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Abstract

Background: Multi-cancer tests offer screening for multiple cancers with one blood draw, but 

the potential population impact is poorly understood.

Methods: We formulate mathematical expressions for expected numbers of (1) individuals 

exposed to unnecessary confirmation tests (EUC), (2) cancers detected (CD), and (3) lives saved 

(LS) given test performance, disease incidence and mortality, and mortality reduction. We add 

colorectal, liver, lung, ovary, and pancreatic cancer to a test for breast cancer, approximating 

prevalence at ages 50, 60, or 70 using incidence over the next 5 years and mortality using 

corresponding probabilities of cancer death over 15 years in the Surveillance, Epidemiology, and 

End Results registry.

Results: EUC is overwhelmingly determined by specificity. For a given specificity, EUC/CD is 

most favorable for higher-prevalence cancers. Under 99% specificity and sensitivities as published 

for a 50-cancer test, EUC/CD is 1.1 for breast+lung versus 1.3 for breast+liver at age 50. Under a 

common mortality reduction associated with screening, EUC/CD is most favorable when the test 

includes higher-mortality cancers (e.g., 19.9 for breast+lung versus 30.4 for breast+liver at age 50 

assuming a common 10% mortality reduction).

Conclusions: Published multi-cancer test performance suggests a favorable tradeoff of EUC 
to CD, yet the full burden of unnecessary confirmations will depend on the post-test work-up 

protocol. Harm-benefit tradeoffs will be improved if tests prioritize more prevalent and/or lethal 

cancers for which curative treatments exist.
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Impact: The population impact of multi-cancer testing will depend not only on test performance 

but also on disease characteristics and efficacy of early treatment.
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confirmation tests

Introduction

The advent of liquid biopsy technology has ushered in a new era of cancer diagnostics. 

Assays to detect circulating cell-free DNA supplemented by protein and methylation 

signatures promise to dramatically alter the landscape of cancer surveillance and early 

detection. In particular, the possibility of multi-cancer early detection, where a single blood 

sample is interrogated for multiple cancers, is attracting a great deal of attention (1,2).

Several multi-cancer tests are in development, each harnessing different features of the 

circulating tumor DNA. Liu et al present a test using targeted methylation analysis of 

circulating cell-free DNA that in principle detects and localizes more than 50 cancer types, 

and quantify its sensitivity for a pre-specified set of 12 cancers (3). Cohen et al present 

diagnostic performance of a test using circulating DNA and protein biomarkers (4); Lennon 

et al identify 10 cancer types using an updated version of the test (5). And Cristiano et al 

present a test that uses fragmentation patterns of cell-free DNA across the genome along 

with mutation-based cell-free DNA, estimating the diagnostic performance of this test across 

7 cancer types (6).

Multi-cancer testing offers the potential for improved diagnosis of cancers where tests 

already exist, such as mammograms in women with dense breasts (7,8). It is less invasive 

than some existing tests, such as colonoscopies for colorectal cancer. Further, multi-cancer 

tests include cancers for which tests do not currently exist, either because the search for 

biomarkers with adequate performance has been unsuccessful or because disease prevalence 

is extremely low (9). Aggregating diagnosis of these cancers into a single test could increase 

the combined prevalence to an acceptable level for population screening. There may also be 

an economic advantage to doing a single test rather than a series of individual tests.

At this point however, many questions exist about the likely impact of multi-cancer testing 

on population benefits, such as cancer deaths prevented, and harms, such as unnecessary 

imaging tests or biopsies (1). These outcomes depend critically on disease prevalence at the 

time of the test, mortality in the absence of the test, and the ability to treat potentially fatal 

disease if detected early.

This study investigates how the potential benefits and harms of a single-occasion multi-

cancer test depend on test and disease characteristics. We define a multi-cancer test as a 

test that screens for a specified set of target cancers. We first explore the simple setting 

of hypothetical two-cancer tests to establish a conceptual foundation for thinking about 

outcomes in the multi-cancer setting. We then examine more realistic tests involving up 

to six cancers with implications for more general multi-cancer tests. Our analysis creates 
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a framework for quantifying the population impact of multi-cancer tests while pointing to 

criteria for the number and type of cancers to include.

Methods

Overview

Suppose that we have a test for a single cancer (cancer A) and our goal is to evaluate a test 

that includes two cancers (cancers A and B). We assume that the test produces an assessment 

of whether cancer is present and indicates a tissue of origin (TOO). We further assume that 

individuals do not have both cancers present concurrently at the time of the test. We present 

results for hypothetical two-cancer tests and show how they depend on test performance and 

cancer characteristics. We then present results for breast cancer (cancer A) and colorectal, 

liver, lung, ovary, or pancreatic cancer (cancer B), evaluating the measures of harm and 

benefit as we sequentially build up to six cancers based on published characteristics of 

an existing multi-cancer test (3). We select these cancers to include both common (breast, 

lung) and rare (ovary, liver) cancers as well as cancers with particularly poor prognosis if 

detected at advanced stage (ovary, pancreatic). For all multi-cancer tests, we produce results 

for single-occasion testing at ages 50, 60, or 70 to explore age dependence of the outcomes.

Test performance

The sensitivity of a multi-cancer test has two components: (1) the test sensitivity, which is 

the probability the test returns a cancer signature given that a targeted cancer is present, 

and (2) the probability of correct localization for each targeted cancer. For cancer A, the 

test sensitivity is the probability that the test returns a cancer signature when cancer A 
is present. Both the test sensitivity and the probability of correct localization may differ 

across cancers. We note that, while our discussion refers to sensitivity in general terms, it is 

the sensitivity to detect early-stage tumors that counts. Published multi-cancer studies have 

shown considerably poorer sensitivities for early compared with advanced-stage tumors (4).

We define the marginal sensitivity for a target cancer as the probability that the test returns 

a cancer signal and correctly localizes the target cancer when it is present. The marginal 

sensitivity of a multi-cancer test for cancer A can be written:

MSA = PA T + ∙ LA T + , (1)

where PA(T+) is the sensitivity of the multi-cancer test, i.e., the probability the test returns a 

cancer signal given cancer A is present, and LA(T+) is the probability of correctly localizing 

the TOO as A given that the multi-cancer test returns a cancer signal (T+) and cancer A 
is in fact present. With k targeted cancers there are k marginal sensitivities. An early-stage 

version of the marginal sensitivity can be defined that specifies the test sensitivity as the 

probability the test returns a cancer signal if an early-stage cancer is present with the correct 

localization probability defined accordingly.

We define the specificity of a multi-cancer test as the probability the test returns a “no 

cancer” signature when none of the targeted cancers is present. If a cancer outside of the 

target set is detectable by the test and produces a cancer signature, this would be considered 
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a false-positive result. This implies that the specificity of a multi-cancer test will vary with 

the specified set of target cancers.

Outcome metrics

In single-cancer testing, a key metric used to evaluate harm-benefit is the positive predictive 

value (PPV). In this setting, 1/PPV is often cited as the number of biopsies required per 

cancer detected, and 1/PPV−1 the number of unnecessary biopsies per cancer detected 

(assuming that all positive tests are followed by a biopsy). Thus, for example, a PPV of 1/3 

corresponds to 2 unnecessary biopsies per cancer detected, and a PPV of 1/2 corresponds 

to 1 unnecessary biopsy per cancer detected. The PPV has proven to be a useful metric 

even though it depends on disease prevalence and therefore may not generalize from one 

population to another.

In single-cancer testing, each individual is subject to one biopsy at most, so the unnecessary 

biopsies arise solely from false positive tests, i.e., from individuals without cancer. In 

multi-cancer testing, however, unnecessary confirmation tests may occur in individuals 

who have one of the cancers included in the test, when the multi-cancer test correctly 

returns a cancer signal but incorrectly identifies the TOO. In this case, a confirmation 

test performed to verify that cancer is present in the putative TOO would constitute an 

unnecessary confirmation test. Thus, in multi-cancer testing, unnecessary confirmation tests 

arise from individuals without any of the targeted cancers as well as from those whose tumor 

is incorrectly localized.

For a two-cancer test, we can directly formulate the expected number of screened individuals 

potentially exposed to unnecessary confirmation (EUC) as:

EUC = N ⋅ ρA ∙ PA T + ∙ 1 − LA T + + ρB ∙ PB T + ⋅ 1 − LB T + +
1 − ρA − ρB 1 − Sp ,

(2)

where N is the number of individuals tested, ρA and ρB are the prevalence of cancers Aand 

B, respectively, and Sp is the specificity of the test. The first two terms in square brackets 

reflect the correct return of a cancer signal but incorrect localization, and the third term 

reflects a false positive. In practice, if the specificity is even modestly below 100% and 

the prevalence of each cancer is not high, the third term will dominate. We note that EUC 
reflects persons exposed to unnecessary confirmation tests and not the actual number of such 

tests performed.

The expected number of cancers detected depends on the marginal sensitivity of the multi-

cancer test to detect each cancer and, in the setting of two cancers, is given by:

CD = N ∙ ρA ∙ MSA + ρB ∙ MSB . (3)

The formulation of CD reflects the expected number of people diagnosed with cancer 

following confirmation precipitated by the multi-cancer test.
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We project the expected lives saved by assuming a disease-specific mortality reduction for 

each targeted cancer that is detected early and applying this value to the cumulative risk 

of disease-specific death without the test. The mortality reduction due to any screening 

test is a complex function of the interaction between screening test performance, screening 

protocol, and disease natural history. Rather than explicitly modeling these interactions for 

each cancer, we assume a value for the mortality reduction among cancers detected by the 

test. Specifically, we write the expected number of lives saved as:

LS = N ⋅ mA ⋅ MSA ⋅ RA + mB ∙ MSB ⋅ RB , (4)

where mA and mB are probabilities of cancer-specific death for cancers A and B, 

respectively, in the absence of the screening test, and RA and RB are the corresponding 

mortality reductions among those detected by the test. Implicit in this formula is the 

understanding that lives saved will be limited to cases that are prevalent at the time of 

the test. For a given mortality reduction factor, this formulation automatically increases the 

expected lives saved in proportion to the marginal sensitivity; higher marginal sensitivity 

will lead to more lives saved. We note that the mortality reduction factor need not be the 

same for all cancers, and for a given cancer it may depend on whether marginal sensitivity is 

specified for all cancers or for early-stage cancers.

General expressions for UC, CD, and LS for a k-cancer test are given in the Supplementary 

Methods and Materials (available online). In practice, all three outcomes depend on the 

protocol for confirmation testing, including how to proceed if confirmation testing of the 

putative TOO returns a negative result. In addition to the absolute outcomes, we also 

examine EUC/CD/ and EUC/LS as measures of harm-to-benefit tradeoffs.

Evaluation of hypothetical and more realistic multi-cancer tests

We first consider a two-cancer test that screens for (A) breast cancer and (B) colorectal, 

liver, lung, ovary, or pancreatic cancer among women in the United States. We base 

sensitivities and correct localization probabilities on estimates from Liu et al for cancers in 

stages I-III (3) and specificity (99%) on their estimate (99.3%). Similar values for specificity 

have been reported in other studies (4,6). Because a multi-cancer test for fewer cancers than 

the number considered in that study (n=50) may have a lower specificity, we also examine a 

lower specificity (97%) in a sensitivity analysis.

Age-specific prevalence of cancer is based on incidence rates observed in the Surveillance, 

Epidemiology, and End Results (SEER) registry over the years 2000–2002 inclusive (10). 

We assume that cancers diagnosed within the 5-year age groups 50–54, 60–64, and 70–74 

years are prevalent at ages 50, 60, and 70 years, respectively, and thus could potentially be 

detected by a multi-cancer test offered at these ages. The prevalence at age 60, for example, 

is based on the number of diagnoses at ages 60–64 divided by the population at age 60, 

which we approximate using one-fifth of the population ages 60–64.

At any given age, screening cannot affect mortality among cancers diagnosed prior to that 

age. Therefore, we use SEER incidence-based mortality, which permits calculation of the 

probability of diagnosis at a specific age (e.g., age 50–54) and subsequent cancer-specific 
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death over a specified time interval (11). We estimate 15-year incidence-based mortality and 

apply the assumed mortality reduction to cancers detected early to project expected lives 

saved. We restrict the time interval for mortality to 10 years in a sensitivity analysis.

For screening benefit, we consider the consensus benefit estimate of 20% mortality 

reduction across breast cancer screening trials (12) as an upper bound since we are modeling 

only single-occasion screening and the trials all evaluated serial screening. We denote 

the mortality reduction among women randomized to screening by RA
∗ . This is not the 

same as the mortality reduction among women whose breast cancers were detected early 

by screening (denoted RA above). If we assume that detectability of a latent cancer is 

independent of the mortality risk of that cancer in the absence of screening, then we can 

write:

RA
∗ = 1 − deaths from cancer A among screened

deaths from cancer A among controls = 1

−
mA ⋅ MSA ⋅ 1 − RA + mA ⋅ 1 − MSA ⋅ 1

mA
= MSA ⋅ RA,

(5)

For example, if the marginal sensitivity of a test to detect breast cancer (MSA) is 60%, 

then a 20% mortality reduction among women randomized to screening (RA
∗ ) corresponds 

to a 33% mortality reduction among women with cancers detected early by the test (RA). 

We adopt this formulation as a transparent device to link marginal sensitivity with deaths 

prevented by screening. In practice, latent tumors that are detected may be more advanced 

and have poorer baseline survival than those not detected, and thus this assumption may 

produce optimistic projections of lives saved.

Since we are modeling only single-occasion testing, we use a 10% mortality reduction 

associated with screening (RA
∗ = 0.10) for each cancer, but also examine how results change 

under mortality reductions of 5% and 20%. For MSA equal to 60%, for example, these 

values correspond toRA=16% RA
∗ = 0.10 , RA=8% (RA

∗ = 0.05 , and RA=33% RA
∗ = 0.20 . 

In a sensitivity analysis, we use RA
∗ = 0.10 for three high-prevalence cancers for which 

screening tests currently exist and RA
∗ = 0.50 for three low-prevalence cancers to explore 

how increasing the benefit for low-prevalence cancers impacts the relative ordering of 

harm-benefit measures across the six target cancers.

Online calculator

To provide direct access to the proposed framework, we created an online calculator. Users 

can configure a multi-cancer test with up to 50 cancers for any combination of sex, race 

(All races or Black), screening age (50, 60, or 70 years); input test specificity; and input test 

sensitivity, localization probability, and mortality reduction associated with early detection 

for each targeted cancer. The interface calculates the three outcomes formulated in this 

paper, and results can be downloaded for external analysis.
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Results

A hypothetical two-cancer test

Figure 1 shows EUC and CD for a hypothetical two-cancer test under specified diagnostic 

characteristics and prevalence settings. The values used for prevalence are low in keeping 

with the estimates derived from the SEER registry for the cancers examined in the more 

realistic analyses. Projected values for a wider range of settings are shown in Supplementary 

Table 1 (available online).

Results show that EUC is driven primarily by the specificity of the test. Its dependence on 

sensitivity is minor; its dependence on prevalence and localization accuracy (Supplementary 

Figure 1) are also small. CD increases with the prevalence of cancer B and the sensitivity 

of the test, leading to lower EUC/CD for higher-prevalence cancers. While the results 

are intuitive, the message is that harm-benefit tradeoffs of multi-cancer testing depend on 

multiple factors pertaining to the cancers included in addition to the characteristics of the 

test.

A more realistic test for up to six cancers

Table 1 gives age-specific 5-year risks of cancer diagnosis, which we use to approximate 

prevalence for the cancers considered. As expected, breast and lung cancer have the highest 

prevalence while liver cancer has the lowest. All prevalence estimates are less than 2.5%, 

and they are less than 0.3% for liver, ovary, and pancreatic cancers. Table 2 summarizes 

sensitivities and localization probabilities from Liu et al (3) for these cancers. The highest 

marginal sensitivity is for colorectal cancer; the lowest is for liver cancer. This table also 

shows mortality reductions associated with early detection that correspond to 10% mortality 

reductions associated with screening for each target cancer.

The 5 two-cancer tests (breast cancer plus one of the other cancers) are associated with 

similar EUC (Supplementary Table 2), but they show clear patterns of higher EUC/CD when 

prevalence of the candidate second cancer is lower (Figure 2). As expected, EUC/LS is 

an order of magnitude greater than EUC/CD. Both harm-to-benefit measures improve with 

screening age and are most favorable when the second cancer is lung cancer, which has the 

highest prevalence and mortality (except at age 50 years when EUC/CD is most favorable 

for breast+colorectal cancer). These features lead to lung cancer having the highest CD and 

LS at ages 60 and 70 despite the marginal sensitivity for lung cancer being relatively low. 

Based on these metrics, the test for breast+lung cancer is optimal among the two-cancer 

tests considered at these ages. Similar patterns are observed under a more modest screening 

benefit; Figure 2 and Supplementary Table 2 also show how EUC/LS changes when the 

mortality reduction associated with screening is 5%, 10%, or 20%.

Similar patterns are observed when adding a third cancer to a breast+lung cancer test (Figure 

3 and Supplementary Table 3). Once again, EUC is similar across tests considered, and the 

optimal candidate has the highest prevalence and mortality, in this case colorectal cancer. 

Building up to a six-cancer test in this way yields the projected outcomes shown in Table 

3. At all ages EUC/CD is below 1, indicating a favorable tradeoff of numbers exposed 
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to unnecessary confirmation and cancers detected, likely due to the high values used for 

sensitivity and the relatively high prevalence of cases combined across cancers.

Lowering test specificity from 99% to 97% triples EUC/LS for any two-cancer test 

without altering the relative ordering of this tradeoff across candidate second cancers 

(Supplementary Figure 2). In contrast, improving the mortality reduction associated with 

screening for low-prevalence cancers from 10% to 50% alters the ordering of the two-cancer 

tests in terms of harm-benefit tradeoffs. Under these settings, the breast+ovary two-cancer 

test is associated with lower EUC/LS than the breast+lung cancer test for 50- and 60-year-

old women (Supplementary Figure 3). Restricting attention from 15- to 10-year probabilities 

of cancer death (Supplementary Figure 4) does not alter the original patterns in the harm-

benefit measures.

An online calculator that permits users to configure a multi-cancer test for a range of 

patient populations and test characteristics for selected target cancers is available at http://

mced-calculator.fredhutch.org.

Discussion

Multi-cancer tests represent a major technological advance in cancer early detection, but 

their impact on clinically and policy-relevant outcomes remains to be determined. In this 

study we present a quantitative framework that formalizes how test performance and disease 

features combine to produce population harm and benefit. We use this framework to address 

the question of how to compose a multi-cancer test, building up from one to six cancers on 

the basis of harm-benefit tradeoffs. In practice, detectable signatures apply to a large number 

of cancers that will automatically be identifiable by the test, thus the question of how to 

specify a multi-cancer test may translate into whether to remove, rather than add, cancers. 

We note, however, that this is only a conceptual difference, as cancer signatures associated 

with less favorable harm-benefit tradeoffs for additional work-up can be excluded at the 

outset, and a bottom-up approach can be taken to configure a sustainable multi-cancer test.

A framework to clarify multi-cancer testing outcomes is necessitated by the novelty of the 

multi-cancer testing technology and the ways in which it alters the foundational metrics 

of diagnostic performance. In addition to multiple components of test sensitivity, we must 

also reconsider the standard definition of specificity in the setting of a multi-cancer test. 

In single-cancer testing, a truly negative test is taken to imply that the individual being 

tested does not have that cancer. In multi-cancer testing for a specified set of cancers, a 

truly negative test implies that the person being tested does not have one of the cancers 

in the target set. In practice, specificity may depend on the number of cancers in the test, 

with a test targeting a smaller set of cancers potentially having poorer specificity than a test 

targeting a larger set of cancers. However, including fewer cancers in the test may reduce the 

complexity of subsequent work-up and the actual number of confirmation tests performed. 

The number and type of cancers included must necessarily consider this tradeoff. At this 

point, the optimal protocol to confirm the result of a multi-cancer test is an open question.

Jiao et al. Page 8

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mced-calculator.fredhutch.org/
http://mced-calculator.fredhutch.org/


Our analysis considers a limited set of outcome measures and approximates them based 

on information currently available plus a few transparent assumptions. Precise projection 

of any of these measures would require information about disease natural history and 

screening test performance in a prospective setting. This information would be also needed 

to explore other measures of benefit and harm, such as overdiagnosis, and to extrapolate 

from single-occasion to serial testing protocols.

The primary measure of harm in this study was unnecessary confirmation testing. In the 

absence of an established protocol for confirmation testing after a multi-cancer test, we only 

quantify persons exposed to unnecessary confirmation tests and not the number or cost of 

these tests, which may vary in terms of their invasiveness and accuracy. These features, as 

well as their implications for patient quality of life, should be included in a full accounting 

of the burden of unnecessary confirmation testing.

Our results are subject to limitations that stem mostly from the uncertainty about the natural 

history of different cancers and the need to use available and/or simplified inputs to fill out 

our harm-benefit framework. First, diagnostic performance estimates were sourced from a 

published multi-cancer testing study (3). These performance estimates were not prospective; 

they were derived from patients with and without a diagnosed cancer. In a prospective 

setting of a healthy population, we might expect lower sensitivity, particularly for early-stage 

tumors. Second, we approximated disease prevalence at the time of the test by the incidence 

within 5-year age groups and baseline mortality by the risk of cancer-specific death over the 

next 15 years among individuals diagnosed at those ages. We acknowledge that, particularly 

for some cancers known or suspected to have longer latencies, the underlying prevalence at 

the time of the test could be higher than that assumed. Conversely, for cancers with shorter 

latencies and poorer baseline survival, the 15-year interval for baseline mortality might be 

too long. Using a shorter interval for all cancers did not produce different decisions about 

which cancers to include, although as expected the associated harm-benefit tradeoff was less 

favorable. Ideally, we would want to project the prevalence of early-stage cancer at the time 

of the test, but this would require additional data and modeling.

We used published cancer screening trials to provide a benchmark for how disease-specific 

mortality might be reduced by multi-cancer early detection. These trials all included serial 

screening in the intervention group, while we model one-time testing. We use the observed 

mortality reduction as an upper bound for the mortality reduction associated with screening, 

which we convert to a mortality reduction among cases detected early by the test. This 

conversion is based on an assumption that detectability of a latent tumor is independent of 

its risk of disease-specific mortality. This assumption permits the lives saved to increase with 

the test sensitivity but will potentially produce an optimistic assessment of deaths prevented.

The extent to which multi-cancer tests might prevent disease-specific deaths is still highly 

uncertain and depends on how early they can reliably identify potentially fatal tumors as 

well as the efficacy of early treatment, which varies across cancers. The mortality benefit 

also will be affected by how the tests are used in practice, whether alongside or instead 

of existing tests, such as those for breast, colorectal, and lung cancer. By utilizing current 

estimates of prevalence and mortality for these cancers, we modeled multi-cancer tests 
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used alongside existing tests. This motivated our sensitivity analysis, which assumes a 

less pronounced mortality benefit among currently-screened-for cancers than among non-

screened-for cancers.

While our analysis is designed to address primary questions about the population impact of 

multi-cancer testing, it also raises many more. Beyond metrics for harm and benefit and how 

to reliably approximate them, questions remain about which cancers to include and how best 

to prioritize confirmation testing. A consensus about these matters will be needed before we 

can compare the different multi-cancer testing products currently under development. There 

are also important questions about the place of multi-cancer tests alongside established early 

detection modalities and how frequently the tests should be offered.

In conclusion, while multi-cancer testing may offer the possibility of screening for many 

cancers, its population impact depends on characteristics of both the cancers and the test as 

well as the potential benefit of early detection. The primary goal of this study has been to 

clarify in a quantitative framework the link between these features and clinically relevant 

population health outcomes. A key lesson from previous population screening tests is that 

the consequences of any early detection approach go far beyond test performance. Much 

more work is needed to determine harm-benefit tradeoffs of multi-cancer tests, as well as 

whether and how to deploy multi-cancer tests to reduce the population cancer burden.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hypothetical outcomes of a two-cancer test per 1,000 individuals: A) expected number 

of individuals potentially exposed to unnecessary confirmation tests given sensitivity and 

specificity for both cancers and B) expected cancers detected given sensitivity for both 

cancers and prevalence of cancer B. Both outcomes assume the prevalence of cancer A is 

0.5% and the localization probability for both cancers is 80%.

Jiao et al. Page 12

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Expected number of women exposed to unnecessary confirmation tests per cancer detected 

(top row) and per life saved (bottom row) associated with adding specific cancers to an 

existing test for breast cancer at specific screening ages (columns) assuming specificity 

of the two-cancer test is 99%, 15-year incidence-based mortality from the Surveillance, 

Epidemiology, and End Results program, and the mortality reduction associated with 

screening for each cancer is 5% (light bars), 10% (medium bars), or 20% (dark bars).
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Figure 3. 
Expected number of women exposed to unnecessary confirmation tests per cancer detected 

(top row) and per life saved (bottom row) associated with adding specific cancers 

to an existing test for breast and lung cancers at specific screening ages (columns) 

assuming specificity of the three-cancer test is 99%, 15-year incidence-based mortality 

from the Surveillance, Epidemiology, and End Results program, and the mortality reduction 

associated with screening for each cancer is 5% (light bars), 10% (medium bars), or 20% 

(dark bars).
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Table 1.

Five-year net cumulative incidence and 15-year incidence-based mortality for selected cancers based on 

diagnoses in the Surveillance, Epidemiology, and End Results program in 2000–2002.

Tissue of origin Age, y 5-year probability of diagnosis, % 15-year probability of death, %

Breast

50 1.24 0.32

60 1.89 0.66

70 2.23 1.29

Colorectal

50 0.23 0.10

60 0.52 0.26

70 1.04 0.71

Liver

50 0.02 0.01

60 0.05 0.04

70 0.09 0.08

Lung

50 0.25 0.20

60 0.83 0.71

70 1.52 1.35

Ovary

50 0.11 0.07

60 0.20 0.15

70 0.25 0.21

Pancreas

50 0.04 0.03

60 0.12 0.10

70 0.26 0.24
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Table 2.

Test sensitivity, localization probability, and implied marginal sensitivity of multi-cancer test for selected stage 

I-III cancers based on Liu et al. The implied mortality reduction among cases detected early corresponding to 

a 10% mortality reduction associated with single-occasion screening is also shown.

Tissue of origin Test sensitivity, % Localization probability, % Marginal sensitivity, % Mortality reduction, %

Breast 64 96 61 16

Colorectal 74 97 72 14

Lung 59 92 54 18

Ovary 67 96 64 16

Pancreas 78 79 62 16

Liver 68 72 49 20
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Table 3.

Expected number of women potentially exposed to unnecessary confirmation tests (EUC), expected cancers 

detected (CD), expected lives saved (LS), and harm-benefit tradeoffs EUC/CD and EUC/LS per 1,000 women 

tested with a multi-cancer test for breast, colorectal, liver, lung, pancreatic, and ovary cancers assuming 99% 

specificity and a common 10% mortality reduction associated with screening for each cancer.

Screening age, y EUC, n CD, n LS, n EUC/CD EUC/LS

50 10.4 11.7 0.7 0.9 14.2

60 11.0 22.1 1.9 0.5 5.7

70 11.6 33.1 3.9 0.4 3.0
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