization-based models for community detection. Because
modularity maximization is hard (Brandes, Delling, Gaertler &
Wagner, 2006), several algorithms have been proposed to effi-
ciently detect communities in a large network based on modular-
ity optimization (Blondel, Guillaume, Lambiotte & Lefebvre, 2008;
Clauset, Newman & Moore, 2004; Traag, Waltman & van Eck, 2019).
Recently, modularity density is introduced to remedy modularity
optimization’s limitation of resolution limit in very large networks
by normalizing the weights considering the number of nodes in
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Table 1

Characteristics of relevant studies on community detection and districting problems.
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References Problem Modularity Contiguity Interactions Solution approach Application
function between
nodes
Aloise et al. (2010) Community detection v x J Column-generation Generic
algorithm
Ashourvan et al. (2019) Community detection X X Vv Heuristic Partitioning human
brain
Bergey, Ragsdale and Hoskote (2003a), Districting X J X Heuristic Electrical power
2003b) districting
Blondel et al. (2008) Community detection i x Vv Heuristic (Louvain Generic problem
algorithm)
Bozkaya et al. (2003) Districting X J X Heuristic Political districting
Camacho-Collados, Liberatore and Districting X v X Heuristic Police districting
Angulo (2015)
Caro et al. (2004) Districting x J x Commercial solver School districting
Carvajal et al. (2013) Districting X v X Branch-and-cut Forest Planning
algorithm
Clauset et al. (2004) Community detection J x J Heuristic Generic
Costa (2015) Community detection Na X Vv Commercial solver Generic
Dugosija, Savi¢ and Maksimovi¢ Districting X v x Commercial solver Political districting
(2020)
Farughi, Tavana, Mostafayi and Santos Districting X J X Heuristic Healthcare districts
Arteaga (2020)
Fryer Jr & Holden (2011) Districting x x x Heuristic Political districting
Han et al. (2020) Districting x J x Commercial solver Machinery
maintenance
Haase and Miiller (2014) Districting x v x Column-generation Salesforce
algorithm deployment
Hess et al. (1965) Districting X X X Heuristic Political districting
Hojati (1996) Districting X v X Lagrangian relaxation Political districting
Huang et al. (2019) Community detection x x J Heuristic Viral marketing
Kim (2018) Districting X J X Heuristic Political districting
Latapy and Pons (2004) Community detection X X Vv Heuristic (Walktrap Generic
algorithm)
Li et al. (2008) Community detection Na x J Commercial solver Generic
Newman and Girvan (2004) Community detection N X J Heuristic Generic
Newman (2006) Community detection v X N Heuristic Generic
Onal et al. (2016) Districting x J x Commercial solver Conservation
management
Ricca and Simeone (2008) Districting X v X Heuristic Political districting
Ruktanonchai et al. (2020) Community detection Vv x J Heuristic (Walktrap Pandemic response
algorithm)
Santiago and Lamb (2017) Community detection Na X Vv Heuristic Generic
Sato and Izunaga (2019) Community detection J* x J Branch-and-price Generic
algorithm
Shirabe (2005) Districting X v X Commercial solver Generic
Shirabe (2009) Districting x v x Commercial solver Generic
Shirazi, Albadvi, Akhondzadeh and Community detection J x J Heuristic (Louvain Physicians’
Teimourpour (2020) algorithm) specialty
Traag et al. (2019) Community detection i x Vv Heuristic (Leiden Generic
algorithm)
Wang, Zheng, Qian and Liang (2017) Community detection X x J Heuristic Protein complexes
Zhang, Liu, Li and Wen (2020) Community detection N x Vv Heuristic Drug discovery
This study Community detection v J J Column-generation Pandemic response

algorithm

* Modularity density function is considered as the objective function instead of the original modularity function.

each community (Costa, 2015; Li, Zhang, Wang & Chen, 2008;
Santiago & Lamb, 2017).

Community detection based on modularity maximization has
been studied extensively in the literature (Aloise, Cafieri, Caporossi
& Liberti, 2010; Traag et al., 2019). However, as highlighted in
Table 1, such algorithms do not guarantee the physical conti-
guity of nodes in proposed communities, an important factor
for policy coordination for pandemic management. As an exam-
ple, Ruktanonchai et al. (2020) applied the Walktrap algorithm, a
heuristic developed by Latapy and Pons (2004), to detect commu-
nities in Europe based on the movement among subdivisions of
countries (NUTS3, or Nomenclature of Territorial Units for Statis-
tics). One of the identified subcommunity based on mobility pat-
terns includes Estonia, Iceland, two areas of Italy, and part of
Greece, while another subcommunity includes Slovenia, Sweden,
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and part of Croatia. Such mobility-based communities are scattered
in different regions and countries, making the coordination of pan-
demic policies impractical, if not impossible.

Ignoring contiguity of communities in the community detection
problem may result in a community structure with not only the
inclusion of nodes that are far apart but, perhaps more important,
also the exclusion of nodes that have a slightly lower degree of
connection but are in the same region. In reality, NPI policy coor-
dination among connected jurisdictions with a high level of move-
ment is useful in combating pandemics, while long-distance move-
ments among jurisdictions, even frequently, require different poli-
cies such as quarantine. For example, in response to the COVID-
19 surge in June 2020, three contiguous states—New York, New
Jersey, and Connecticut—coordinated their nonpharmaceutical in-
terventions while jointly implemented 14-day quarantine require-
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(a) 12 jurisdictions (movement
between jurisdictions is 10, except
between 5-1, 5-2, 5-4, and 5-12 as

shown on the figure by an arc)

1 2 3
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4 <% 5 6 Modularity maximization
>
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g g 2 without contiguity constraint
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. Community 1
= Community 2

(b) Two detected communities

Fig. 1. A community detection example without considering contiguity constraint.

ments for visitors coming to the tri-state region from states with
high COVID-19 infection rate (CBS New York, 2020). To further il-
lustrate this issue, consider the fictitious case of 12 jurisdictions
presented in Fig. 1a. Assume that the movement between each pair
of jurisdictions is 10, except for the following: movement between
(5 and 2), (5 and 4), and (5 and 12) is 100, and movement be-
tween (5 and 1) is 50. Applying the modularity maximization al-
gorithm to find zones of high level of intra-movement, we get two
communities, as shown in Fig. 1b. Although the movements and
geography imply that jurisdictions 1, 2, 4, and 5 are inherently a
community, the simple modularity maximization assigns the dis-
jointed jurisdiction 12 to the community with 2, 4, and 5 because
of its strong connection to jurisdiction 5, while assigning jurisdic-
tion 1 to a different community. This example shows that modu-
larity maximization does not necessarily produce contiguous com-
munity structure, which is important to NPI policy coordination.
The issue of contiguity is treated extensively in the districting
problem, which refers to joining small areas (or units) to form
larger areas (or districts) based on specific criteria. There is a wide
variety of applications for the districting problem in the litera-
ture, such as political districting (Bozkaya, Erkut & Laporte, 2003;
Garfinkel & Nemhauser, 1970; Hojati, 1996), school redistricting
(Bulka, Carr, Jordan & Rheingans, 2007; Caro, Shirabe, Guignard &
Weintraub, 2004), designing compact and contiguous conservation
reserves (Onal, Wang, Dissanayake & Westervelt, 2016), and dis-
tricting of service regions for agricultural machinery maintenance
(Han, Hu, Mao & Wan, 2020). As each specific application of the
districting problem is unique with its own objectives, several crite-
ria and subsequently mathematical models and solution algorithms
have been developed. The political districting problem, which is
the original application of the districting problem, aims to divide a
given territory into a number of districts, where a number of seats
are assigned to each district usually based on its population (Ricca
& Simeone, 2008; Ricca, Scozzari & Simeone, 2013). Several crite-
ria, such as compactness, which refers to how odd the shape of a
district is, have been proposed to achieve fairness and avoid gerry-
mandering in political districting (Ricca & Simeone, 2008; Shirabe,
2009). In their seminal paper, Hess, Weaver, Siegfeldt and Zitlau
(1965), for example, use the sum of squared distances from each
person to the center of his/her assigned district as a measure of
compactness. They modeled the political districting problem as a
location-allocation problem without considering the contiguity of
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districts and proposed an iterative heuristic procedure for solv-
ing the model. Other studies define compactness in very differ-
ent ways, such as the distance between persons within the same
district compared to the minimum possible distance (Fryer Jr &
Holden, 2011) and the closeness between selected areas or units
(Kim, 2018).

Districting problems often require solutions with geographical
contiguity. A district is contiguous when one can travel between
any two points in the district without going outside of it. The
geographical contiguity constraint adds to the complexity of the
districting problem and requires additional treatments to simple
location-allocation. Shirabe (2005 and 2009), for the first time, use
the network flow technique to mathematically formulate the con-
tiguity constraint, and this technique has also been used in other
applications such as sales team deployment (Haase & Miiller, 2014)
and service maintenance networks (Han et al., 2020). More re-
cently, Carvajal, Constantino, Goycoolea and Weintraub (2013) de-
ploy the notion of node-cut set to mathematically formulate the
contiguity constraint in a harvest scheduling problem with the aim
of maximizing profits. However, as shown in Table 1, these tech-
niques are designed strictly for solving districting problems, and,
to our knowledge, no models have been developed to identify con-
tiguous communities based on complex relationships between ver-
tices in a network. The current study attempts to address this re-
search gap and applies the community detection model based on
modularity maximization to the movement of people, subject to
the geographic contiguity and cardinality (i.e., size of the districts)
constraints in the districting problems. As such, our study con-
tributes to the body of knowledge by extending the existing stud-
ies from two independent streams of research to solve a relevant
problem of community detection with contiguity constraint that
requires theories from both.

In addition, both community detection and districting prob-
lems are difficult problems to solve (Blondel et al., 2008; Haase &
Miiller, 2014; Santiago & Lamb, 2017). In this study, we present a
column-generation algorithm that extends previous exact methods
(e.g., Aloise et al., 2010, and Sato & Izunaga, 2019) by incorporat-
ing contiguity and cardinality constraints while maximizing modu-
larity, coupled with an iterative pricing procedure, to improve the
computational performance of the algorithm. We also propose a
fast heuristic algorithm to find high-quality solutions to initiate the
column-generation procedure. In so doing, our study contributes to
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the development of computational methods for related problems,
as the results show that the solution methods can efficiently solve
instances of various sizes.

3. Problem description and formulation

We consider a geographic region, such as a country, that is di-
vided into a number of mutually exclusive and collectively ex-
haustive spatial units (SUs), such as zip codes or counties. People
frequently move within and between these SUs for various pur-
poses, such as work, shop, leisure, etc. To reduce the spread of dis-
ease during a pandemic, the SUs are responsible for applying tar-
geted NPIs only within their borders. However, as disease spread
does not follow the geographic boundaries, the SUs may be bet-
ter off coordinate their efforts with other close-by SUs. The goal
here is to identify communities of highly interconnected SUs within
the geographic region boundaries based on the natural movement
of people. To do so, our objective is to maximize network mod-
ularity (Newman & Girvan, 2004), which is a function of peo-
ple’s mobility between SUs. In order to facilitate policy coordina-
tion, the communities should be contiguous, and the number of
SUs that constitute a community can be constrained. A commu-
nity is contiguous when one can travel between any two points
within the community without going outside of it. We call this
problem the modularity maximization with contiguity constraints
(MCC).

To formally define the MCC,! let us represent a geographic re-
gion by a weighted connected undirected graph G = (V, E), where
V and E respectively denote the set of vertices and edges. A ver-
tex i € V represents a SU. Then, the modularity of the geographic
region, denoted by M, is calculated using Eq. (1):

1 kikj
i,jeV
where:
1
i,jeV
ki=y " wj (3)
jev

In Eq. (1), w;; represents the weight of the edge between ver-
tices i eV and j e V(ie.,, the mobility between i and j), d; de-
notes the community to which vertex (or SU) i ¢ V is assigned, and
8(d;. dj) equals 1 if d; =d; and 0 otherwise. Egs. (2) and (3) cal-
culate auxiliary parameters m and k;, where m is the total weights
of the undirected graph, and k; is the sum of the weights of the
edges attached to vertex i.

We define and formulate contiguity using the flow analogy pre-
sented by Shirabe (2005). Contiguity can be defined in terms of a
graph where each SU is a vertex and edges connecting each pair
of SUs represent adjacency. Using this view, contiguity is equiv-
alent to the notion of connectedness in graph theory. Therefore,
one can check contiguity (connectedness) of a set of SUs (or a sub-
network), S, by verifying the following condition: Starting from an
arbitrary SU (vertex) in S, one can reach every other SU in S by
following a sequence of adjacency edges. To check the contiguity
condition, Shirabe proposed finding paths between every SU and
one specific SU (named sink) in S, which is similar to the move-
ment of fluid from multiple sources to a single sink in a connected
network.

1 We present a summarized list of notations in Appendix A within Supplementary
Materials.
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Fig. 2. A flow representation of a contiguous district (Shirabe, 2009).

In order to apply this analogy in this study, a community is in-
terpreted as a sub-network of the SUs assigned to that commu-
nity, in which one SU is a sink and every other SU provides one
unit of supply. For a community to be contiguous, the supply sent
from each SU must ultimately arrive at the sink by only passing
through the SUs within the sub-network. Fig. 2 illustrates the idea.
The solid circles and dashed circles represent the assigned and
non-assigned SUs to the community, respectively. The bold circle
is designated as the sink, and the numbers on the arrows repre-
sent the flow. In this way of formulation, how each unit of supply
travels in the sub-network is not important. Instead, we are con-
cerned whether each supply unit can ultimately reach the sink at
least in one way. It is intuitively apparent that a disconnected sub-
network requires more than one sink to consume all supply units,
therefore violating the contiguity condition.

To mathematically formulate the contiguity based on the flow
analogy, let binary decision variable x;; equal 1 iff SU i eV is as-
signed to community d € D, continuous decision variable y;;q deter-
mine the flow from SU i e V to SU j € V within community d € D,
and binary decision variable g;; equal 1 iff SU i € V is designated as
the sink for community d € D. Let A; denote the set of immediate
connected vertices to vertex i € V, i.e., A; = {j € V| {i, j} € E}. Then,
the contiguity constraint is expressed as a set of linear equations
as follows:

> qu<1. ¥deD, )
ieV

ind < CZqid, Vd e D, (5)
ieV ieV

nyfd - Zy]‘id > Xig —Cqiq, YieV, Vd e D, (6)
JEA; JeA;

Z}/ﬁd < (C—-1)xy, YieV, Vd eD, (7)
JeA;

Xig»Qiq €1{0,1}, Yde D, VieV, (8)
Via=0,VdeD, VieV, jeA; . (9)

Constraints (4) ensure that at most one sink is assigned to each
community. Constraints (5) ensure that the cardinality of selected
SUs in a community is less than or equal to C, the maximum al-
lowable number of SUs to constitute a community, and that the
sink of a community is selected from the pool of SUs assigned to
that community (one SU should be sink in each community un-
less no SU can be assigned to that community). Constraints (6)
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indicate that the net out-flow from an SU assigned to a commu-
nity is positive unless that SU is designated to be the sink of that
community. The two terms on the left-hand side of this constraint
calculate the total outflow and total inflow of SU i, respectively. Ac-
cordingly, if SU i is assigned to community d and not a sink (i.e.,
Xig =1 and g;y = 0), then SU i must have a positive supply (posi-
tive net outflow), which is the primary purpose of the constraint.
If SU i is assigned to community d and it is a sink (i.e., x;s = 1 and
Qiq = 1), then SU i can have a positive demand (negative net out-
flow), with a maximum amount of C-1. Constraints (7) ensure that
there is no inflow into any SU that does not belong to that com-
munity (where x;; = 0, then y;; = 0), and that the total inflow to
the SUs assigned to each community does not exceed C-1. Since
the net outflow from an SU assigned to a community is positive
(unless that SU is designated to be the sink of that community),
the constraints ensure that supply from each SU in the commu-
nity reach the sink, and therefore the contiguity condition of each
community holds. Finally, constraints (8) and (9) show the type of
decision variables.

The objective of the MCC is to find the set of communities
D, where any community d € D is a collection of contiguous ver-
tices (SUs). The MCC is formulated as a standard mixed-integer
quadratic-programming model (MIQP):

L 1 kik ;
Maximize M = 5 > Z |:ij - 2‘ﬁ::|xm Xja (MIQP-1)
deD i, jeV
subject to: Y xg=1, VieV, (MIQP-2)

deD

and constraints (4-9).

Objective function (MIQP-1) maximizes total modularity. The
quadratic terms x;4X;4 in the objective function can be easily lin-
earized through standard McCormick transformations (McCormick,
1976). Constraints (MIQP-2) assign each SU to exactly one commu-
nity.

4. Solution methods

Commercial solvers such as GUROBI? and CPLEX> are available
to solve MIQP. In addition, we present a heuristic and a column-
generation algorithm to solve the MCC.

4.1. The heuristic algorithm

The heuristic algorithm is designed in three phases: new com-
munity creation, community expansion, and a local search for solu-
tion improvement. In the first phase of the algorithm, a new com-
munity is created by randomly choosing a SU that does not belong
to existing communities. The selected SU is assigned to the new
community as the first member. The size of the new community
is determined by randomly selecting a number between 2 and C
using a discrete uniform distribution.

The second phase expands the community created in the first
phase by selecting a SU from the subset of SUs that are not
assigned to any communities and are adjacent to at least one
SU within the community. If the subset of adjacent SUs without
any communities has more than one member, the SU with the
strongest connection to the community, i.e.,, with the highest sum
of mobility with community members is selected. Note that the
set of adjacent SUs is considered explicitly in the algorithm to pre-
serve the contiguity of each community. This set of adjacent SUs
is updated when a new SU is added to the community. Expansion

2 https://www.gurobi.com/.
3 https://www.ibm.com/products/ilog-cplex-optimization-studio.
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of the community continues while the set of adjacent SUs is not
empty, and the size of the community is less than the size deter-
mined in the first phase. The process of creating new communi-
ties (phase one) and expanding them (phase two) is repeated until
all SUs are assigned to a community. Then, the modularity of con-
structed communities is calculated based on Eq. (1).

After creating an initial solution using the first two phases, a lo-
cal search is applied to improve the quality of the solution. In this
third phase, for each SU i, a new modularity value is calculated for
joining i to SU j if the following three conditions are satisfied: (1)
the size of the community that j belongs to is less than C, (2) i
is adjacent to the community of SU j, and (3) removing i from its
current community does not affect contiguity of its original com-
munity. If the new modularity value is greater than the current
value, SU i is placed to the community of SU j, and the modularity
value is updated. This process is repeated for all SUs over and over
until no improvement can be achieved.

Next, the algorithm repeats this process (phases one to three)
for a fixed number of times (maxliterations) and returns the solu-
tion with the highest modularity value. The pseudo-code of the
heuristic algorithm is presented in Appendix B.

4.2. The column-generation algorithm

We present a column-generation algorithm that is tailored to
solve an exponentially sized reformulation of MIQP. Let 2 rep-
resent the set of all possible configurations. A configuration ¢ € Q2
is a tuple (V¢, 6.), where V. denotes a subset of contiguous SUs
(V. €V) and |V¢| <C. The second element, 6., is the modularity
value of configuration c € €, i.e.:

1 kik
bo=5- 3 [Wij_ i 1}

< 2m
i,jeVe
We denote the set of configurations that include SU i € V by ;.
Let binary decision variable x. equal 1 iff configuration c e Q is
selected. The MCC can alternatively be formulated as the following
exponentially sized model (henceforth referred to as EM):

Maximize M =" 6 xc (EM-1)
ceQ

subject to:

Z Xc=1, VieV, (EM-2)

ce2;

Xc €{0,1}, ce Q2. (EM-3)

Objective function (EM-1) maximizes the total modularity for
the whole geographic region. Constraints (EM-2) ensure that each
SU is assigned to exactly one community. Each selected configu-
ration in the solution of EM indicates the set of SUs that consti-
tute a community. It is straightforward to show that MIQP and EM
are equivalent. Since |2| exponentially grows with the number of
SUs in an instance, enumerating all possible configurations is im-
practical. Hence, we dynamically generate columns (configurations)
through column-generation (Gilmore & Gomory, 1961).

A column-generation algorithm is implemented on the linear
programming (LP) relaxation of the exponentially sized model that
includes a subset of the columns, referred as the restricted mas-
ter problem (RMP). Then new columns with positive reduced costs
are dynamically generated using a pricing problem (in the case of
maximization). The algorithm iterates between the pricing problem
and the RMP and terminates if no columns with positive reduced
costs can be found. It is shown that the LP relaxation of RMP that
is solved through column generation and LP relaxation of the mas-
ter problem (the exponential model with all possible columns) are
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Fig. 3. The column-generation algorithm.

equal. In the case of integer-programming models with many vari-
ables, a branch-and-price algorithm (Barnhart, Johnson, Nemhauser
& Vance, 1998) can be used where a column generation is solved
on each node of the branch-and-bound algorithm (Lawler & Wood,
1966). The column-generation algorithm used to solve our problem
is summarized in Fig. 3.

For the MCC, the RMP is similar to EM, except it is solved over
a subset of configurations (2 < 2). Here we only solve the LP re-
laxation of the RMP on the root node of the branch-and-bound
tree using the column-generation algorithm. When no additional
columns can be added, we solve RMP to get an integer solution.
As discussed in Section 5, the computational experiments, in many
cases, we are able to prove optimality without branching. For gen-
erating the feasible initial set of columns, we use the heuristic al-
gorithm. We also run MIQP for a few seconds to seek additional
improvements in the initial feasible solution and upper bounds be-
fore starting the column-generation procedure.

To find improving columns for the LP relaxation of the RMP, we
use a pricing problem. Let y; be the dual values associated with
Constraints (EM-2) in the RMP. The pricing problem is similar to
MIQP, and it is solved to find a contiguous configuration. Let binary
decision variable x; equal 1 iff spatial unit i € Vis selected, contin-
uous decision variable y;; determine the flow from SU i eV to SU
j €V, and binary decision variable g; equals 1 iff SU i ¢ V is desig-
nated as the sink. The pricing problem (P) is:

kik;

Maximize ﬁ > |:wij - ;‘rg]xi =Y %X (P-1)

ijeV iev
subject to:
qi < x;, VieV, (P-2)
doai<1 (P-3)
ieV
> x=CY g (P-4)
ieV ieV
D yii= Y yizx—Cq VieV, (P-5)
JeA; JEA;
Y yi<(C-1x;. VieV, (P-6)
JeA;
Xi, (i € {0, 1}, Vie V, (P—7)
yi=0,VieV, jeA . (P-8)
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The objective function (P-1) maximizes reduced cost for the
newly generated column. Similar to the constraints in MIQP, Con-
straints (P-2) to (P-8) enforce contiguity of the configuration gen-
erated by the pricing problem and ensure that the cardinality of
the generated configuration is at most C (similar to Egs. (4) to (9)).
Our computational experiments show that commercial solvers can
optimally solve the pricing problem quickly.

To enhance the performance of the column-generation algo-
rithm, instead of adding a single new column (newColumn) in ev-
ery iteration of the algorithm, we use an iterative pricing pro-
cedure (IPP) to generate multiple compatible columns, which are
those that can simultaneously be selected by RMP. This procedure
is summarized in the IPP Algorithm below.

IPP Algorithm

Set V' =V,
Set newColumn = FALSE;
While [V'| > 0:
Solve P over SUs in V’;
If v*(P) >0:
Add the set of selected SUs (X*) to A; V/ « V/\X*; newColumn = TRUE;
If newColumn == TRUE and |V’| > 0:
Solve P over SUs in V’;

Ifvr@P)>0:
Add the set of selected SUs (X*) to A; and V/ « V'\ X*;
Else:
Break;
If newColumn == FALSE:

Break;

In the IPP Algorithm, v*(P) denotes the optimal objective value
of the pricing problem. The IPP Algorithm indicates that in each it-
eration of column generation procedure, after finding the column
with the most positive reduced cost, we remove the SUs that are
selected by the pricing problem and resolve the pricing problem.
This procedure continues until no SUs are left or no new column
with positive reduced cost is found. Through this process, we en-
sure not to add the columns that are already added to set A. The
IPP Algorithm helps to find high-quality feasible integer solutions
more quickly by adding multiple compatible columns with posi-
tive reduced costs that may be simultaneously selected through
the restricted master problem. In the next section, we highlight
the advantages of coupling the IPP Algorithm with the column-
generation algorithm for this problem.

5. Computational experiments

To examine the efficiency of the proposed algorithms, we con-
duct computational experiments of real mobility data (from Cam-
ber System, https://cambersystems.com) in the U.S. We also use
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a set of synthetic instances as a robustness check for the perfor-
mance of our algorithms.

States consisting of 5 to 254 counties (as SUs) are included
in these experiments, with each state representing an instance.
Every instance contains mobility information between all county
pairs and an adjacency matrix to specify the neighbors for each
county (A;). To eliminate the possibility that counties always hav-
ing higher mobility with adjacent counties compared to remote,
non-contiguous counties and thus make the introduction of conti-
guity and cardinality constraints more challenging while maximiz-
ing modularity, we create synthetic instances based on randomly
generated mobility data between counties (by random shuffling of
the mobility matrix). Overall, in our experiments, we use 36 real
instances and 36 synthetic instances.* We also perform sensitivity
analyses by changing parameter C, the maximum number of coun-
ties that constitute a community. We consider C={5, 10, 15}. For
both real and synthetic instance sets, we label an instance as small
if the number of counties (|V|) in its corresponding state is less
than 70 (|V| < 70), and we label it as large if |V| > 70. For both
synthetic and real instance sets, we have 20 and 16 small and large
instances, respectively.

All the experiments are performed on a standard personal
computer.’ We use GUROBI 9.1.1 as the standard mixed-integer
(quadratic) programming solver to directly solve the optimization
model and as the oracle used within the column-generation algo-
rithms. We test the following five algorithms:

1. H: the heuristic algorithm described in Section 4.1,

2. MIP; directly solve MIQP with GUROBI,

3. MIP+: directly solve MIQP with GUROBI with the solution

gained from the heuristic algorithm as an initial solution,

CG1: column-generation algorithm by solving the pricing prob-

lem only once in each iteration, and,

. CG2: column-generation algorithm that is coupled with the IPP
Algorithm.

4,

We also should note that, since the coefficients in the objec-
tive functions (MIQP-1) and (P-1) are very small in our datasets,
to avoid numerical issues that may arise as a result of commercial
solvers optimality tolerance gap, we eliminate the constant term
ﬁ from the objective function and multiply it back to the objec-
tive value after the model is solved. In comparing the performance
of algorithms, we set a time limit of 60 min for solving each in-
stance by MIP, MIP+, CG1, and CG2. The value of maxIterations pa-
rameter in the heuristic algorithm is set to 20, selected based on
the trial-and-error approach. The solution time for the heuristic al-
gorithm H is negligible (less than 30 s).

5.1. Solution quality

Tables 2 and 3 summarize the average of best solutions found
by each algorithm.

As can be seen in Table 2, for small instances, MIP, MIP+, CG1
and CG2 show similar performance in finding feasible solutions.
However, for large instances, CG2 outperforms the other algorithms
with MIP being the worst. The heuristic algorithm, H, finds solu-
tions that are on average 3.9% lower than our best performing al-
gorithm, CG2. Particularly, we see that for large instances, H is able

4 Due to contractual agreements with the data provider, we are not able share
the real and synthetic instances (that are generated by shuffling movements of the
real instances). For replication purposes, we generated a random set of synthetic in-
stances that are available at https://github.com/mohsen-emadikhiav/MCC-Instances.
git. The data generation procedure and summary of the results for these second set
of synthetic instances are presented in Appendix C. The codes are available upon
request.

5 Intel(R) Core (TM) i7-9700 CPU @ 3.60GHz with 32.0 GB RAM and using 1
thread.

106

European Journal of Operational Research 304 (2023) 99-112

Table 2
Average modularity for real instances by each algorithm.
Algorithm
vl € H MIP MIP+  CG1 CG2
< 5 0397 0.411 0411  0.411 0.411
70 10 0426 0.441 0.441 0.440 0.441
15 0422 0443 0443 0443 0443
> 5 0503 0495 0.530 0.535 0.535
70 10 0589  0.551 0599 0.606 0.608
15 0.602 0.571 0.615 0.608 0.620
Table 3
Average modularity over synthetic instances by each algo-
rithm.
Algorithm
v ¢ H MiP MIP+  CG1 CG2
< 5 0.400 0.421 0425 0434 0434
70 10 0436 0444 0454 0465 0.469
15 0407 0453 0460 0462 0473
> 5 0513 0.505 0.565 0.587  0.589
70 10 0.604 0.524 0.639 0640 0.669
15 0.627 0.565 0.657 0.629 0.677

to find better solutions than MIP. We also find significant improve-
ments in the solutions found by MIP+ compared to MIP. Specif-
ically, for large instances, we observe that MIP+ is able to find
solutions with 7.8% higher modularity, highlighting the benefits of
generating initial solutions using H for GUROBI to solve MIQP. Note
that modularity values closer to 1.0 indicate a strong community
structure. In practice, modularity is often in the 0.3 - 0.7 range for
most networks (Newman & Girvan, 2004).

Similar to real data, for the synthetic instances (Table 3), we
find that CG2 outperforms other algorithms. Specifically, for large
instances we observe than CG2 is able to find solutions with 17.6%,
3.8%, and 4.1% higher modularity compared to MIP, MIP+, and CG1,
respectively. We also observe that for large instances, H outper-
forms MIP with respect to the solution quality (e.g., 0.627 vs 0.565
with C=15.) We also see that MIP+ finds solutions with 9% higher
modularity compared to MIP, highlighting the benefits of the pro-
posed heuristic algorithm.

5.2. Computational performance of the algorithms

We start this subsection by comparing the performance of CG1
and CG2 to analyze the impact of the proposed iterative pric-
ing procedure (IPP). Table 4 summarizes these results. In Table 4,
#solved indicates the number of instances for which the column-
generation algorithm terminates and reports valid bounds within
the 1-hour time limit. Column times represents the runtimes (in
seconds) averaged over only those instances that the column-
generation procedure terminates within the time limit. Column
#opt indicates the number of instances that are proved to be
optimal. Column M represents average modularity as defined by
Eq. (1).

As we can see in Table 4, for both datasets and by setting dif-
ferent values of C, CG2 outperforms CGI1, highlighting that utiliz-
ing the IPP boosts the performance of the column-generation algo-
rithm. For real instances with C=5, both CG1 and CG2 can solve
35 out of 36 instances within 60 min with CG2 performing better
in runtimes (averaged 201 s vs. 324 s). By increasing C, the per-
formance of both algorithms degrades since a larger C is creating a
larger pool of columns with positive reduced costs that are dynam-
ically generated through the pricing problem. Our results indicate
that with C=15, CG2 is still able to solve 24 out of 36 instances
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Table 4
Summary of the results of CG1 and CG2 for real and synthetic instances.
CG1 cG2
Data set C #solved  time;  #opt M #solved  time;  #opt M
Real 5 35 324 23 0.466 35 201 23 0.466
Instances 10 25 687 21 0.514 34 816 27 0.515
15 19 623 17 0.516 24 657 22 0.522
Synthetic 5 33 840 17 0.502 34 552 17 0.503
Instances 10 14 353 13 0.543 17 444 13 0.558
15 13 130 12 0.536 15 475 12 0.564

* Averaged over only those instances that the column-generation procedure terminates within

time limit (in seconds).

Table 5
Summary of computational results for each algorithm on real instances.
MIP MIP+ CG1 CG2
v ¢ #opt  time* gap’  #opt  time* gap'  #opt  time*  gap' #opt  time*  gap'
< 5 16 166 7% 16 214 8% 16 34 0.22% 16 30 0.22%
70 10 18 450 4% 18 344 8% 17 181 0.11% 17 86 0.05%
15 19 414 9% 19 291 6% 17 398 10% 18 226 0.02%
> 5 0 - 43% 0 - 27% 7 771 5% 7 450 5%
70 10 0 - 40% 0 - 17% 4 2412 27% 10 1714 9%
15 1 3205 36% O - 15% 0 - 33% 4 2298  31%
* Averaged over only those instances that are proved to be solved optimally (in seconds).
T Averaged over only those instances that are not solved optimally (in percentage).
Table 6
Summary of computational results for each algorithm on synthetic instances.
MIP MIP+ CG1 cG2
vl ¢ #opt  time*  gap' #opt  time*  gap'  #opt  time* gap’  #opt  time*  gap'
< 5 12 33 49% 12 59 43% 14 76 1% 14 55 2%
70 10 12 15 45% 12 21 38% 13 128 48% 13 59 26%
15 12 12 40% 12 20 33% 12 26 52% 12 17 39%
> 5 0 - 91% 0 - 49% 3 1524 14% 3 898 9%
70 10 0 - 158% 0 - 34% 0 - 42% 0 - 35%
15 0 - 191% 0 - 30% 0 - 44% 0 - 29%

* Averaged over only those instances that are proved to be solved optimally (in seconds).
T Averaged over only those instances that are not solved optimally (in percentage).

(22 of which are proved to be optimal) while CG1 solves 19 out of
36 instances.

The performance of both algorithms diminishes on synthetic
instances. This is expected as by randomization of mobility be-
tween counties, finding contiguous communities with high mod-
ularity becomes more challenging. With C=5, CG2 is still able to
solve 34 out of 36 instances (vs. 33 with CG1), but when C is in-
creased to 15, only 15 out of 36 instances are solved within the
time limit (vs. 13 with CG1). The average run times, on the other
hand, are slightly worse for CG2 in synthetic instances when C is
10 or 15, due to the long run time of the instance solved by CG2
that CG1 could not solve.

We also find that CG2 dominates CG1 in finding feasible solu-
tions with higher modularity for all instance groups. CG1 strug-
gles to find better feasible solutions with increasing C. For instance,
CG1 finds solutions with a lower modularity value as C is increased
from 10 to 15 for synthetic instances (0.543 to 0.536). On the other
hand, CG2 can consistently improve feasible solutions as we in-
crease C for both instance groups.

Tables 5 and 6 summarize the computational results for MIP,
MIP+, CG1, and CG2 on real and synthetic instances, respectively.
Column gap represents the optimality gap (in percentage), and is
calculated as YBZLE » 100, where UB and LB respectively denote
the best upper bound and lower bound found by an algorithm.
We calculate a trivial upper bound by solving the relaxation of lin-
earized MIQP for those instances that CG1 and CG2 are not able to

prove an upper bound through column generation within the time
limit, we use this trivial bound to calculate gap. Column time (in
seconds) is averaged over only those instances that are proved to
be solved optimally.

As can be seen in Table 5, for the smaller instances, the per-
formance of the algorithms for the number of instances that
are solved optimally are similar, with MIP and MIP+ performing
slightly better. On the other hand, for those small instances that
are not solved optimally, CG2 proves significantly lower optimal-
ity gaps. As expected, increasing the size of the instances degrades
the performance of the algorithms. For large instances, CG2 solves
21 instances optimally, while MIP, MIP+, and CG1, optimally solve
only 1, 0, and 11 instances, respectively. On the other hand, for
large instances, as C increases, CG1 and CG2 result in higher op-
timality gaps compared to MIP+. This is mainly due to the weak
trivial bound that we use for those instances for which the col-
umn generation procedure does not terminate. We also see that
MIP+ proves much lower optimality gaps compared to MIP, which
is because MIP+ is able to find higher quality feasible solutions
with the help of the heuristic algorithm.

As can be seen in Table 6, CG1 and CG2 perform better with
respect to the number of synthetic instances that are solved opti-
mally. CG2 is able to prove much smaller optimality gaps on aver-
age. For example, on smaller instances with C=5, the optimality
gap of CG2 is 2% on average, while MIP and MIP+ respectively get
49% and 43% average optimality gaps. The performance of CG2 de-
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Table 7

Summary statistics of movements between counties for the eight-week timeframe.
Variable Obs. Mean Median  Std. Dev.  Skewness
Movements between counties 1189 27,087 395 99,162 8.23

grades as C increases. For example, on larger instances, similar to
the real instance, we see that the performance of all algorithms
degrades significantly. CG1 and CG2 solve 3 instances to optimal-
ity, while MIP and MIP+ cannot solve any of the instances. We also
find that with a smaller C, CG2 proves a significantly smaller op-
timality gap (9% on average) compared to other algorithms (e.g.,
49% for MIP+). However, similar to other circumstances, the per-
formance of CG1 and CG2 degrades as C increases.

Overall, among our algorithms, for both real and synthetic in-
stances, we find that CG2 is performing better than the others in
finding higher quality solutions in a shorter time while proving
smaller optimality gaps on average. The outperformance of CG2 is
more significant particularly for those instances with tighter car-
dinality constraints (C=5). Moreover, we let MIP run for 12 h on
the synthetic instances to better understand its behavior and high-
light the benefits of our proposed algorithms. The summary of our
results of these runs are presented in Appendix D. We find that
the performance of MIP improves in finding higher quality solu-
tions. However, with 12-hour execution, MIP still cannot perform
as good as the proposed column-generation algorithms (that is ex-
ecuted for an hour) in terms of number of problems solved opti-
mally and the average optimality gaps.

6. Analysis of modeling results

To analyze the effect of the formulation of possible policy co-
ordination zones for pandemic responses based on movement of
people across counties based on our model, we select two states
in the U.S. that are highly interconnected by people movement and
apply the proposed community detection model in Section 6.1 to
identify optimal coordination communities within these intercon-
nected states. Then, in Section 6.2, using COVID-19 data, we eval-
uate if the identified communities are more suitable for the co-
ordination of NPIs and vaccination programs than current state-
based policy making. Finally, Section 6.3 provides managerial in-
sights from the case study.

6.1. Case study

We consider counties within the two states of North and South
Carolina as the SUs in our model. There are 146 counties in to-
tal in these two states. The county adjacency data is downloaded
from the U.S. Census Bureau website. Based on the adjacency data,
the counties in our sample have a minimum of 2 and a maximum
of 9 neighbors, with an average of 5.44 and a median of 5 neigh-
bors. Next, we collected the movement of people between the 146
counties for the eight-week period between January 20 and March
15, 2020. We specifically select this timeframe as it captures the
natural movement of people prior to any major pandemic-related
lockdown in the U.S. The mobility data, provided by Camber Sys-
tem (https://cambersystems.com) after signing a data usage agree-
ment, is collected using aggregated and anonymous location data
of smartphones. The number of movements (transitions) between
counties in the original dataset is reported in four-hour blocks and
includes 208,470 records, with a total of 32,206,144 movements.
As an example, Table E1 in Appendix E shows the movement from
Lexington County, South Carolina, to Richland County, South Car-
olina, on January 20, 2020.

We calculated the total number of movements between each
pair of counties by aggregating data over the eight weeks. Table 7
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provides summary statistics of movements between counties for
the eight-week timeframe. In summary, there are 1189 unique be-
tween counties movements in the aggregated dataset. The aver-
age number of movements is 27,087, with a median of 395 and a
standard deviation of 99,162. The movement distribution is highly
skewed to the right, which indicates that there are exception-
ally strong connections among some counties (and thus good can-
didates to establish local communities). The maximum number
of movements is between Lexington County, South Carolina, and
Richland County, South Carolina (1527,033 total transitions). Ta-
ble E2 in Appendix E summarizes the top 20 movements between
counties. All of the top 20 movements are within states borders,
except for the movement between Mecklenburg County, North Car-
olina, and York County, South Carolina, which is ranked as number
7. The top 20 inter-state movements are also reported in Table E3
in Appendix E, where the ranking column shows the overall rank-
ing in the dataset.

The case study is solved using CG2 algorithm with different
C values. For all scenarios, the algorithm was able to find near
optimal solutions (with less than 1% optimality gap) within 4 h.
Table 8 summarizes the results, and Fig. 4 shows counties in the
same community in the same color on a map. (List of all coun-
ties and their assigned community with respect to C is reported in
Appendix F). We first notice that the contiguity constraint is sat-
isfied in all cases. When the number of counties in a community
is limited to 5 (C=5), the model creates 35 communities with a
modularity value of 0.5952 and a minimum (maximum) number of
counties per community of 1 (5). In this case, the average number
of counties per community is greater than 4, which indicates most
communities contain the maximum number of counties allowed
in the communities. Additionally, three communities have counties
from both states. When the number of counties in a community
is limited to 10 (C=10), the model creates 23 communities with
a modularity value of 0.7195. A large number of communities (11
out of 23) contain the maximum number of counties allowed, and
there are six communities that contain only one county. When the
number of counties in a community is limited to 15 (C=15), the
model creates 13 communities, and the modularity value is 0.7411.

The modularity value increases with increasing C initially, but
once an optimal solution is reached (in this case, where the largest
community has 20 counties), a further increase of C does not pro-
duce better solutions. Fig. 4(d) shows the resulting communities
when C is 20, 25, or 30. All communities contain at least eight
counties, and the largest communities (two out of ten) include 20
counties. The average number of counties per community is 14.60,
and three communities include counties from both states.

6.2. Cluster validation using COVID-19 data

In this section, we aim to demonstrate that the identified clus-
ters/communities, based on mobility, are in fact more suitable for
coordinating pandemic NPIs than state-wide coordination. To this
end, we compare the impact of COVID-19 on the communities cre-
ated based on the proposed model with that on individual states.
Mobility data prior to any major lockdown in the U.S. is used in
the previous section to identify coordination communities for pan-
demic responses within North and South Carolina. Since counties
in the same community are highly interconnected with people’s
movements, we expect that the impact of COVID-19 on counties
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Table 8

Results of case study.
C N. of N. of N. of Average counties Modularity

communities counties in the counties in the per community
smallest community largest community

5 35 1 5 417 0.5952
10 23 1 10 6.35 0.7195
15 13 1 15 11.23 0.7411
20 10 8 20 14.60 0.7505
25 10 8 20 14.60 0.7505
30 10 8 20 14.60 0.7505

b C=10

(c)C=15

(d) C = {20, 25, 30}

Fig. 4. Communities based on mobility data within North Carolina and South Carolina.

within a community to be similar; that is, the number of cases and
deaths due to COVID-19 should have lower variation within com-
munities compared to those between communities or cross states
boundaries. To officially test this argument, a clustering validation
method is used in this section.

Clustering validation methods, which evaluate the goodness of
clustering results, are commonly used to study the success of clus-
tering algorithms (Liu, Li, Xiong, Gao, & Wu, 2010). These meth-
ods are divided into two categories: external clustering validation
and internal clustering validation. External validation measures are
used when the “true” cluster of elements is known, while inter-
nal validation measures are appropriate when the “true” cluster
information is not available for comparison. In general, evaluating
the performance of clustering algorithms when the true clusters
are not known is more challenging than when the true clusters
are known. Since, in our problem, the true cluster of counties is
not known, we use a popular internal validity measure known as
Calinski-Harabasz (CH) index (Califiski & Harabasz, 1974) to evalu-
ate the success of our proposed model (Liu et al., 2010; Lukasik et
al., 2016). The CH index calculates the ratio of the between-clusters
sum of squares (8) and within clusters sum of squares (w) and is
adjusted based on the total number of clusters («) (i.e., commu-
nities in our study) and vertices (n) (i.e., counties in our study)
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within each cluster, as shown in Eq. (10):

B _n-«x
CH="x-— (10)
where
B = XK:niEz(si,s) (11)
i=1
W= iZEz(x, si) (12)

i=1 XeS;

Egs. (11) and (12) calculate the between-clusters sum of squares
and the within clusters sum of squares, respectively, where n; rep-
resents the number of counties in community i (S;), s; is the center
of S;, s is the grand center, and E(x;, x,) calculates the Euclidean
distance between x; and x,. A higher value of CH index means
the SUs are more homogenous within communities and more het-
erogeneous between communities. Therefore, a clustering method
with a higher CH index value is preferred.

To better illustrate the idea of using CH index, consider nine
interconnected counties shown in Fig. 5a. Assume that three dif-
ferent clustering methods are applied to detect communities, and
their results are presented in Figs. 5b to 5d. COVID-19 data of each
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1 2 3

Clustering Method 2
4 5 6
7 8 9

Clustering Method 1 (b) Results of Method 1

(d) Results of Method 3

. Community 1
. Community 2
Community 3
//( CH of Method 1 = 8.18

3 (3000,

1 (1000, 200)

200)

2 (2000,
400)

4 (100,

5 (110, | 6 (105, =
10) 10) 0 ™ CH of Method 2 = 0.36

7 (600,
40)

8 (900,
70)

9 (810,
10)
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cases and deaths in-each
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N

& CH of Method 3 = 0.23

Fig. 5. An example of CH index values for three different clustering methods.

Table 9

CH values.
Communities CH value
C=5 1.62
c=10 1.02
c=15 1.24
C={20, 25, 30} 1.36
States 0.68

county, which are available after the pandemic starts, can be used
to evaluate the performance of the three clustering methods. Sup-
pose the numbers in the parentheses in Fig. 5e denote the con-
firmed number of COVID-19 cases and deaths for each county, re-
spectively. It is easy to visually see that the first clustering method
is better than the other two methods because it creates more ho-
mogenous communities with respect to the impact of COVID-19.
We obtain a similar conclusion using CH index. The CH index value
of the first clustering method, calculated based on Egs. (5) to 7, is
8.18, which is higher than the CH index values of the other two
clustering methods (i.e., 0.36 and 0.23). Therefore, as our exam-
ple demonstrates, CH index can be used to identify the clustering
method that provides more homogenous communities.

To calculate CH index in our case study, we first collected the
number of confirmed cases and deaths due to COVID-19 per county
per day for each county in the two states for a period of eight
weeks (June 1, 2020 to July 26, 2020) from the Johns Hopkins Uni-
versity tracking website (Dong, Du, & Gardner, 2020). Then, the
total number of confirmed cases and deaths in each county were
calculated for the eight-week period for comparison. Next, we cal-
culate CH index values of the community structures in this case
study (for C=5, 10, 15, {20, 25, 30}) as well as the state structure
(two communities each representing the individual states).

Table 9 provides a summary of CH index values. All communi-
ties created based on the movement of people are more homoge-
nous than considering counties within states as their own commu-
nity. For instance, communities based on C=5 and C={20, 25, 30}
have CH values (respectively 1.62 and 1.36) almost twice as the CH
value of communities based on states borders (0.68). To check the
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robustness of the results, we also calculated the CH index values
based on only the number of cases and then also the number of
deaths, and the CH index values calculated based on the number
of cases and deaths separately are very similar to those reported
in Table 9.

This case study shows the close interconnections, based on
people’s movement, between counties within and between two
states, and the communities created with our modularity-based
model exhibit more homogeneous COVID-19 impacts than indi-
vidual states. The results highlight the importance of considering
coordinating NPIs and vaccination programs across counties and
states based on people’s natural movement without considering
the geopolitical borders.

6.3. Implications for pandemic management

This case study provides insight into managerial and policy de-
cisions in combating pandemics. There is significant variability be-
tween COVID-19 policies in North Carolina (NC) and South Carolina
(SC) since the start of COVID-19 (NASHP, 2021). Original stay-at-
home orders in NC were from March 30, 2020 through May 22,
2020 with violations punishable as a Class 2 misdemeanor, while
SC had a shorter window from April 6, 2020 through May 4, 2020
with lax enforcement. Mask mandates also differ in similar fashion
between the two states, while there were no state-wide travel re-
strictions in either state since the beginning of the pandemic. Ad-
ditionally, reopening policies and responses to the rapidly spread-
ing Delta variant in 2021 in both states were just as divergent. Our
analysis shows that up to four border communities include coun-
ties from both states. Given that the profile of people at risk is
similar in both states, local county governments from both states
belonging to border communities identified in this study should
collaborate to create a community-level policy and response strat-
egy including vaccinations, masking, and limits on inside gather-
ing, instead of following disparate state-level policy. This is espe-
cially vital given the highly transmissible Delta variant (and future
variants to come).

Our analysis, along with a case study, shows that the pro-
posed model can create communities that are significantly better
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for coordinating pandemic related policies than those solely based
on the existing geopolitical borders. This result is validated using
COVID-19 data. The consequence of non-coordination across state
borders has been significant in some instances. For example, it has
resulted in an influx of COVID-19 patients from western parts of
Idaho where masks and vaccinations are not mandated, to hospi-
tals across the border in Washington state. This has overwhelmed
hospital capacity in the latter, deepening the crisis in that state.
Since the proposed communities are created based on the natural
movement of people, jurisdictions within a community are well-
connected and potentially in the same phase of pandemic. In addi-
tion, to facilitate the coordination of NPI policies, our model guar-
antees the contiguity of detected communities and limits the max-
imum number of jurisdictions within a community. As such, the
proposed model can be used to identify communities of contigu-
ous locations for applying customized and coordinated policies re-
sponse to a pandemic.

We are beginning to see local responses by cities and school
districts despite state mandates, but the effectiveness of such lo-
cal policies can be enhanced by joining those administrative units
into communities, as identified in this study, to provide a pathway
to coordinated reopening. In a federally structured country like the
U.S., in addition to an effective national pandemic policy, an ap-
propriately coordinated multi-level approach of regional and local
policy is required. As any of the communities of counties identi-
fied in our case study outperform the community as defined by
state boundaries, this study indicates that a new community level
of governance is required, based on population movement and be-
yond existing geographic boundaries of state and county, for ef-
fective pandemic management. Our model provides a framework
to identify which county jurisdictions need to work together to
manage transboundary public health crises. This is especially valid
for contagious viruses like Influenza (flu) and COVID-19, where the
movement and interactions among people are the essential mech-
anisms behind transmitting. Further, although this study is specifi-
cally designed to coordinate pandemic response policies, the model
may be used in other fields to identify contiguous communities,
such as in marketing for clustering customers based on their loca-
tions and daily movements.

7. Conclusion

The existing literature suggests that coordinating policies across
interconnected locations can improve the effectiveness of pan-
demic interventions, especially in decentralized and federal coun-
tries (OECD, 2020; Ruktanonchai et al., 2020). This study pro-
poses a new community detection model to identify communities
based on the natural movement of people for coordinating pan-
demic related policies. To do so, we develop a new mixed-integer
quadratic-programming model to maximize modularity subject to
the geographic contiguity constraints. The optimization model uses
the natural movement of people as inputs to calculate modular-
ity, and the number of jurisdictions in each community or zone
can be adjusted based on the policy maker’s requirements. To im-
prove computation, we also develop a column-generation algo-
rithm that is coupled with an iterative pricing procedure (CG2)
to solve larger instances. Our computational experiments high-
light that CG2 outperforms the standard mixed-integer quadratic-
programming model using a commercial solver.

There are several possible opportunities to extend this research.
First, we use contiguity requirements as hard constraints in the
optimization models. A potential extension is to consider a bi-
objective optimization model where one can analyze the implica-
tions of balancing modularity and contiguity in community detec-
tion. Another possible direction of future research is to incorpo-
rate other commonly used community detection objectives such as
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compactness or modularity density functions while enforcing con-
tiguity requirements. Strengthening the MIQP formulation by find-
ing valid inequalities is another possible direction for future re-
searchers. Lastly, our column-generation algorithm is designed to
solve the pricing problem optimally in each iteration. While in
most cases this approach is effective and the pricing problems are
solved quickly, we find that for larger instances, it may take a bit
longer (up to a few minutes), which increases the algorithms’ over-
all run time. As a future extension, a combination of heuristics and
exact methods in the iterations of the pricing problem can be in-
corporated to solve the optimization problem more quickly while
ensuring valid optimization bounds.
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