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a b s t r a c t 

The health and economic devastation caused by the COVID-19 pandemic has created a significant global 

humanitarian disaster. Pandemic response policies guided by geospatial approaches are appropriate ad- 

ditions to traditional epidemiological responses when addressing this disaster. However, little is known 

about finding the optimal set of locations or jurisdictions to create policy coordination zones. In this 

study, we propose optimization models and algorithms to identify coordination communities based on 

the natural movement of people. To do so, we develop a mixed-integer quadratic-programming model 

to maximize the modularity of detected communities while ensuring that the jurisdictions within each 

community are contiguous. To solve the problem, we present a heuristic and a column-generation algo- 

rithm. Our computational experiments highlight the effectiveness of the models and algorithms in var- 

ious instances. We also apply the proposed optimization-based solutions to identify coordination zones 

within North Carolina and South Carolina, two highly interconnected states in the U.S. Results of our case 

study show that the proposed model detects communities that are significantly better for coordinating 

pandemic related policies than the existing geopolitical boundaries. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

COVID-19 triggered devastating social and economic impacts 

round the world in a short amount of time. As of November 

021, more than 46 million have contracted the virus, and over 750 

housand people have died in the U.S. alone ( CDC, 2021 ). Although 

andemics are primarily a public health crisis, subsequent eco- 

omic, social and political consequences are also significant. The 

otal cost of COVID-19 in the U.S. is estimated to be more than $16 

rillion ( Cutler & Summers, 2020 ), larger than the costs of any pre-

ious manmade or natural disasters. The initial response to COVID- 

9 and the associated fiscal actions and lockdowns have resulted in 

11.7 trillion, or close to 12% of global GDP, of negative economic 

mpacts in the initial phase of the pandemic as of September 2020 

 IMF, 2020 ). Further, the COVID-19 pandemic has had knock-on ef- 

ects on other humanitarian disasters worldwide through restricted 

ravel and support for ongoing relief effort s, because government s 

re looking inwards at protecting their own citizens and economies 

hile pledging little for required international humanitarian sup- 

ort (The Lancet, 2020 ). Therefore, it is critical for decision-makers 

o respond with policy measures that save lives, contain economic 
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allout, and speed up recovery to minimize negative pollical and 

ocial impacts ( Tanrisever, Shahmanzari, Eryarsoy & Ş ensoy, 2021 ). 

In addition to any national vaccination effort, coordination of 

onpharmaceutical interventions (NPIs) across governmental ju- 

isdictions has been recommended as a critical element to com- 

at the contagious disease, especially in decentralized and federal 

ountries ( OECD, 2020 ; Ruktanonchai, Floyd, Lai & Steele, 2020 ). 

pplying a broad and uniform NPI, such as full lockdowns, simul- 

aneously in all regions may not be ideal and sometimes practi- 

al (if not impossible), as communities within a state or country 

ay be at a very different level of an outbreak ( Dhillon & Karan,

020 ). This is highlighted by Dr. Anthony Fauci, U.S. President’s 

hief Medical Advisor and Director of the National Institute of Al- 

ergy and Infectious Diseases: " We have to realize that we’re a large 

ountry that has outbreaks in different regions, different states, differ- 

nt cities, that have different dynamics, and different phases in which 

hey are in ." ( Watts, 2020 ). However, although decentralized gov- 

rnments may benefit from the flexibility of having customized re- 

ponses within each jurisdiction, a lack of policy coordination may 

inder the effectiveness ( Gordon, Huberfeld & Jones, 2020 ), as the 

iruses do not stop at the jurisdictions’ boundaries. Indeed, recent 

tudies show significant policy differences from one region to an- 

ther ( Holtz, Zhao, Benzell & Aral, 2020 ). In the U.S., for exam- 

le, the pandemic response is assigned to states and subsequent 

unicipalities. Federal agencies, such as the Centers for Disease 

https://doi.org/10.1016/j.ejor.2022.01.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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ontrol and Prevention (CDC) and Federal Emergency Management 

gency (FEMA), have limited authority to mandate local authorities 

o take united actions ( Gordon et al., 2020 ). In this setting, two

eighboring jurisdictions with a high social connection may have 

rastically different policies, such as closure or opening of restau- 

ants and gyms, at the same time, rendering the effort to stop dis- 

ase spreading ineffective. 

Current research shows that a "place-based approach," where 

olicies are customized and coordinated across interconnected lo- 

ations, is effective in response to a contagious disease like COVID- 

9 ( OECD, 2020 ). In a recent study, Ruktanonchai et al. (2020) find

hat appropriate coordination across countries that are intercon- 

ected by people movement can significantly increase the effec- 

iveness of NPIs. The authors show that a resurgence of COVID-19 

ould happen five weeks earlier in Europe if well-connected coun- 

ries end their interventions without coordinating with neighbors. 

ther studies have also shown that population mobility is an in- 

uential force in the transmission of COVID-19 ( Chang, Pierson, 

oh & Leskovec, 2021 ; Kraemer, Yang, Gutierrez & Scarpino, 2020 ). 

oses (2021) recommends algorithmic thinking to reduce chaos 

nd slow-downs in the COVID-19 vaccination rollout. Shahzamal, 

ans, de Hoog and Jurdak (2020) develop an effective vaccina- 

ion strategy, called the individual’s movement-based vaccination 

trategy, where individuals are vaccinated based on their move- 

ent relative to public places without the need for detailed con- 

act tracing information. Therefore, detecting communities based 

n the natural movement of people can be more effective for coor- 

inating NPIs and vaccination campaigns, compared to relying on 

redefined geopolitical boundaries or at a national level. 

Despite the importance of identifying coordination groups to 

ombat a pandemic based on the natural movement of people, 

tudies about finding the optimal set of locations or jurisdictions 

o create such groups are limited. In this study, we focus on 

dentifying optimal coordination communities for applying NPIs 

nd deploying vaccination strategies based on population mobility. 

o this end, a new mixed-integer quadratic-programming model 

ased on the modularity maximization problem is developed. The 

odel uses population mobility to identify highly interconnected 

ocations and joins them to form coordination communities. The 

odel guarantees that coordination communities are geographi- 

ally contiguous, an important factor for effective coordination. It 

lso allows for adjusting the number of jurisdictions assigned to 

 coordination community based on the policymakers’ preferences. 

o our knowledge, such a community detection model based on 

he natural movement of people that guarantees the contiguity of 

ommunities does not exist. Due to the complexity of the prob- 

em, we develop a column-generation algorithm to solve the prob- 

em. The column-generation approach is coupled with an iterative 

ricing procedure to improve its performance. A heuristic algo- 

ithm is also developed to find high-quality initial solutions for the 

ixed-integer quadratic programming model and the column gen- 

ration algorithm. In particular, we find that using the proposed 

euristic algorithm as an initial solution can significantly boost 

he performance of the commercial solver to solve the mixed- 

nteger quadratic programming model. The computational results 

how that the proposed solution methods are capable of efficiently 

olving instances of various sizes. 

The remainder of this paper is structured as follows. The the- 

retical background is presented in Section 2 . Section 3 presents 

he problem description and model formulation, and the column- 

eneration algorithm is described in Section 4 . We apply the model 

nd algorithms to identify coordination communities using U.S. 

obility data in Section 5 and present a case study in Section 6 .

inally, Section 7 summarizes our findings and provides future re- 

earch directions. 
100 
. Theoretical background 

In the search for optimal pandemic management, it has be- 

ome clear that policy coordination across agencies and levels of 

overnment is necessary ( Holtz et al., 2020 ). From the infectious 

isease epidemiological viewpoint, existing geopolitical or admin- 

strative borders are entirely arbitrary, as viruses can easily spread 

cross cities, counties, states, and countries. Using commuting data, 

aroze, Neumayer and Plümper (2021) show the spread of COVID- 

9 is spatially dependent across local districts in England be- 

ween March and June of 2020. Fajgelbaum, Khandelwal, Kim and 

chaal (2020) argue that spatially differentiated lockdowns can be 

ubstantially better economically compared to blanket lockdown 

rders. Furthermore, studies have shown that, because of mis- 

atches between administrative structure and optimal governance, 

xisting jurisdictional boundaries can act almost as a barrier to 

ey elements of effective pandemic management (e.g., Ki, Kwak & 

ong, 2020 ), and Trein, Biesbroek, Bolognesi and Meyer (2021) sug- 

est that policy coordination and integration should consider such 

pecific context. Examining the patterns of population movement, 

ffectively captured by mobile phone data, can reveal coordination 

ones for optimized pandemic policy ( Glaeser, Gorback & Redding, 

020 ; Holtz et al., 2020 ). 

The problem of identifying optimal coordination zones based on 

he natural movement of people is grounded on two independent 

ut connected streams of research: community detection in com- 

lex networks and districting problems. Table 1 summarizes the 

elevant prior studies and highlights the key themes and charac- 

eristics of these two streams. 

Community detection aims to identify sub-networks or lo- 

al communities based on relationships/interactions between the 

odes such that nodes within the same community are more con- 

ected among themselves than with nodes in other communities 

 Newman, 2006 ; Newman & Girvan, 2004 ). Identifying local com- 

unities reveals how a complex network is organized and can help 

ecision-makers to focus on the sub-regions ( Fortunato & Hric, 

016 ), because sub-networks often have different properties at the 

ocal level than at the level of the entire network ( Newman & Gir- 

an, 2004 ). In practice, the community detection problem and its 

xtensions have been used in different fields, including detecting 

artitions of the human brain ( Ashourvan, Telesford, Verstynen and 

assett, 2019 ), and maximizing the spread of influence in social 

etworks in viral marketing ( Huang, Shen, Meng & He, 2019 ). 

Despite its wide applications, a precise or universally accepted 

efinition of what creates a community is not available, and as 

 result, a variety of methods for detecting and measuring the 

uality of communities has been proposed, tested, and imple- 

ented ( Fortunato & Hric, 2016 ; Rosvall, Delvenne, Schaub & Lam- 

iotte, 2019 ). The most popular methodologies for solving commu- 

ity detection problems are optimization-based models, in which 

ommunities are identified based on maximizing a quality func- 

ion ( Lancichinetti & Fortunato, 2009 ; Fortunato & Hric, 2016 ). The 

odularity function, developed by Newman and Girvan (2004) , 

valuates weights of links between nodes inside the same com- 

unities relative to weights of links between nodes in the sep- 

rate communities and is among the most commonly used in 

uch optimization-based models for community detection. Because 

odularity maximization is hard ( Brandes, Delling, Gaertler & 

agner, 2006 ), several algorithms have been proposed to effi- 

iently detect communities in a large network based on modular- 

ty optimization ( Blondel, Guillaume, Lambiotte & Lefebvre, 2008 ; 

lauset, Newman & Moore, 2004 ; Traag, Waltman & van Eck, 2019 ). 

ecently, modularity density is introduced to remedy modularity 

ptimization’s limitation of resolution limit in very large networks 

y normalizing the weights considering the number of nodes in 
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Table 1 

Characteristics of relevant studies on community detection and districting problems. 

References Problem Modularity 

function 

Contiguity Interactions 

between 

nodes 

Solution approach Application 

Aloise et al. (2010) Community detection 
√ × √ 

Column-generation 

algorithm 

Generic 

Ashourvan et al. (2019) Community detection × × √ 

Heuristic Partitioning human 

brain 

Bergey, Ragsdale and Hoskote (2003a) , 

2003b ) 

Districting × √ × Heuristic Electrical power 

districting 

Blondel et al. (2008) Community detection 
√ × √ 

Heuristic (Louvain 

algorithm) 

Generic problem 

Bozkaya et al. (2003) Districting × √ × Heuristic Political districting 

Camacho-Collados, Liberatore and 

Angulo (2015) 

Districting × √ × Heuristic Police districting 

Caro et al. (2004) Districting × √ × Commercial solver School districting 

Carvajal et al. (2013) Districting × √ × Branch-and-cut 

algorithm 

Forest Planning 

Clauset et al. (2004) Community detection 
√ × √ 

Heuristic Generic 

Costa (2015) Community detection 
√ ∗ × √ 

Commercial solver Generic 

Dugošija, Savi ́c and Maksimovi ́c 

(2020) 

Districting × √ × Commercial solver Political districting 

Farughi, Tavana, Mostafayi and Santos 

Arteaga (2020) 

Districting × √ × Heuristic Healthcare districts 

Fryer Jr & Holden (2011) Districting × × × Heuristic Political districting 

Han et al. (2020) Districting × √ × Commercial solver Machinery 

maintenance 

Haase and Müller (2014) Districting × √ × Column-generation 

algorithm 

Salesforce 

deployment 

Hess et al. (1965) Districting × × × Heuristic Political districting 

Hojati (1996) Districting × √ × Lagrangian relaxation Political districting 

Huang et al. (2019) Community detection × × √ 

Heuristic Viral marketing 

Kim (2018) Districting × √ × Heuristic Political districting 

Latapy and Pons (2004) Community detection × × √ 

Heuristic (Walktrap 

algorithm) 

Generic 

Li et al. (2008) Community detection 
√ ∗ × √ 

Commercial solver Generic 

Newman and Girvan (2004) Community detection 
√ × √ 

Heuristic Generic 

Newman (2006) Community detection 
√ × √ 

Heuristic Generic 

Önal et al. (2016) Districting × √ × Commercial solver Conservation 

management 

Ricca and Simeone (2008) Districting × √ × Heuristic Political districting 

Ruktanonchai et al. (2020) Community detection 
√ × √ 

Heuristic (Walktrap 

algorithm) 

Pandemic response 

Santiago and Lamb (2017) Community detection 
√ ∗ × √ 

Heuristic Generic 

Sato and Izunaga (2019) Community detection 
√ ∗ × √ 

Branch-and-price 

algorithm 

Generic 

Shirabe (2005) Districting × √ × Commercial solver Generic 

Shirabe (2009) Districting × √ × Commercial solver Generic 

Shirazi, Albadvi, Akhondzadeh and 

Teimourpour (2020) 

Community detection 
√ × √ 

Heuristic (Louvain 

algorithm) 

Physicians’ 

specialty 

Traag et al. (2019) Community detection 
√ × √ 

Heuristic (Leiden 

algorithm) 

Generic 

Wang, Zheng, Qian and Liang (2017) Community detection × × √ 

Heuristic Protein complexes 

Zhang, Liu, Li and Wen (2020) Community detection 
√ × √ 

Heuristic Drug discovery 

This study Community detection 
√ √ √ 

Column-generation 

algorithm 

Pandemic response 

∗ Modularity density function is considered as the objective function instead of the original modularity function. 
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ach community ( Costa, 2015 ; Li, Zhang, Wang & Chen, 2008 ; 

antiago & Lamb, 2017 ). 

Community detection based on modularity maximization has 

een studied extensively in the literature ( Aloise, Cafieri, Caporossi 

 Liberti, 2010 ; Traag et al., 2019 ). However, as highlighted in 

able 1 , such algorithms do not guarantee the physical conti- 

uity of nodes in proposed communities, an important factor 

or policy coordination for pandemic management. As an exam- 

le, Ruktanonchai et al. (2020) applied the Walktrap algorithm, a 

euristic developed by Latapy and Pons (2004) , to detect commu- 

ities in Europe based on the movement among subdivisions of 

ountries (NUTS3, or Nomenclature of Territorial Units for Statis- 

ics). One of the identified subcommunity based on mobility pat- 

erns includes Estonia, Iceland, two areas of Italy, and part of 

reece, while another subcommunity includes Slovenia, Sweden, 
101 
nd part of Croatia. Such mobility-based communities are scattered 

n different regions and countries, making the coordination of pan- 

emic policies impractical, if not impossible. 

Ignoring contiguity of communities in the community detection 

roblem may result in a community structure with not only the 

nclusion of nodes that are far apart but, perhaps more important, 

lso the exclusion of nodes that have a slightly lower degree of 

onnection but are in the same region. In reality, NPI policy coor- 

ination among connected jurisdictions with a high level of move- 

ent is useful in combating pandemics, while long-distance move- 

ents among jurisdictions, even frequently, require different poli- 

ies such as quarantine. For example, in response to the COVID- 

9 surge in June 2020, three contiguous states—New York, New 

ersey, and Connecticut—coordinated their nonpharmaceutical in- 

erventions while jointly implemented 14-day quarantine require- 
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Fig. 1. A community detection example without considering contiguity constraint. 
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ents for visitors coming to the tri-state region from states with 

igh COVID-19 infection rate ( CBS New York, 2020 ). To further il- 

ustrate this issue, consider the fictitious case of 12 jurisdictions 

resented in Fig. 1 a. Assume that the movement between each pair 

f jurisdictions is 10, except for the following: movement between 

5 and 2), (5 and 4), and (5 and 12) is 100, and movement be-

ween (5 and 1) is 50. Applying the modularity maximization al- 

orithm to find zones of high level of intra-movement, we get two 

ommunities, as shown in Fig. 1 b. Although the movements and 

eography imply that jurisdictions 1, 2, 4, and 5 are inherently a 

ommunity, the simple modularity maximization assigns the dis- 

ointed jurisdiction 12 to the community with 2, 4, and 5 because 

f its strong connection to jurisdiction 5, while assigning jurisdic- 

ion 1 to a different community. This example shows that modu- 

arity maximization does not necessarily produce contiguous com- 

unity structure, which is important to NPI policy coordination. 

The issue of contiguity is treated extensively in the districting 

roblem, which refers to joining small areas (or units) to form 

arger areas (or districts) based on specific criteria. There is a wide 

ariety of applications for the districting problem in the litera- 

ure, such as political districting ( Bozkaya, Erkut & Laporte, 2003 ; 

arfinkel & Nemhauser, 1970 ; Hojati, 1996 ), school redistricting 

 Bulka, Carr, Jordan & Rheingans, 2007 ; Caro, Shirabe, Guignard & 

eintraub, 2004 ), designing compact and contiguous conservation 

eserves ( Önal, Wang, Dissanayake & Westervelt, 2016 ), and dis- 

ricting of service regions for agricultural machinery maintenance 

 Han, Hu, Mao & Wan, 2020 ). As each specific application of the

istricting problem is unique with its own objectives, several crite- 

ia and subsequently mathematical models and solution algorithms 

ave been developed. The political districting problem, which is 

he original application of the districting problem, aims to divide a 

iven territory into a number of districts, where a number of seats 

re assigned to each district usually based on its population ( Ricca 

 Simeone, 2008 ; Ricca, Scozzari & Simeone, 2013 ). Several crite- 

ia, such as compactness, which refers to how odd the shape of a 

istrict is, have been proposed to achieve fairness and avoid gerry- 

andering in political districting ( Ricca & Simeone, 2008 ; Shirabe, 

009 ). In their seminal paper, Hess, Weaver, Siegfeldt and Zitlau 

1965) , for example, use the sum of squared distances from each 

erson to the center of his/her assigned district as a measure of 

ompactness. They modeled the political districting problem as a 

ocation-allocation problem without considering the contiguity of 
102 
istricts and proposed an iterative heuristic procedure for solv- 

ng the model. Other studies define compactness in very differ- 

nt ways, such as the distance between persons within the same 

istrict compared to the minimum possible distance ( Fryer Jr & 

olden, 2011 ) and the closeness between selected areas or units 

 Kim, 2018 ). 

Districting problems often require solutions with geographical 

ontiguity. A district is contiguous when one can travel between 

ny two points in the district without going outside of it. The 

eographical contiguity constraint adds to the complexity of the 

istricting problem and requires additional treatments to simple 

ocation-allocation. Shirabe (2005 and 2009 ), for the first time, use 

he network flow technique to mathematically formulate the con- 

iguity constraint, and this technique has also been used in other 

pplications such as sales team deployment ( Haase & Müller, 2014 ) 

nd service maintenance networks ( Han et al., 2020 ). More re- 

ently, Carvajal, Constantino, Goycoolea and Weintraub (2013) de- 

loy the notion of node-cut set to mathematically formulate the 

ontiguity constraint in a harvest scheduling problem with the aim 

f maximizing profits. However, as shown in Table 1 , these tech- 

iques are designed strictly for solving districting problems, and, 

o our knowledge, no models have been developed to identify con- 

iguous communities based on complex relationships between ver- 

ices in a network. The current study attempts to address this re- 

earch gap and applies the community detection model based on 

odularity maximization to the movement of people, subject to 

he geographic contiguity and cardinality (i.e., size of the districts) 

onstraints in the districting problems. As such, our study con- 

ributes to the body of knowledge by extending the existing stud- 

es from two independent streams of research to solve a relevant 

roblem of community detection with contiguity constraint that 

equires theories from both. 

In addition, both community detection and districting prob- 

ems are difficult problems to solve ( Blondel et al., 2008 ; Haase & 

üller, 2014 ; Santiago & Lamb, 2017 ). In this study, we present a 

olumn-generation algorithm that extends previous exact methods 

e.g., Aloise et al., 2010 , and Sato & Izunaga, 2019 ) by incorporat-

ng contiguity and cardinality constraints while maximizing modu- 

arity, coupled with an iterative pricing procedure, to improve the 

omputational performance of the algorithm. We also propose a 

ast heuristic algorithm to find high-quality solutions to initiate the 

olumn-generation procedure. In so doing, our study contributes to 
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Fig. 2. A flow representation of a contiguous district ( Shirabe, 2009 ). 
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S  
he development of computational methods for related problems, 

s the results show that the solution methods can efficiently solve 

nstances of various sizes. 

. Problem description and formulation 

We consider a geographic region , such as a country, that is di- 

ided into a number of mutually exclusive and collectively ex- 

austive spatial units (SUs), such as zip codes or counties. People 

requently move within and between these SUs for various pur- 

oses, such as work, shop, leisure, etc. To reduce the spread of dis- 

ase during a pandemic, the SUs are responsible for applying tar- 

eted NPIs only within their borders. However, as disease spread 

oes not follow the geographic boundaries, the SUs may be bet- 

er off coordinate their effort s with other close-by SUs. The goal 

ere is to identify communities of highly interconnected SUs within 

he geographic region boundaries based on the natural movement 

f people. To do so, our objective is to maximize network mod- 

larity ( Newman & Girvan, 2004 ), which is a function of peo- 

le’s mobility between SUs. In order to facilitate policy coordina- 

ion, the communities should be contiguous, and the number of 

Us that constitute a community can be constrained. A commu- 

ity is contiguous when one can travel between any two points 

ithin the community without going outside of it. We call this 

roblem the modularity maximization with contiguity constraints 

MCC). 

To formally define the MCC, 1 let us represent a geographic re- 

ion by a weighted connected undirected graph G = ( V, E ) , where 

 and E respectively denote the set of vertices and edges. A ver- 

ex i ∈ V represents a SU. Then, the modularity of the geographic 

egion, denoted by M, is calculated using Eq. (1) : 

 = 

1 

2 m 

∑ 

i, j∈ V 

[
w i j −

k i k j 

2 m 

]
δ
(
d i , d j 

)
(1) 

here: 

 = 

1 

2 

∑ 

i, j∈ V 
w i j (2) 

 i = 

∑ 

j∈ V 
w i j (3) 

In Eq. (1) , w i j represents the weight of the edge between ver- 

ices i ∈ V and j ∈ V (i.e., the mobility between i and j), d i de-

otes the community to which vertex (or SU) i ∈ V is assigned, and

( d i , d j ) equals 1 if d i = d j and 0 otherwise. Eqs. (2) and ( 3 ) cal-

ulate auxiliary parameters m and k i , where m is the total weights 

f the undirected graph, and k i is the sum of the weights of the

dges attached to vertex i . 

We define and formulate contiguity using the flow analogy pre- 

ented by Shirabe (2005) . Contiguity can be defined in terms of a 

raph where each SU is a vertex and edges connecting each pair 

f SUs represent adjacency. Using this view, contiguity is equiv- 

lent to the notion of connectedness in graph theory. Therefore, 

ne can check contiguity (connectedness) of a set of SUs (or a sub- 

etwork), S, by verifying the following condition: Starting from an 

rbitrary SU (vertex) in S, one can reach every other SU in S by 

ollowing a sequence of adjacency edges. To check the contiguity 

ondition, Shirabe proposed finding paths between every SU and 

ne specific SU (named sink) in S, which is similar to the move- 

ent of fluid from multiple sources to a single sink in a connected 

etwork. 
1 We present a summarized list of notations in Appendix A within Supplementary 

aterials. 
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In order to apply this analogy in this study, a community is in- 

erpreted as a sub-network of the SUs assigned to that commu- 

ity, in which one SU is a sink and every other SU provides one 

nit of supply. For a community to be contiguous, the supply sent 

rom each SU must ultimately arrive at the sink by only passing 

hrough the SUs within the sub-network. Fig. 2 illustrates the idea. 

he solid circles and dashed circles represent the assigned and 

on-assigned SUs to the community, respectively. The bold circle 

s designated as the sink, and the numbers on the arrows repre- 

ent the flow. In this way of formulation, how each unit of supply 

ravels in the sub-network is not important. Instead, we are con- 

erned whether each supply unit can ultimately reach the sink at 

east in one way. It is intuitively apparent that a disconnected sub- 

etwork requires more than one sink to consume all supply units, 

herefore violating the contiguity condition. 

To mathematically formulate the contiguity based on the flow 

nalogy, let binary decision variable x id equal 1 iff SU i ∈ V is as- 

igned to community d ∈ D , continuous decision variable y i jd deter- 

ine the flow from SU i ∈ V to SU j ∈ V within community d ∈ D ,

nd binary decision variable q id equal 1 iff SU i ∈ V is designated as 

he sink for community d ∈ D . Let A i denote the set of immediate

onnected vertices to vertex i ∈ V , i.e., A i = { j ∈ V | { i, j } ∈ E} . Then,

he contiguity constraint is expressed as a set of linear equations 

s follows: 
 

iεV 

q id ≤ 1 , ∀ d ∈ D, (4) 

 

iεV 

x id ≤ C 
∑ 

iεV 

q id , ∀ d ∈ D, (5) 

 

jεA i 

y i jd −
∑ 

jεA i 

y jid ≥ x id − C q id , ∀ i ∈ V, ∀ d ∈ D, (6) 

 

jεA i 

y jid ≤ ( C − 1 ) x id , ∀ i ∈ V, ∀ d ∈ D, (7) 

 id , q id ∈ { 0 , 1 } , ∀ d ∈ D, ∀ i ∈ V, (8) 

 jid ≥ 0 , ∀ d ∈ D, ∀ i ∈ V, j ∈ A i . (9)

Constraints (4) ensure that at most one sink is assigned to each 

ommunity. Constraints (5) ensure that the cardinality of selected 

Us in a community is less than or equal to C , the maximum al-

owable number of SUs to constitute a community, and that the 

ink of a community is selected from the pool of SUs assigned to 

hat community (one SU should be sink in each community un- 

ess no SU can be assigned to that community). Constraints (6) 
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ndicate that the net out-flow from an SU assigned to a commu- 

ity is positive unless that SU is designated to be the sink of that 

ommunity. The two terms on the left-hand side of this constraint 

alculate the total outflow and total inflow of SU i , respectively. Ac- 

ordingly, if SU i is assigned to community d and not a sink (i.e., 

 id = 1 and q id = 0 ), then SU i must have a positive supply (posi-

ive net outflow), which is the primary purpose of the constraint. 

f SU i is assigned to community d and it is a sink (i.e., x id = 1 and

 id = 1 ), then SU i can have a positive demand (negative net out- 

ow), with a maximum amount of C -1. Constraints (7) ensure that 

here is no inflow into any SU that does not belong to that com- 

unity (where x id = 0 , then y jid = 0 ), and that the total inflow to

he SUs assigned to each community does not exceed C -1. Since 

he net outflow from an SU assigned to a community is positive 

unless that SU is designated to be the sink of that community), 

he constraints ensure that supply from each SU in the commu- 

ity reach the sink, and therefore the contiguity condition of each 

ommunity holds. Finally, constraints (8) and (9) show the type of 

ecision variables. 

The objective of the MCC is to find the set of communities 

 , where any community d ∈ D is a collection of contiguous ver-

ices (SUs). The MCC is formulated as a standard mixed-integer 

uadratic-programming model ( MIQP ): 

aximize M = 

1 

2 m 

∑ 

d∈ D 

∑ 

i, jεV 

[
w i j −

k i k j 

2 m 

]
x id x jd (MIQP-1) 

ub ject to : 
∑ 

dεD 

x id = 1 , ∀ i ∈ V, (MIQP-2) 

nd constraints (4–9). 

Objective function (MIQP-1) maximizes total modularity. The 

uadratic terms x id x jd in the objective function can be easily lin- 

arized through standard McCormick transformations ( McCormick, 

976 ). Constraints (MIQP-2) assign each SU to exactly one commu- 

ity. 

. Solution methods 

Commercial solvers such as GUROBI 2 and CPLEX 

3 are available 

o solve MIQP . In addition, we present a heuristic and a column- 

eneration algorithm to solve the MCC. 

.1. The heuristic algorithm 

The heuristic algorithm is designed in three phases: new com- 

unity creation, community expansion, and a local search for solu- 

ion improvement. In the first phase of the algorithm, a new com- 

unity is created by randomly choosing a SU that does not belong 

o existing communities. The selected SU is assigned to the new 

ommunity as the first member. The size of the new community 

s determined by randomly selecting a number between 2 and C 

sing a discrete uniform distribution. 

The second phase expands the community created in the first 

hase by selecting a SU from the subset of SUs that are not 

ssigned to any communities and are adjacent to at least one 

U within the community. If the subset of adjacent SUs without 

ny communities has more than one member, the SU with the 

trongest connection to the community, i.e., with the highest sum 

f mobility with community members is selected. Note that the 

et of adjacent SUs is considered explicitly in the algorithm to pre- 

erve the contiguity of each community. This set of adjacent SUs 

s updated when a new SU is added to the community. Expansion 
2 https://www.gurobi.com/ . 
3 https://www.ibm.com/products/ilog- cplex- optimization- studio . 
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f the community continues while the set of adjacent SUs is not 

mpty, and the size of the community is less than the size deter- 

ined in the first phase. The process of creating new communi- 

ies (phase one) and expanding them (phase two) is repeated until 

ll SUs are assigned to a community. Then, the modularity of con- 

tructed communities is calculated based on Eq. (1) . 

After creating an initial solution using the first two phases, a lo- 

al search is applied to improve the quality of the solution. In this 

hird phase, for each SU i , a new modularity value is calculated for 

oining i to SU j if the following three conditions are satisfied: (1) 

he size of the community that j belongs to is less than C , (2) i

s adjacent to the community of SU j , and (3) removing i from its

urrent community does not affect contiguity of its original com- 

unity . If the new modularity value is greater than the current 

alue, SU i is placed to the community of SU j, and the modularity 

alue is updated. This process is repeated for all SUs over and over 

ntil no improvement can be achieved. 

Next, the algorithm repeats this process (phases one to three) 

or a fixed number of times ( maxIterations ) and returns the solu- 

ion with the highest modularity value. The pseudo-code of the 

euristic algorithm is presented in Appendix B. 

.2. The column-generation algorithm 

We present a column-generation algorithm that is tailored to 

olve an exponentially sized reformulation of MIQP . Let � rep- 

esent the set of all possible configurations . A configuration c ∈ �

s a tuple 〈 V c , θc 〉 , where V c denotes a subset of contiguous SUs 

 V c ⊆ V ) and | V c | ≤ C. The second element, θc , is the modularity 

alue of configuration c ∈ �, i.e.: 

c = 

1 

2 m 

∑ 

i, j∈ V c 

[
w i j −

k i k j 

2 m 

]

We denote the set of configurations that include SU i ∈ V by �i .

et binary decision variable χc equal 1 iff configuration c ∈ � is 

elected. The MCC can alternatively be formulated as the following 

xponentially sized model (henceforth referred to as EM ): 

aximize M = 

∑ 

c∈ �
θc χc (EM-1) 

ubject to: ∑ 

∈ �i 

χc = 1 , ∀ i ∈ V, (EM-2) 

c ∈ { 0 , 1 } , c ∈ � . (EM-3) 

Objective function (EM-1) maximizes the total modularity for 

he whole geographic region. Constraints (EM-2) ensure that each 

U is assigned to exactly one community. Each selected configu- 

ation in the solution of EM indicates the set of SUs that consti- 

ute a community. It is straightforward to show that MIQP and EM 

re equivalent. Since | �| exponentially grows with the number of 

Us in an instance, enumerating all possible configurations is im- 

ractical. Hence, we dynamically generate columns (configurations) 

hrough column-generation ( Gilmore & Gomory, 1961 ). 

A column-generation algorithm is implemented on the linear 

rogramming (LP) relaxation of the exponentially sized model that 

ncludes a subset of the columns, referred as the restricted mas- 

er problem (RMP). Then new columns with positive reduced costs 

re dynamically generated using a pricing problem (in the case of 

aximization). The algorithm iterates between the pricing problem 

nd the RMP and terminates if no columns with positive reduced 

osts can be found. It is shown that the LP relaxation of RMP that 

s solved through column generation and LP relaxation of the mas- 

er problem (the exponential model with all possible columns) are 

https://www.gurobi.com/
https://www.ibm.com/products/ilog-cplex-optimization-studio
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Fig. 3. The column-generation algorithm. 
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qual. In the case of integer-programming models with many vari- 

bles, a branch-and-price algorithm ( Barnhart, Johnson, Nemhauser 

 Vance, 1998 ) can be used where a column generation is solved 

n each node of the branch-and-bound algorithm ( Lawler & Wood, 

966 ). The column-generation algorithm used to solve our problem 

s summarized in Fig. 3 . 

For the MCC, the RMP is similar to EM, except it is solved over 

 subset of configurations ( ̃  � ⊆ �). Here we only solve the LP re- 

axation of the RMP on the root node of the branch-and-bound 

ree using the column-generation algorithm. When no additional 

olumns can be added, we solve RMP to get an integer solution. 

s discussed in Section 5 , the computational experiments, in many 

ases, we are able to prove optimality without branching. For gen- 

rating the feasible initial set of columns, we use the heuristic al- 

orithm. We also run MIQP for a few seconds to seek additional 

mprovements in the initial feasible solution and upper bounds be- 

ore starting the column-generation procedure. 

To find improving columns for the LP relaxation of the RMP, we 

se a pricing problem. Let γi be the dual values associated with 

onstraints (EM-2) in the RMP. The pricing problem is similar to 

IQP , and it is solved to find a contiguous configuration. Let binary 

ecision variable x i equal 1 iff spatial unit i ∈ V is selected, contin- 

ous decision variable y i j determine the flow from SU i ∈ V to SU 

j ∈ V , and binary decision variable q i equals 1 iff SU i ∈ V is desig-

ated as the sink. The pricing problem ( P ) is: 

aximize 
1 

2m 

∑ 

i , j εV 

[
w ij −

k i k j 

2m 

]
x i x j −

∑ 

i ∈ V 
γi x i (P-1) 

ubject to: 

 i ≤ x i , ∀ i ∈ V, (P-2) 

 

iεV 

q i ≤ 1 (P-3) 

 

iεV 

x i ≤ C 
∑ 

iεV 

q i , (P-4) 

 

jεA i 

y i j −
∑ 

jεA i 

y ji ≥ x i − C q i , ∀ i ∈ V, (P-5) 

 

jεA i 

y ji ≤ ( C − 1 ) x i , ∀ i ∈ V, (P-6) 

 i , q i ∈ { 0 , 1 } , ∀ i ∈ V, (P-7) 

 ji ≥ 0 , ∀ i ∈ V, j ∈ A i . (P-8) 
105 
The objective function (P-1) maximizes reduced cost for the 

ewly generated column. Similar to the constraints in MIQP , Con- 

traints (P-2) to (P-8) enforce contiguity of the configuration gen- 

rated by the pricing problem and ensure that the cardinality of 

he generated configuration is at most C (similar to Eqs. (4) to ( 9 )).

ur computational experiments show that commercial solvers can 

ptimally solve the pricing problem quickly. 

To enhance the performance of the column-generation algo- 

ithm, instead of adding a single new column ( newColumn ) in ev- 

ry iteration of the algorithm, we use an iterative pricing pro- 

edure (IPP) to generate multiple compatible columns, which are 

hose that can simultaneously be selected by RMP. This procedure 

s summarized in the IPP Algorithm below. 

IPP Algorithm 

Set V ′ = V ; 

Set newColumn = FALSE; 

While | V ′ | > 0 : 

Solve P over SUs in V ′ ; 
If v ∗(P ) > 0 : 

Add the set of selected SUs ( X ∗) to ˜ �; V ′ ← V ′ \ X ∗; newColumn = TRUE;

If newColumn == TRUE and | V ′ | > 0 : 

Solve P over SUs in V ′ ; 
If v ∗(P ) > 0 : 

Add the set of selected SUs ( X ∗) to ˜ �; and V ′ ← V ′ \ X ∗; 

Else: 

Break; 

If newColumn == FALSE: 

Break; 

In the IPP Algorithm, v ∗(P ) denotes the optimal objective value 

f the pricing problem. The IPP Algorithm indicates that in each it- 

ration of column generation procedure, after finding the column 

ith the most positive reduced cost, we remove the SUs that are 

elected by the pricing problem and resolve the pricing problem. 

his procedure continues until no SUs are left or no new column 

ith positive reduced cost is found. Through this process, we en- 

ure not to add the columns that are already added to set ˜ �. The

PP Algorithm helps to find high-quality feasible integer solutions 

ore quickly by adding multiple compatible columns with posi- 

ive reduced costs that may be simultaneously selected through 

he restricted master problem. In the next section, we highlight 

he advantages of coupling the IPP Algorithm with the column- 

eneration algorithm for this problem. 

. Computational experiments 

To examine the efficiency of the proposed algorithms, we con- 

uct computational experiments of real mobility data (from Cam- 

er System, https://cambersystems.com ) in the U.S. We also use 

https://cambersystems.com
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Table 2 

Average modularity for real instances by each algorithm. 

Algorithm 

| V | C H MIP MIP + CG1 CG2 

< 

70 

5 0.397 0.411 0.411 0.411 0.411 

10 0.426 0.441 0.441 0.440 0.441 

15 0.422 0.443 0.443 0.443 0.443 

≥
70 

5 0.503 0.495 0.530 0.535 0.535 

10 0.589 0.551 0.599 0.606 0.608 

15 0.602 0.571 0.615 0.608 0.620 

Table 3 

Average modularity over synthetic instances by each algo- 

rithm. 

Algorithm 

| V | C H MIP MIP + CG1 CG2 

< 

70 

5 0.400 0.421 0.425 0.434 0.434 

10 0.436 0.444 0.454 0.465 0.469 

15 0.407 0.453 0.460 0.462 0.473 

≥
70 

5 0.513 0.505 0.565 0.587 0.589 

10 0.604 0.524 0.639 0.640 0.669 

15 0.627 0.565 0.657 0.629 0.677 
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 set of synthetic instances as a robustness check for the perfor- 

ance of our algorithms. 

States consisting of 5 to 254 counties (as SUs) are included 

n these experiments, with each state representing an instance. 

very instance contains mobility information between all county 

airs and an adjacency matrix to specify the neighbors for each 

ounty ( A i ). To eliminate the possibility that counties always hav- 

ng higher mobility with adjacent counties compared to remote, 

on-contiguous counties and thus make the introduction of conti- 

uity and cardinality constraints more challenging while maximiz- 

ng modularity, we create synthetic instances based on randomly 

enerated mobility data between counties (by random shuffling of 

he mobility matrix). Overall, in our experiments, we use 36 real 

nstances and 36 synthetic instances. 4 We also perform sensitivity 

nalyses by changing parameter C , the maximum number of coun- 

ies that constitute a community. We consider C = {5, 10, 15}. For 

oth real and synthetic instance sets, we label an instance as small 

f the number of counties ( | V | ) in its corresponding state is less

han 70 ( | V | < 70 ), and we label it as large if | V | ≥ 70 . For both

ynthetic and real instance sets, we have 20 and 16 small and large 

nstances, respectively. 

All the experiments are performed on a standard personal 

omputer. 5 We use GUROBI 9.1.1 as the standard mixed-integer 

quadratic) programming solver to directly solve the optimization 

odel and as the oracle used within the column-generation algo- 

ithms. We test the following five algorithms: 

1. H : the heuristic algorithm described in Section 4.1 , 

2. MIP : directly solve MIQP with GUROBI, 

3. MIP + : directly solve MIQP with GUROBI with the solution 

gained from the heuristic algorithm as an initial solution, 

4. CG1 : column-generation algorithm by solving the pricing prob- 

lem only once in each iteration, and, 

5. CG2 : column-generation algorithm that is coupled with the IPP 

Algorithm. 

We also should note that, since the coefficients in the objec- 

ive functions (MIQP-1) and (P-1) are very small in our datasets, 

o avoid numerical issues that may arise as a result of commercial 

olvers optimality tolerance gap, we eliminate the constant term 

1 
2 m 

from the objective function and multiply it back to the objec- 

ive value after the model is solved. In comparing the performance 

f algorithms, we set a time limit of 60 min for solving each in-

tance by MIP , MIP + , CG1 , and CG2 . The value of maxIterations pa-

ameter in the heuristic algorithm is set to 20, selected based on 

he trial-and-error approach. The solution time for the heuristic al- 

orithm H is negligible (less than 30 s). 

.1. Solution quality 

Tables 2 and 3 summarize the average of best solutions found 

y each algorithm. 

As can be seen in Table 2 , for small instances, MIP, MIP + , CG1

nd CG2 show similar performance in finding feasible solutions. 

owever, for large instances, CG2 outperforms the other algorithms 

ith MIP being the worst. The heuristic algorithm, H, finds solu- 

ions that are on average 3.9% lower than our best performing al- 

orithm, CG2 . Particularly, we see that for large instances, H is able 
4 Due to contractual agreements with the data provider, we are not able share 

he real and synthetic instances (that are generated by shuffling movements of the 

eal instances). For replication purposes, we generated a random set of synthetic in- 

tances that are available at https://github.com/mohsen- emadikhiav/MCC- Instances. 

it . The data generation procedure and summary of the results for these second set 

f synthetic instances are presented in Appendix C. The codes are available upon 

equest. 
5 Intel(R) Core (TM) i7-9700 CPU @ 3.60GHz with 32.0 GB RAM and using 1 

hread. 
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o find better solutions than MIP . We also find significant improve- 

ents in the solutions found by MIP + compared to MIP . Specif- 

cally, for large instances, we observe that MIP + is able to find 

olutions with 7.8% higher modularity, highlighting the benefits of 

enerating initial solutions using H for GUROBI to solve MIQP . Note 

hat modularity values closer to 1.0 indicate a strong community 

tructure. In practice, modularity is often in the 0.3 – 0.7 range for 

ost networks ( Newman & Girvan, 2004 ). 

Similar to real data, for the synthetic instances ( Table 3 ), we 

nd that CG2 outperforms other algorithms. Specifically, for large 

nstances we observe than CG2 is able to find solutions with 17.6%, 

.8%, and 4.1% higher modularity compared to MIP , MIP + , and CG1 ,

espectively. We also observe that for large instances, H outper- 

orms MIP with respect to the solution quality (e.g., 0.627 vs 0.565 

ith C = 15 .) We also see that MIP + finds solutions with 9% higher

odularity compared to MIP , highlighting the benefits of the pro- 

osed heuristic algorithm. 

.2. Computational performance of the algorithms 

We start this subsection by comparing the performance of CG1 

nd CG2 to analyze the impact of the proposed iterative pric- 

ng procedure (IPP). Table 4 summarizes these results. In Table 4 , 

solved indicates the number of instances for which the column- 

eneration algorithm terminates and reports valid bounds within 

he 1-hour time limit. Column tim e s represents the runtimes (in 

econds) averaged over only those instances that the column- 

eneration procedure terminates within the time limit. Column 

opt indicates the number of instances that are proved to be 

ptimal. Column M represents average modularity as defined by 

q. (1) . 

As we can see in Table 4 , for both datasets and by setting dif-

erent values of C , CG2 outperforms CG1 , highlighting that utiliz- 

ng the IPP boosts the performance of the column-generation algo- 

ithm. For real instances with C = 5, both CG1 and CG2 can solve 

5 out of 36 instances within 60 min with CG2 performing better 

n runtimes (averaged 201 s vs. 324 s). By increasing C , the per- 

ormance of both algorithms degrades since a larger C is creating a 

arger pool of columns with positive reduced costs that are dynam- 

cally generated through the pricing problem. Our results indicate 

hat with C = 15, CG2 is still able to solve 24 out of 36 instances

https://github.com/mohsen-emadikhiav/MCC-Instances.git
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Table 4 

Summary of the results of CG1 and CG2 for real and synthetic instances. 

CG1 CG2 

Data set C #solved time ∗s #opt M #solved time ∗s #opt M

Real 

Instances 

5 35 324 23 0.466 35 201 23 0.466 

10 25 687 21 0.514 34 816 27 0.515 

15 19 623 17 0.516 24 657 22 0.522 

Synthetic 

Instances 

5 33 840 17 0.502 34 552 17 0.503 

10 14 353 13 0.543 17 444 13 0.558 

15 13 130 12 0.536 15 475 12 0.564 

∗ Averaged over only those instances that the column-generation procedure terminates within 

time limit (in seconds). 

Table 5 

Summary of computational results for each algorithm on real instances. 

MIP MIP + CG1 CG2 

| V | C #opt time ∗ gap † #opt time ∗ gap † #opt time ∗ gap † #opt time ∗ gap † 

< 

70 

5 16 166 7% 16 214 8% 16 34 0.22% 16 30 0.22% 

10 18 450 4% 18 344 8% 17 181 0.11% 17 86 0.05% 

15 19 414 9% 19 291 6% 17 398 10% 18 226 0.02% 

≥
70 

5 0 – 43% 0 – 27% 7 771 5% 7 450 5% 

10 0 – 40% 0 – 17% 4 2412 27% 10 1714 9% 

15 1 3205 36% 0 – 15% 0 – 33% 4 2298 31% 

∗ Averaged over only those instances that are proved to be solved optimally (in seconds). 

† Averaged over only those instances that are not solved optimally (in percentage). 

Table 6 

Summary of computational results for each algorithm on synthetic instances. 

MIP MIP + CG1 CG2 

| V | C #opt time ∗ gap † #opt time ∗ gap † #opt time ∗ gap † #opt time ∗ gap † 

< 

70 

5 12 33 49% 12 59 43% 14 76 1% 14 55 2% 

10 12 15 45% 12 21 38% 13 128 48% 13 59 26% 

15 12 12 40% 12 20 33% 12 26 52% 12 17 39% 

≥
70 

5 0 – 91% 0 – 49% 3 1524 14% 3 898 9% 

10 0 – 158% 0 – 34% 0 – 42% 0 – 35% 

15 0 – 191% 0 – 30% 0 – 44% 0 – 29% 

∗ Averaged over only those instances that are proved to be solved optimally (in seconds). 

† Averaged over only those instances that are not solved optimally (in percentage). 
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22 of which are proved to be optimal) while CG1 solves 19 out of 

6 instances. 

The performance of both algorithms diminishes on synthetic 

nstances. This is expected as by randomization of mobility be- 

ween counties, finding contiguous communities with high mod- 

larity becomes more challenging. With C = 5, CG2 is still able to 

olve 34 out of 36 instances (vs. 33 with CG1 ), but when C is in-

reased to 15, only 15 out of 36 instances are solved within the 

ime limit (vs. 13 with CG1 ). The average run times, on the other 

and, are slightly worse for CG2 in synthetic instances when C is 

0 or 15, due to the long run time of the instance solved by CG2

hat CG1 could not solve. 

We also find that CG2 dominates CG1 in finding feasible solu- 

ions with higher modularity for all instance groups. CG1 strug- 

les to find better feasible solutions with increasing C . For instance, 

G1 finds solutions with a lower modularity value as C is increased 

rom 10 to 15 for synthetic instances (0.543 to 0.536). On the other 

and, CG2 can consistently improve feasible solutions as we in- 

rease C for both instance groups. 

Tables 5 and 6 summarize the computational results for MIP , 

IP + , CG1 , and CG2 on real and synthetic instances, respectively. 

olumn gap represents the optimality gap (in percentage), and is 

alculated as UB −LB 
LB × 100 , where UB and LB respectively denote 

he best upper bound and lower bound found by an algorithm. 

e calculate a trivial upper bound by solving the relaxation of lin- 

arized MIQP for those instances that CG1 and CG2 are not able to 
107 
rove an upper bound through column generation within the time 

imit, we use this trivial bound to calculate gap . Column time (in 

econds) is averaged over only those instances that are proved to 

e solved optimally. 

As can be seen in Table 5 , for the smaller instances, the per-

ormance of the algorithms for the number of instances that 

re solved optimally are similar, with MIP and MIP + performing 

lightly better. On the other hand, for those small instances that 

re not solved optimally, CG2 proves significantly lower optimal- 

ty gaps. As expected, increasing the size of the instances degrades 

he performance of the algorithms. For large instances, CG2 solves 

1 instances optimally, while MIP , MIP + , and CG1 , optimally solve 

nly 1, 0, and 11 instances, respectively. On the other hand, for 

arge instances, as C increases, CG1 and CG2 result in higher op- 

imality gaps compared to MIP + . This is mainly due to the weak 

rivial bound that we use for those instances for which the col- 

mn generation procedure does not terminate. We also see that 

IP + proves much lower optimality gaps compared to MIP , which 

s because MIP + is able to find higher quality feasible solutions 

ith the help of the heuristic algorithm. 

As can be seen in Table 6 , CG1 and CG2 perform better with

espect to the number of synthetic instances that are solved opti- 

ally. CG2 is able to prove much smaller optimality gaps on aver- 

ge. For example, on smaller instances with C = 5 , the optimality 

ap of CG2 is 2% on average, while MIP and MIP + respectively get 

9% and 43% average optimality gaps. The performance of CG2 de- 
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Table 7 

Summary statistics of movements between counties for the eight-week timeframe. 

Variable Obs. Mean Median Std. Dev. Skewness 

Movements between counties 1189 27,087 395 99,162 8.23 
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rades as C increases. For example, on larger instances, similar to 

he real instance, we see that the performance of all algorithms 

egrades significantly. CG1 and CG2 solve 3 instances to optimal- 

ty, while MIP and MIP + cannot solve any of the instances. We also 

nd that with a smaller C , CG2 proves a significantly smaller op- 

imality gap (9% on average) compared to other algorithms (e.g., 

9% for MIP + ). However, similar to other circumstances, the per- 

ormance of CG1 and CG2 degrades as C increases. 

Overall, among our algorithms, for both real and synthetic in- 

tances, we find that CG2 is performing better than the others in 

nding higher quality solutions in a shorter time while proving 

maller optimality gaps on average. The outperformance of CG2 is 

ore significant particularly for those instances with tighter car- 

inality constraints ( C = 5 ). Moreover, we let MIP run for 12 h on

he synthetic instances to better understand its behavior and high- 

ight the benefits of our proposed algorithms. The summary of our 

esults of these runs are presented in Appendix D. We find that 

he performance of MIP improves in finding higher quality solu- 

ions. However, with 12-hour execution, MIP still cannot perform 

s good as the proposed column-generation algorithms (that is ex- 

cuted for an hour) in terms of number of problems solved opti- 

ally and the average optimality gaps. 

. Analysis of modeling results 

To analyze the effect of the formulation of possible policy co- 

rdination zones for pandemic responses based on movement of 

eople across counties based on our model, we select two states 

n the U.S. that are highly interconnected by people movement and 

pply the proposed community detection model in Section 6.1 to 

dentify optimal coordination communities within these intercon- 

ected states. Then, in Section 6.2 , using COVID-19 data, we eval- 

ate if the identified communities are more suitable for the co- 

rdination of NPIs and vaccination programs than current state- 

ased policy making. Finally, Section 6.3 provides managerial in- 

ights from the case study. 

.1. Case study 

We consider counties within the two states of North and South 

arolina as the SUs in our model. There are 146 counties in to- 

al in these two states. The county adjacency data is downloaded 

rom the U.S. Census Bureau website. Based on the adjacency data, 

he counties in our sample have a minimum of 2 and a maximum 

f 9 neighbors, with an average of 5.44 and a median of 5 neigh-

ors. Next, we collected the movement of people between the 146 

ounties for the eight-week period between January 20 and March 

5, 2020. We specifically select this timeframe as it captures the 

atural movement of people prior to any major pandemic-related 

ockdown in the U.S. The mobility data, provided by Camber Sys- 

em ( https://cambersystems.com ) after signing a data usage agree- 

ent, is collected using aggregated and anonymous location data 

f smartphones. The number of movements (transitions) between 

ounties in the original dataset is reported in four-hour blocks and 

ncludes 208,470 records, with a total of 32,206,144 movements. 

s an example, Table E1 in Appendix E shows the movement from 

exington County, South Carolina, to Richland County, South Car- 

lina, on January 20, 2020. 

We calculated the total number of movements between each 

air of counties by aggregating data over the eight weeks. Table 7 
108 
rovides summary statistics of movements between counties for 

he eight-week timeframe. In summary, there are 1189 unique be- 

ween counties movements in the aggregated dataset. The aver- 

ge number of movements is 27,087, with a median of 395 and a 

tandard deviation of 99,162. The movement distribution is highly 

kewed to the right, which indicates that there are exception- 

lly strong connections among some counties (and thus good can- 

idates to establish local communities). The maximum number 

f movements is between Lexington County, South Carolina, and 

ichland County, South Carolina (1527,033 total transitions). Ta- 

le E2 in Appendix E summarizes the top 20 movements between 

ounties. All of the top 20 movements are within states borders, 

xcept for the movement between Mecklenburg County, North Car- 

lina, and York County, South Carolina, which is ranked as number 

. The top 20 inter-state movements are also reported in Table E3 

n Appendix E, where the ranking column shows the overall rank- 

ng in the dataset. 

The case study is solved using CG2 algorithm with different 

 values. For all scenarios, the algorithm was able to find near 

ptimal solutions (with less than 1% optimality gap) within 4 h. 

able 8 summarizes the results, and Fig. 4 shows counties in the 

ame community in the same color on a map. (List of all coun- 

ies and their assigned community with respect to C is reported in 

ppendix F). We first notice that the contiguity constraint is sat- 

sfied in all cases. When the number of counties in a community 

s limited to 5 ( C = 5), the model creates 35 communities with a

odularity value of 0.5952 and a minimum (maximum) number of 

ounties per community of 1 (5). In this case, the average number 

f counties per community is greater than 4, which indicates most 

ommunities contain the maximum number of counties allowed 

n the communities. Additionally, three communities have counties 

rom both states. When the number of counties in a community 

s limited to 10 ( C = 10), the model creates 23 communities with 

 modularity value of 0.7195. A large number of communities (11 

ut of 23) contain the maximum number of counties allowed, and 

here are six communities that contain only one county. When the 

umber of counties in a community is limited to 15 ( C = 15), the

odel creates 13 communities, and the modularity value is 0.7411. 

The modularity value increases with increasing C initially, but 

nce an optimal solution is reached (in this case, where the largest 

ommunity has 20 counties), a further increase of C does not pro- 

uce better solutions. Fig. 4 (d) shows the resulting communities 

hen C is 20, 25, or 30. All communities contain at least eight 

ounties, and the largest communities (two out of ten) include 20 

ounties. The average number of counties per community is 14.60, 

nd three communities include counties from both states. 

.2. Cluster validation using COVID-19 data 

In this section, we aim to demonstrate that the identified clus- 

ers/communities, based on mobility, are in fact more suitable for 

oordinating pandemic NPIs than state-wide coordination. To this 

nd, we compare the impact of COVID-19 on the communities cre- 

ted based on the proposed model with that on individual states. 

obility data prior to any major lockdown in the U.S. is used in 

he previous section to identify coordination communities for pan- 

emic responses within North and South Carolina. Since counties 

n the same community are highly interconnected with people’s 

ovements, we expect that the impact of COVID-19 on counties 

https://cambersystems.com
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Table 8 

Results of case study. 

C N. of 

communities 

N. of 

counties in the 

smallest community 

N. of 

counties in the 

largest community 

Average counties 

per community 

Modularity 

5 35 1 5 4.17 0.5952 

10 23 1 10 6.35 0.7195 

15 13 1 15 11.23 0.7411 

20 10 8 20 14.60 0.7505 

25 10 8 20 14.60 0.7505 

30 10 8 20 14.60 0.7505 

Fig. 4. Communities based on mobility data within North Carolina and South Carolina. 

w

d

m

b

m

c

t

o

a

u

n

i

t

a

a

n

C

a  

a

s  

a

n

w

C

w

β

ω

a

r  

o  

d

t

e

w

i

f

ithin a community to be similar; that is, the number of cases and 

eaths due to COVID-19 should have lower variation within com- 

unities compared to those between communities or cross states 

oundaries. To officially test this argument, a clustering validation 

ethod is used in this section. 

Clustering validation methods, which evaluate the goodness of 

lustering results, are commonly used to study the success of clus- 

ering algorithms ( Liu, Li, Xiong, Gao, & Wu, 2010 ). These meth- 

ds are divided into two categories: external clustering validation 

nd internal clustering validation. External validation measures are 

sed when the “true” cluster of elements is known, while inter- 

al validation measures are appropriate when the “true” cluster 

nformation is not available for comparison. In general, evaluating 

he performance of clustering algorithms when the true clusters 

re not known is more challenging than when the true clusters 

re known. Since, in our problem, the true cluster of counties is 

ot known, we use a popular internal validity measure known as 

ali ́nski-Harabasz (CH) index (Cali ́nski & Harabasz, 1974) to evalu- 

te the success of our proposed model ( Liu et al., 2010 ; Łukasik et

l., 2016). The CH index calculates the ratio of the between-clusters 

um of squares ( β) and within clusters sum of squares ( ω) and is

djusted based on the total number of clusters ( κ) (i.e., commu- 

ities in our study) and vertices ( n ) (i.e., counties in our study) 
t  

109 
ithin each cluster, as shown in Eq. (10) : 

H = 

β

ω 

× n − κ

κ − 1 

(10) 

here 

= 

κ∑ 

i =1 

n i E 
2 ( s i , s ) (11) 

 = 

κ∑ 

i =1 

∑ 

x ∈ s i 
E 2 ( x, s i ) (12) 

Eqs. (11) and ( 12 ) calculate the between-clusters sum of squares 

nd the within clusters sum of squares, respectively, where n i rep- 

esents the number of counties in community i ( S i ), s i is the center

f S i , s is the grand center, and E ( x 1 , x 2 ) calculates the Euclidean

istance between x 1 and x 2 . A higher value of CH index means 

he SUs are more homogenous within communities and more het- 

rogeneous between communities. Therefore, a clustering method 

ith a higher CH index value is preferred. 

To better illustrate the idea of using CH index, consider nine 

nterconnected counties shown in Fig. 5 a. Assume that three dif- 

erent clustering methods are applied to detect communities, and 

heir results are presented in Figs. 5 b to 5 d. COVID-19 data of each
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Fig. 5. An example of CH index values for three different clustering methods. 

Table 9 

CH values. 

Communities CH value 

C = 5 1.62 

C = 10 1.02 

C = 15 1.24 

C = {20, 25, 30} 1.36 

States 0.68 
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ounty, which are available after the pandemic starts, can be used 

o evaluate the performance of the three clustering methods. Sup- 

ose the numbers in the parentheses in Fig. 5 e denote the con- 

rmed number of COVID-19 cases and deaths for each county, re- 

pectively. It is easy to visually see that the first clustering method 

s better than the other two methods because it creates more ho- 

ogenous communities with respect to the impact of COVID-19. 

e obtain a similar conclusion using CH index. The CH index value 

f the first clustering method, calculated based on Eqs. (5) to 7 , is

.18, which is higher than the CH index values of the other two 

lustering methods (i.e., 0.36 and 0.23). Therefore, as our exam- 

le demonstrates, CH index can be used to identify the clustering 

ethod that provides more homogenous communities. 

To calculate CH index in our case study, we first collected the 

umber of confirmed cases and deaths due to COVID-19 per county 

er day for each county in the two states for a period of eight

eeks (June 1, 2020 to July 26, 2020) from the Johns Hopkins Uni- 

ersity tracking website ( Dong, Du, & Gardner, 2020 ). Then, the 

otal number of confirmed cases and deaths in each county were 

alculated for the eight-week period for comparison. Next, we cal- 

ulate CH index values of the community structures in this case 

tudy (for C = 5, 10, 15, {20, 25, 30}) as well as the state structure

two communities each representing the individual states). 

Table 9 provides a summary of CH index values. All communi- 

ies created based on the movement of people are more homoge- 

ous than considering counties within states as their own commu- 

ity. For instance, communities based on C = 5 and C = {20, 25, 30}

ave CH values (respectively 1.62 and 1.36) almost twice as the CH 

alue of communities based on states borders (0.68). To check the 
110 
obustness of the results, we also calculated the CH index values 

ased on only the number of cases and then also the number of 

eaths, and the CH index values calculated based on the number 

f cases and deaths separately are very similar to those reported 

n Table 9 . 

This case study shows the close interconnections, based on 

eople’s movement, between counties within and between two 

tates, and the communities created with our modularity-based 

odel exhibit more homogeneous COVID-19 impacts than indi- 

idual states. The results highlight the importance of considering 

oordinating NPIs and vaccination programs across counties and 

tates based on people’s natural movement without considering 

he geopolitical borders. 

.3. Implications for pandemic management 

This case study provides insight into managerial and policy de- 

isions in combating pandemics. There is significant variability be- 

ween COVID-19 policies in North Carolina (NC) and South Carolina 

SC) since the start of COVID-19 ( NASHP, 2021 ). Original stay-at- 

ome orders in NC were from March 30, 2020 through May 22, 

020 with violations punishable as a Class 2 misdemeanor, while 

C had a shorter window from April 6, 2020 through May 4, 2020 

ith lax enforcement. Mask mandates also differ in similar fashion 

etween the two states, while there were no state-wide travel re- 

trictions in either state since the beginning of the pandemic. Ad- 

itionally, reopening policies and responses to the rapidly spread- 

ng Delta variant in 2021 in both states were just as divergent. Our 

nalysis shows that up to four border communities include coun- 

ies from both states. Given that the profile of people at risk is 

imilar in both states, local county governments from both states 

elonging to border communities identified in this study should 

ollaborate to create a community-level policy and response strat- 

gy including vaccinations, masking, and limits on inside gather- 

ng, instead of following disparate state-level policy. This is espe- 

ially vital given the highly transmissible Delta variant (and future 

ariants to come). 

Our analysis, along with a case study, shows that the pro- 

osed model can create communities that are significantly better 
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or coordinating pandemic related policies than those solely based 

n the existing geopolitical borders. This result is validated using 

OVID-19 data. The consequence of non-coordination across state 

orders has been significant in some instances. For example, it has 

esulted in an influx of COVID-19 patients from western parts of 

daho where masks and vaccinations are not mandated, to hospi- 

als across the border in Washington state. This has overwhelmed 

ospital capacity in the latter, deepening the crisis in that state. 

ince the proposed communities are created based on the natural 

ovement of people, jurisdictions within a community are well- 

onnected and potentially in the same phase of pandemic. In addi- 

ion, to facilitate the coordination of NPI policies, our model guar- 

ntees the contiguity of detected communities and limits the max- 

mum number of jurisdictions within a community. As such, the 

roposed model can be used to identify communities of contigu- 

us locations for applying customized and coordinated policies re- 

ponse to a pandemic. 

We are beginning to see local responses by cities and school 

istricts despite state mandates, but the effectiveness of such lo- 

al policies can be enhanced by joining those administrative units 

nto communities, as identified in this study, to provide a pathway 

o coordinated reopening. In a federally structured country like the 

.S., in addition to an effective national pandemic policy, an ap- 

ropriately coordinated multi-level approach of regional and local 

olicy is required. As any of the communities of counties identi- 

ed in our case study outperform the community as defined by 

tate boundaries, this study indicates that a new community level 

f governance is required, based on population movement and be- 

ond existing geographic boundaries of state and county, for ef- 

ective pandemic management. Our model provides a framework 

o identify which county jurisdictions need to work together to 

anage transboundary public health crises. This is especially valid 

or contagious viruses like Influenza (flu) and COVID-19, where the 

ovement and interactions among people are the essential mech- 

nisms behind transmitting. Further, although this study is specifi- 

ally designed to coordinate pandemic response policies, the model 

ay be used in other fields to identify contiguous communities, 

uch as in marketing for clustering customers based on their loca- 

ions and daily movements. 

. Conclusion 

The existing literature suggests that coordinating policies across 

nterconnected locations can improve the effectiveness of pan- 

emic interventions, especially in decentralized and federal coun- 

ries ( OECD, 2020 ; Ruktanonchai et al., 2020 ). This study pro- 

oses a new community detection model to identify communities 

ased on the natural movement of people for coordinating pan- 

emic related policies. To do so, we develop a new mixed-integer 

uadratic-programming model to maximize modularity subject to 

he geographic contiguity constraints. The optimization model uses 

he natural movement of people as inputs to calculate modular- 

ty, and the number of jurisdictions in each community or zone 

an be adjusted based on the policy maker’s requirements. To im- 

rove computation, we also develop a column-generation algo- 

ithm that is coupled with an iterative pricing procedure ( CG2 ) 

o solve larger instances. Our computational experiments high- 

ight that CG2 outperforms the standard mixed-integer quadratic- 

rogramming model using a commercial solver. 

There are several possible opportunities to extend this research. 

irst, we use contiguity requirements as hard constraints in the 

ptimization models. A potential extension is to consider a bi- 

bjective optimization model where one can analyze the implica- 

ions of balancing modularity and contiguity in community detec- 

ion. Another possible direction of future research is to incorpo- 

ate other commonly used community detection objectives such as 
111 
ompactness or modularity density functions while enforcing con- 

iguity requirements. Strengthening the MIQP formulation by find- 

ng valid inequalities is another possible direction for future re- 

earchers. Lastly, our column-generation algorithm is designed to 

olve the pricing problem optimally in each iteration. While in 

ost cases this approach is effective and the pricing problems are 

olved quickly, we find that for larger instances, it may take a bit 

onger (up to a few minutes), which increases the algorithms’ over- 

ll run time. As a future extension, a combination of heuristics and 

xact methods in the iterations of the pricing problem can be in- 

orporated to solve the optimization problem more quickly while 

nsuring valid optimization bounds. 
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