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Abstract

Accumulating evidence suggests that the influence on developmental traits might have long-term 

effects on aging and health later in life. Metformin is a widely used drug for treating type 2 

diabetes and is also used for delaying sexual maturation in girls with precocious puberty. The 

current report focuses on investigating the effects of metformin on development and metabolic 

traits. Heterogeneous mice (UM-HET3) were treated with i.p. metformin between the ages of 

15 and 56 days. Our results show that body weight and food consumption were increased in 

both sexes, and sexual maturation was delayed in females. Tail length and circulating insulin-like 

growth factor 1 (IGF1) levels were significantly increased in both sexes. No significant difference 

was found in insulin tolerance test, but glucose tolerance was significantly reduced in the males. 

Circulating adiponectin and insulin levels were altered by metformin treatment in a sex-specific 

manner. Analysis of quantitative insulin sensitivity check index (QUICKI) suggests that metformin 

treatment increased insulin sensitivity in female pups, but had opposite effect in male pups. This 

study revealed that early life metformin treatment alters development and metabolism of mice 

in both sex-specific and non-specific manners. These effects of metformin may have long-term 

impacts on aging-related traits.
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Introduction

Metformin, a biguanide, has been used for decades for the treatment of type 2 diabetes 

(T2D) and metabolic syndrome. It has an excellent safety record in both children and 

adults. Over the past decades, accumulating evidence suggests that metformin has profound 

beneficial effects on human healthspan, e.g. reducing the incidence of T2D [1], reducing 

the risks of cardiovascular diseases [2], decreasing overall cancer incidence and cancer 

mortality [3], and improving cognitive function of T2DM patients [4]. The underlying 

mechanisms have been investigated intensively. Metformin enters cells through the organic 

cation transporters [5] and inhibits the Complex I within the mitochondrion, reducing the 

efficiency of the electron transport chain (ETC), resulting in a reduction in ATP generation. 

Meantime, metformin also inhibits AMP deaminase and, therefore, increases the AMP level. 

The increased AMP: ATP ratio activates the AMP-activated protein kinase (AMPK), a 

serine/threonine kinase that has a wide range of intracellular effects, leading to the activation 

of catabolic pathways and inhibition of anabolic pathways. The AMPK pathway interacts 

with a variety of metabolic- and inflammation-related pathways, including mTORC1, 

PGC1-α, Insulin-IGF1, as well as SIRT1 and NF-κB [6]. The inhibition of mitochondrial 

ETC also leads to AMPK-independent effects by reducing reactive oxygen species (ROS) 

and advanced glycation end-products (AGEs), thereby reducing DNA and macromolecular 

damage [7]. Extracellularly, metformin modulates the gut microbiota, further improving 

metabolism and reducing inflammation [8]. These studies make metformin a promising 

geroprotective drug that may slow the aging process and reduce aging-related diseases. 

Currently, metformin is being tested in a clinical trial to examine its potential for extending 

human healthspan [9].

The effect of metformin on rodent longevity has been tested in several studies. However, the 

reported effects have not been consistent. A study by the NIA Interventions Testing Program 

(ITP), initiating metformin treatment in mice at nine months of age, showed no significant 

lifespan alteration in female mice at all three participating sites. In the male mice, two of 

the three sites found >10% increases of the median lifespan, one site found the median 

lifespan reduced by 1%, and the pooled data did not show significant difference (https://

phenome.jax.org/itp/surv/Met/C2011). However, the same metformin dosage, starting at the 

age of 12 months, significantly and suggestively extended lifespan in C57BL/6 males and 

B6C3F1 males respectively [10]. These results suggest that the effect of metformin on 

lifespan may be dependent on genetic background and sex. Although its effect on lifespan 

of mice is still debatable, clinical usage has found that metformin can prevent precocious 

puberty in girls [10–12]. It has been reported that delayed pubertal onset is associated with 

reduced risks of adult obesity and cardiovascular disease in human [13–19]. Importantly, 

across mouse inbred strains and in the human population, delayed sexual maturation is 

associated with extended lifespan [20, 21]. These results inspired us to investigate the ability 

of metformin treatment, given in early life, to alter metabolism and development, and to lay 

groundwork for investigating its effects on health conditions in late life and on lifespan.
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Materials and methods

Animals:

UM-HET3 mice were generated by breeding female CB6F1/J (#100007) with male 

C3D2F1/J (#100004) mice. Ten breeding pairs were purchased from The Jackson 

Laboratory (Bar Harbor, Maine 04609). Ten litters, with a total of 60 female and 56 male 

pups, were randomly assigned to intraperitoneal injections (i.p.) metformin treatment or 

saline control groups. Sample sizes of each group can be found in Fig. 2. Mice were housed 

in environmentally controlled rooms maintained on a 12:12-h light: dark cycle at 22 ± 1°C 

with 35% to 50% relative humidity. Access to food (Cat. #: 5001, LabDiet) and sterilized 

water was ad libitum. Animal care and handling were conducted in accordance with NIH 

guidelines and the policies of the Laboratory Animal Care and Use Committee at Southern 

Illinois University School of Medicine, Springfield, IL.

The UM-HET3 is a heterogeneous population, which limits the occurrence of strain-specific 

effects, thus providing a far more realistic model of human populations. Moreover, although 

UM-HET3 mice are individually different, as a population, they share the same genetic 

pool, which makes the study results repeatable [22]. The UM-HET3 mice were first 

developed by the Geriatrics Center’s Core Facility for Aged Rodents program and have 

been widely used in NIA sponsored studies, such as the Interventions Testing Program 

(https://www.nia.nih.gov/research/dab/interventions-testing-program-itp).

Metformin treatment:

From day 15 to day 56, pups were given 200mg/kg metformin (Cat. #151691, MP 

Biomedicals, Ohio, 44139) or same volume of saline daily via i.p. injection. In humans, to 

prevent T2D, the dosage is 850mg/day, according to FDA guidelines (https://www.fda.gov/

media/72309/). The equivalent dose in mice is approximately 170mg/kg/day, based on body 

surface area. The maximum safe dosage for treating T2D in human children is 2000mg/day, 

which equals 400mg/kg/day. Based on these data, we determined to use 200 mg/kg/day 

to treat the pre-mature mouse pups. According to previous published research in mice, 

200mg/kg i.p. may yield a serum concentration between 120 uM ~ 160 uM [23, 24].

Although in most of the clinical studies and experiments using adult rodents, metformin 

was orally administered, we treated the pups via i.p. injection to ensure the accuracy of 

the dosage and minimize invasiveness. If metformin were mixed in the food, most of the 

metformin consumed by the pups would come from the dam’s milk. It would be impossible 

to ensure the pups received the correct dose of metformin. Variation in milk intake by the 

pups may further complicate the study, because developmental traits, such as body weight, 

could be affected by the volume of milk consumed. Gavage feeding could cause serious 

intra-esophageal irritation or injury to pups, because the upper gastrointestinal tract of a pre-

weaned mouse pup is fragile [25]. Notably, metformin may exert its geroprotective effect 

by impacting the microbiome [26], which means there could be a difference in regulation 

by metformin depending on oral feeding or i.p. injection of the animals. This difference 

in administration of metformin needs to be considered when comparing the results of this 

report with other studies.
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Development-related traits: Body weight was determined every day. Food consumption 

was measured from day 22, on which pups were weaned. Tail length was measured at day 

70. Female and male pups were examined daily for VP and PS respectively, starting at 

postnatal day 18 and ending at day 34, when VP or PS was observed in all mice.

GTT and ITT: At the age of eight weeks, GTT was performed after 16 hours fasting. ITT 

was performed one week later without fasting. Glucose (1g/kg) or insulin (1IU/kg, Sigma, 

St. Louis, MO, USA) was injected i.p. and blood glucose was determined from the tail vein 

at 0, 15, 30, 45, 60, 120 min using AgaMatrix Wavesense Presto Blood Glucose Monitoring 

System (AgaMatrix, New Hampshire, 03079). The GTT and ITT data are presented as a 

percentage of baseline glucose and area under the curve.

Hormone levels: At the age of 12 weeks, non-fasting and 16 hours fasting blood samples 

were drawn from the submandibular vein. Plasma IGF1, adiponectin, and insulin were 

determined by ELISA kits (Cat. #: 80574, 80569, 90080, Crystal Chem, Elk Grove Village, 

IL, 60007, USA). Final concentration was determined by measuring the absorbance at 

450 nm subtracted from 630 nm. Fasting glucose was determined using AgaMatrix as 

described above. According to the fasting insulin and glucose concentration, the QUICKI 

was calculated using the following formula: QUICKI = 1/[log(fasting insulin in mU/L) + 

log(fasting glucose in mg/dL)].

Data analysis: The curves of the age of VP of females and PS of males were drawn by 

Kaplan Meier method and compared by using log rank test. The effects of metformin on 

body weight and food consumption were compared by pairwise t test. The significance of 

the differences in tail length, tail length ADM, GTT relative AUC, ITT relative AUC, and 

QUICKI were tested by two-way ANOVA. Glucose and hormone levels were examined by 

three-way ANOVA. The significance of the mean values between two groups was examined 

by the t test. All the statistical analyses were performed in in JMP (JMP 10.0, SAS Institute). 

A P value < 0.05 was considered as statistically significant.

Results

Metformin increases body weight and food consumption of female and male UM-HET3 
pups.

In the current study, starting on day 15, pups were given i.p. injection of 200 mg/kg 

metformin or saline daily through day 56. Body weight was determined every day, and 

food consumption was measured from day 22, when the pups were weaned. After day 46, 

mice were subjected to metabolism-related studies, including GTT, ITT, and hormone assays 

(Fig. 1A). To determine if i.p. metformin treatment altered body weight, we calculated the 

average body weight of each group on every day, from day 15 to day 56. Comparing body 

weight between the i.p. metformin-treated and the saline groups, the pairwise t test showed 

the difference was significant (P=0.001 and <0.0001, for female and male respectively, 

Fig. 1B&C). At day 46, before the study of glucose homeostasis, i.p. metformin-treated 

females and males have 5.0% and 4.5% increases in body weight compared to the control 

mice (17.80±0.18 vs. 16.95±0.21, 22.65±0.33 vs. 21.67±0.27, female and male respectively; 
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P<0.05 of both sexes, t test). Consistent with the increased body weight, i.p. metformin-

treated pups consumed more food than control pups of the same sex. As shown in Fig. 

1D&E, the food consumption curves of i.p. metformin-treated female and male pups were 

consistently above the curves of control pups. To test for statistical significance of the 

difference, we calculated the average food consumption of each group on every day, from 

day 22 to day 46. The pairwise t test showed the difference was significant (P=0.001 and 

<0.0001, female and male respectively). It should be noted that another group of UM-HET3 

mice that are under the same housing conditions, provided with same food, but without any 

treatment, had no significant difference in body weight, compared with the control group of 

this study (data not shown).

Metformin delays onset of puberty of female pups.

Sexual maturation is a milestone of development in young animals. To evaluate the effect 

of i.p. metformin on sexual maturation, we monitored vaginal patency (VP) of female mice 

and prepuce separation (PS, also called balano-preputial separation) in male mice. As shown 

in Fig. 2A, the median age of VP was delayed 13% in the i.p. metformin-treated females 

compared to the controls (26 vs. 23 days). Log rank test shows the delay is significant 

(P=0.004). However, no significant difference in PS was found in males (Fig. 2B).

Metformin increases tail length and reduces the variation of tail length.

To determine whether changes in body weight were accompanied by changes in skeletal 

growth, we measured the tail length. Interestingly, ANOVA showed that sex and i.p. 

metformin treatment had significant effect on tail length at day 70 in both sexes (P<0.001), 

corresponding with the gain of body weight. Further analysis found that in both sexes, i.p. 

metformin treatment significantly increases the tail length (P<0.05, t test; Fig. 3A, S. Table 

1). Surprisingly, despite the increase of tail length, the variation of tail length, referred as 

absolute difference to median (ADM=|individual – median|/median), decreased in the i.p. 

metformin-treated mice (Fig. 3B). ANOVA shows the difference in the variation of tail 

length between treatment and control groups is significant (P=0.003, S. Table 1). t test shows 

that in females the difference is significant (P=0.019). In males, the difference is suggestive 

(P=0.081).

Metformin increases the levels and reduces the variation of circulating IGF1 in non-fasting 
pups.

IGF1 is a key regulator of sexual maturation and body size [27, 28]. Because of the 

significant alterations in sexual maturation, body weight, and tail length by i.p. metformin 

treatment, we measured circulating IGF1 levels (at the age of 82 days). ANOVA showed 

that sex, metformin treatment, and fasting, as well as the interaction between fasting and 

metformin treatment, had significant effects on IGF1 levels (P<0.0001, S. Table 1). Further 

comparison between both sexes of the i.p. metformin and saline groups, with or without 

fasting, showed no significant difference in IGF1 levels in the fasting mice. However, in the 

non-fasting mice, i.p. metformin significantly increased IGF1 levels in both sexes (P<0.05, 

t test; Fig. 3C). Correlation analysis found that there is a significant correlation between 

non-fasting IGF1 and tail length (Pearson correlation test, R2 = 0.41, P<0.0001). Mice with 

higher IGF1 have longer tails. No significant correlation between tail length and the fasting 
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IGF1 level was found. Similar to the variation of tail length, IGF1 ADM was also reduced 

in i.p. metformin-treated mice (Fig. 3D, S. Table 1, ANOVA, P=0.003). While values of the 

standard deviations or standard errors of the mean are routinely reported, the distribution of 

individual data is rarely analyzed or discussed. In fact, in aging research, the variations of 

aging related parameters including IGF1 level and lifespan in a population are related to the 

resilience and robustness of resisting the impacts of aging [29, 30]. Because of the important 

role of IGF1 in regulating aging [31] and the close relationship of body size with longevity 

[32], it will be interesting to test whether the variation of lifespan can be also reduced by 

the early-lifespan treatment of i.p. metformin, which reduced the variations in tail length and 

non-fasting IGF1 level.

Metformin effects on glucose and insulin tolerance.

In the clinical setting, metformin is widely used to treat type 2 diabetes, primarily by 

improving insulin sensitivity. In this study, after 32 days of treatment, we examined the 

effects of i.p. metformin on glucose (day 47 to day 49) and insulin (day 54 to day 56) 

tolerance in mice. In the GTT assay, the basal level of glucose, measured after 16 hours 

of fasting (6:00pm – 10:00am), was elevated in both sexes of i.p. metformin-treated mice 

(P=0.065 and <0.001, t test, female and male respectively, Fig. 4A, B). At 120 minutes after 

glucose injection, the glucose level was significantly higher in the i.p. metformin treated 

females than that of the control females (t test, P<0.05, Fig. 4A). ANOVA showed that sex 

and the treatment significantly altered the area under curve (AUC, P<0.001, S. Table 1). 

Further analysis found that AUC of GTT was significantly greater in i.p. metformin-treated 

males than that of control males, indicating impaired glucose tolerance. In females, no 

significant difference in AUC of GTT was found (Fig. 4C). In the ITT, no significant 

difference was found between i.p. metformin-treated and control groups of both sexes in the 

levels of glucose or AUC (Fig. 4D–F, S. table 1).

Metformin alters adiponectin levels, insulin levels, and insulin sensitivity in a sex-specific 
manner.

ANOVA indicated that fasting increased adiponectin significantly (P<0.0001, S. Table 1). 

In females, both fasting and non-fasting adiponectin levels were significantly increased in 

the i.p. metformin-treated group compared to the control group (P<0.05, t test, Fig. 5A). 

Surprisingly, in males, adiponectin remained unchanged in non-fasting status, while the i.p. 

metformin-treated group had suggestively reduced fasting adiponectin (P=0.095, Fig. 5A). 

ANOVA revealed a significant interaction between treatment and sex (p=0.001), indicating 

that metformin has a sex-specific effect on adiponectin levels. The difference found between 

sexes in adiponectin may suggest the existence of sex differences in adiposity; however it 

needs further investigation.

The sex-specific effect of metformin was also found in the circulating insulin levels. 

Under fasting and non-fasting conditions, i.p. metformin-treated females had lower levels 

of insulin than the control females. Under fasting conditions, the difference was significant 

(P=0.038, t test). Unexpectedly, the opposite was found in males. Under fasting conditions, 

i.p. metformin-treated males had significantly higher insulin levels (P=0.031, t test, Fig. 
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5B). ANOVA indicated the interactive effect of sex and metformin treatment on insulin is 

significant (P=0.026, S. Table 1).

Based on fasting glucose and insulin levels, we calculated insulin sensitivity index by using 

QUICKI. At the adolescent stage, QUICKI- and clamp-measured insulin sensitivity are 

effective in humans and are highly correlated to most of the anthropometric and biochemical 

indices [33]. In neonatal mice, previous studies [34] showed serum glucose correlated 

positively with insulin levels and Homeostatic Model Assessment for Insulin Resistance 

(HOMA-IR), and negatively with Homeostatic Model Assessment for Insulin Sensitivity 

(HOMA-S) and QUICKI. These results indicate that QUICKI and similar parameters can 

be effective markers for measuring insulin sensitivity at various ages. As shown in Fig. 5C, 

i.p. metformin-treated females exhibited significantly higher QUICKI, and i.p. metformin-

treated males showed the opposite result (P=0.041 and 0.030, female and male respectively, t 
test). Consistent with circulating insulin levels, ANOVA showed that the interaction between 

treatment and sex significantly influenced insulin sensitivity, indicating that metformin has 

sex-specific effects on insulin levels and insulin sensitivity (P=0.003, S. Table 1).

Discussion

Metformin treatment at an early age may regulate body weight and food consumption 
differently from the treatment in adults.

In most studies, including human and rodents, metformin treatment reduces body weight 

[35–37], consistent with its major biological function, the activation of the catabolic 

pathway and inhibition of the anabolic pathway. It has been reported that more than 60% 

of metformin’s anti-diabetic effect is attributable to its ability of lowering body weight in 

a sustained manner [38]. A recent study showed that in wild-type mice, oral metformin 

increased the circulating level of the peptide hormone growth/differentiation factor 15 

(GDF15), with GDF15 expression increasing predominantly in the distal intestine and 

the kidney. Suppressing GDF15 or its receptor GDNF family receptor α-like (GFRAL) 

diminished the beneficial effects on body weight in mice fed with high fat diet [38]. The 

reduction of body weight by metformin may also be related to its appetite suppressant 

action, which is positively associated with the dosage [39]. A previous study found that 

metformin can cross the blood-brain-barrier and may exert its anorexic effect by the 

inhibition of NPY and AgRP gene expression through the STAT3 signaling pathway in 

the hypothalamus [40].

Most of the subjects in the aforementioned research are adults. When focusing on 

prepubescent subjects, the effect of metformin on body weight and food intake becomes 

vague. Treating neonatal 129/Sv pups with metformin at ages of 3, 5, and, 7 days, Anisimov 

VN et al. reported that males consumed less food and their body weight was decreased 

as compared with control mice over their entire lifespan. However, females consumed 

more food and were heavier than controls [41]. A short-term treatment with metformin in 

C57BL/6 pups from age of day 7 to day 14 did not change the body weight significantly 

[42]. In humans, a meta-analysis of 28 studies (n=3,976) of patients with gestational 

diabetes mellitus found that following intrauterine exposure to metformin treatment, their 

neonates were significantly smaller than neonates whose mothers were treated with insulin 
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during pregnancy. However, metformin-exposed children appear to experience accelerated 

postnatal growth, resulting in heavier infants and higher BMI by mid-childhood (5–9 years 

old), compared to children whose mothers were treated with insulin [43]. In our study, we 

continuously treated UM-HET3 pups via i.p. injection for 42 days, day 15 through day 

56, and found consistently increased food consumption and body weight in both sexes. 

Further study of the orexigenic genes, NPY and AgRP, expressed in the hypothalamus, 

and the circulating peptide hormone GDF15 and its expression, may reveal the mechanism 

underlying the increased food intake and body weight observed in this study.

Metformin treatment at an early age may regulate metabolism sex-specifically.

Surprisingly, our study showed that the fasting glucose levels were increased in the i.p. 

metformin-treated mice, and the glucose tolerance and insulin sensitivity were impaired in 

the i.p. metformin-treated males assessed by the GTT and QUICKI analyses respectively. 

However, this is consistent with previous studies suggesting that due to rapid growth and 

high growth hormone levels, juvenile mice may show insulin resistance traits that antagonize 

metformin action [44, 45]. The underlying mechanism may be also related to the major 

molecular function, the activation AMPK, which plays an important role in maintaining 

glucose homeostasis [46]. It was reported that the AMPK activity is essential for increasing 

the glucose level induced by exercise via the upregulation of glycogenolytic flux [46]. 

Therefore, it is reasonable to hypothesize that fasting may increase the activity of foraging, 

leading to the increase of glycogenolytic flux, which is higher in the metformin-treated 

animals because of the upregulated AMPK activity.

Interestingly, the differences in insulin sensitivity between sexes correlate with the 

difference in the levels of adiponectin. Metformin significantly increased the levels of 

adiponectin in females under non-fasting and fasting conditions. However, in males, 

metformin did not alter the level of adiponectin under the non-fasting condition, but 

significantly reduced the level under the fasting condition. Adiponectin is a proven insulin 

sensitizer [47], and these results emphasize the importance of adiponectin in glucose 

homeostasis during development.

Metformin treatment at an early age delays female sexual maturation and may regulate 
longevity.

A major finding in this study is that i.p. metformin treatment could significantly delay 

the age of VP, a biomarker of female sexual maturation. This result is consistent with 

the clinical report that metformin treatment delays the rapid progression of puberty 

and postpones the onset of menarche in girls with precocious puberty [12]. Sexual 

maturation is under control of the hypothalamus-pituitary-gonadal (HPG) axis, which can be 

modulated by metformin [48]. In primary rat pituitary cells, metformin reduced luteinizing 

hormone (LH) and follicle-stimulating hormone (FSH) secretion induced by gonadotropin-

releasing hormone (GnRH) [49]. Furthermore, metformin may suppress the activity of 

aromatase, leading to the reduced conversion of androgens to estrogens [50]. Identifying 

the mechanisms of delayed age of VP in female pups in this study may provide a model 

for further investigating and developing novel therapeutic methods for treating precocious 

puberty.
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Accumulating evidence suggests that female reproduction and aging might be co-regulated 

[20, 27, 51, 52]. Indeed, interventions before and after puberty may have different effects on 

aging and longevity. For example, it has been reported that treating adult dwarf mice, which 

have impaired somatotrope and gonadotrope axes, with growth hormone (GH) increased 

body size and fertility, but did not diminish lifespan or lower the resistance of dwarf mice 

to cataracts and kidney disease. However, treating pups of dwarf mice with GH before the 

onset of puberty significantly reduced their longevity [53–55]. These studies indicate that 

early-life interventions can impact aging.

A potential mechanism of the co-regulation of reproduction and aging by metformin may 

be related to its molecular mechanism of upregulating AMPK activity [56]. Mammalian 

reproduction is an energy-consuming process that occurs when there is adequate nutrition 

[57]. AMPK is a sensor of nutrient status and it is activated by the decrease of 

ATP/AMP ratio or starvation. Activated AMPK acts to switch off ATP-consuming pathways, 

such as protein synthesis, lipogenesis, and gluconeogenesis, and turn on ATP-generating 

pathways such as fatty acid oxidation, glycolysis, and autophagy [58]. On the molecular 

level, activated AMPK inhibits mammalian target of rapamycin (mTOR) by directly 

phosphorylating the tumor suppressor tuberous sclerosis complex 2 (TSC2) and regulatory-

associated protein of mTOR (RAPTOR) [59]. Elevating mTOR signaling can significantly 

accelerate female sexual maturation and enhance female reproduction. Suppressing mTOR 

has been shown to suppress female reproduction, but improve successful aging and extend 

healthspan [60]. Therefore, the interaction of metformin with mTOR signaling might 

constitute the molecular mechanism of co-regulating sexual maturation and longevity.

Delayed female sexual maturation not only associates with extended longevity, it may also 

be related to the sex disparity in longevity. Comparisons of the lifespans across mouse 

inbred strains revealed that the disparity between female and male animals from the same 

strain may be related to strain-specific age of female sexual maturation. An accelerated 

age of vaginal patency is associated with greater sexual disparity in lifespan. Importantly, 

gene mutations that alter the age of VP also alter the difference in lifespan between sexes 

[61]. Therefore, it will be of great interest to test if early-life treatment with metformin, 

which alters sexual maturation, would also exert long-term effects on lifespan and the sex 

inequality in lifespan.

Notably, puberty onset, measured by VO and PS, was delayed only in females, with no 

significant change in males. Similar results also have been reported in the diet restriction 

study, which significantly extended longevity in both sexes, but sexual maturation was 

delayed only in female animals [62–64]. These results indicate that during development, the 

regulatory mechanisms of the gonadotropic axis may be different between the sexes. Further 

studies designed to test the effects of metformin and diet restriction during development on 

the gonadotropic axis will be necessary to reveal the underlying mechanisms.

Metformin treatment at an early age upregulates the IGF1 and may regulate the traits of 
lifespan.

IGF1, an effector of the hypothalamus-pituitary-somatotropic (HPS) axis, plays important 

roles in regulating sexual maturation, body growth and body size, as well as aging and 
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lifespan. Clinical data suggests that the effects of metformin treatment on IGF1 are 

altered by multiple factors, including age, duration, and dosage of treatment [65]. In the 

current study, we found that non-fasting IGF1 levels were significantly elevated by i.p. 

metformin treatment in both sexes. Interestingly, a previous study in patients with PCOS 

showed that metformin treatment significantly increased the responsiveness of GH to growth 

hormone-releasing hormone (GHRH) [66]. The underlying mechanism may be related to 

the regulatory effects of metformin on activities of CREB (cAMP-response element binding 

protein) and CREB binding protein (CBP) [67, 68]. These studies suggest that metformin 

may upregulate IGF1 levels by increasing GH secretion from the pituitary under non-fasting 

conditions, although the mechanism of increased responsiveness of IGF1 to GH in the liver 

cannot be excluded.

Many studies have reported that reducing GH/IGF1 signaling correlates with extended 

longevity in a variety of species [69–72]. However, IGF1 at old age has many positive 

effects, including protecting neurons from degenerative diseases and increasing insulin 

sensitivity; therefore, it has been suggested that increased IGF1 at old age may extend 

lifespan [31, 73, 74]. Importantly, non-fasting IGF1 levels at young age (6 months) 

associated with median lifespan in a sex non-specific manner [20], but significantly 

associated with the variation of lifespan in a sex-specific manner [61]. In female mice, 

strains with higher IGF1 levels have reduced variation in lifespan. In males the opposite 

is true, higher IGF1 is associated with increased variation. Further analyses found that 

the reduced lifespan variation in female mice with higher IGF1 levels may be due to the 

significantly reduced risk of early death (death before 180 days) and also reduced maximum 

lifespan. Surprisingly, the increased variation of lifespan in male mice with higher IGF1 

levels may be due to the extended maximum lifespan [61]. Previous studies have shown 

that metformin has a clear sex-specific effect of extending longevity in C57BL/6J and 

129/Sv males [10, 41]. A similar result was also found in an ITP study using UM-HET3 

mice (https://phenome.jax.org/itp/surv/Met/C2011). It will be particularly interesting to 

investigate whether the sex-specific extension in lifespan observed in the metformin-treated 

male mice is due to increased IGF1 levels, and whether the early-life treatment of metformin 

will have sex-specific effects on lifespan traits, such as risk of early death and variation of 

lifespan.

Metformin treatment at an early age may decouple the connection between gonadotropic 
and somatotropic axes.

An interesting finding in this study is that metformin treatment not only delayed age 

of female sexual maturation, but also significantly increased IGF1, body weight, and 

tail length. This is consistent with previous studies in girls with precocious puberty, in 

which metformin treatment significantly delayed the onset of puberty, but augmented 

postmenarcheal height [75]. These results suggest that metformin treatment may suppress 

the activity of the HPG axis, but upregulate the activity of the HPS axis. This is 

contradictory to previous findings in calorie restricted and GH/IGF1-inhibited animals in 

which delayed sexual maturation was associated with reduced IGF1 and body weight 

[69]. Indeed, the HPG and HPS axes are co-regulated tightly, and there are complicated 

interactions between them. For example, signaling of the somatotropic hormones, GH and 
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IGF1, can significantly regulate the development of the mammary gland, ovary, and uterus, 

not only through endocrine effects, but also via paracrine effects [76–80]. On the other 

hand, the hormones of the gonadotropic axis, including estradiol and testosterone, have a 

significant impact on the function of liver, the major producer of circulating IGF1 [81, 

82]. In aging research, the parallel regulation of gonadotropic and somatotropic axes has 

been exemplified by many genetically modified animal models, e.g. dwarf mice, in which 

pituitary development is suppressed by genetic mutations [83], and our previously reported 

nuclear receptor interacting protein 1 knockout model [27, 84], as well as dietary restriction 

in a variety of species [52, 85, 86]. In these models, longevity extension is accompanied with 

reduced fecundity and body size, suggesting the suppressed activities of both gonadotropic 

and somatotropic axes. As mentioned earlier, the delayed female sexual maturation found in 

animal and clinical studies might be related to the effects of metformin on the response of 

gonadotrophs to GnRH [49], while the elevated IGF1 levels and increased body size might 

be related to the effects of metformin on the response of somatotrophs to GHRH [87]. Taken 

together, the specific effects of metformin on body growth and sexual maturation suggest 

that metformin regulates gonadotrophins and somatotrophins separately.

Conclusion:

In this study, i.p. metformin treatment at an early age significantly increased body size in 

both sexes and delayed sexual maturation in female mice. Some of the short-term effects on 

metabolic traits, including the circulating adiponectin, insulin, and IGF1 levels, as well as 

the insulin sensitivity measured by QUICKI, by i.p. metformin treatment were sex-specific, 

while others were not. The long-term effects of metformin treatment at an early age on 

metabolism and aging need to be further investigated.
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Highlights:

• Post-natal development affects health condition in adults.

• Metformin is a drug for type 2 diabetes, also delaying sexual maturation in 

girls.

• Metformin alters early life metabolisms in sex-specific and non-specific 

manners.

• Metformin regulates development traits in sex-specific and non-specific 

manners.
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Figure 1. Metformin increases body weight and food consumption of female and male pups.
(A) Experiment scheme. VP: vaginal patency; PS: prepuce separation. (B) Female and (C) 

Male body weight. (D) Female and (E) male food consumption (three days rolling average). 

n>=25, * p<0.05, t test between i.p. metformin-treated and control group on specific ages.
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Figure 2. Metformin delays onset of puberty of female pups.
(A) Fraction of females with vaginal patency. (B) Fraction of males with prepuce separation. 

Embedded tables show sample size, medium and mean of ages at sexual maturation. The 

significance of the difference between the curves of i.p. metformin and saline groups was 

determined by log rank test.
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Figure 3. Metformin increases tail length and non-fasting IGF1 but reduces the variations.
(A) Female and male tail length and (B) tail length variation (n>=25). (C) Circulating IGF1 

concentration and (D) variation in non-fasting and fasting pups (n>=9). ADM: |individual 

data – median |/median. * p<0.05, ** p<0.01, *** p<0.0001, t test between i.p. metformin-

treated and control group of the same sex. In the box plots (A & C), the bottom and top 

lines of the box represent the minimum and maximum data. The box represents two inner 

quartiles where 50% of the data resides, and it ranges from the first quartile to the third 

quartile. The horizontal line in the box represents the median of the data.
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Figure 4: Metformin improves glucose tolerance but not insulin tolerance.
(A) Female and (B) male GTT test. (C) AUC of GTT in female and male. (D) Female and 

(E) male ITT. (F) AUC of ITT in female and male. n>=25. AUC: area under curve. * p<0.05, 

t test between i.p. metformin-treated and control group of the same sex.
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Figure 5: Metformin differently alters adiponectin, insulin levels and quantitative insulin check 
index (QUICKI) in female and male pups.
(A) Circulating adiponectin and (B) Insulin level under non-fasting and fasting conditions. 

(C) QUICKI in female and male. n>=9. *p<0.05, **p<0.01, t test between metformin-

treated and control group of the same sex.
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Table 1

ANOVA of developmental and metabòlic traits.

Source Nparm DF Sum of Squares F ratio Prob > F

Age 1 1 3862.45 1335.83 <0.0001

Body weight
Sex 1 1 349.98 121.04 <0.0001

Treatment 1 1 11.41 3.94 0.049

Treatment*Sex 1 1 0.58 0.20 0.654

Age 1 1 45.75 178.03 <0.0001

Sex 1 1 26.86 104.50 <0.0001

Food consumption Treatment 1 1 2.32 9.04 0.003

Treatment*Sex 1 1 0.01 0.05 0.818

Sex 1 1 1.27 13.44 <0.001

Tail length (70 days) Treatment 1 1 1.47 15.54 <0.001

Treatment*Sex 1 1 0.03 0.36 0.551

Sex 1 1 0.00 0.00 0.966

Tail length ADM Treatment 1 1 0.00 9.17 0.003

Treatment*Sex 1 1 0.00 0.13 0.720

Sex 1 1 2552979.97 51.70 <0.0001

Treatment 1 1 1600761.36 32.42 <0.0001

Fasting 1 1 10131049.51 205.18 <0.0001

IGF1 conc. (ng/mI) Treatment*Sex 1 1 27795.97 0.56 0.456

Fasting*Sex 1 1 91706.42 1.86 0.177

Fasting*Treatment 1 1 1192233.28 24.15 <0.0001

Fasting*Treatment*Sex 1 1 48797.32 0.99 0.324

Sex 1 1 0.24 6.58 0.012

Treatment 1 1 0.35 9.56 0.003

Fasting 1 1 0.02 0.65 0.422

IGF1 variation Treatment*Sex 1 1 0.01 0.31 0.579

Fasting*Sex 1 1 0.00 0.00 0.997

Fasting*Treatment 1 1 0.00 0.01 0.928

Fasting*Treatment*Sex 1 1 0.00 0.01 0.920

Sex 1 1 11316.80 11.45 0.001

GTT basal glucose Treatment 1 1 19211.00 19.43 <0.0001

Treatment*Sex 1 1 4210.76 4.26 0.041

Sex 1 1 64316.63 42.11 <.0001

GTT AUC Treatment 1 1 17732.97 11.61 <.0001

Treatment*Sex 1 1 2859.27 1.87 0.174

Sex 1 1 33028.35 60.06 <0.0001

ITT basal glucose Treatment 1 1 797.71 1.45 0.231

Treatment*Sex 1 1 0.04 0.00 0.993

Sex 1 1 112062.23 112.27 <.0001

ITT AUC Treatment 1 1 570.57 0.57 0.451
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Source Nparm DF Sum of Squares F ratio Prob > F

Treatment*Sex 1 1 4.90 0.00 0.944

Sex 1 1 0.69 20.31 <0001

Treatment 1 1 0.04 1.30 0.259

Fasting 1 1 0.71 20.63 <0001

Insulin level Treatment*Sex 1 1 0.17 4.92 0.029

Fasting*Sex 1 1 0.36 10.46 0.002

Fasting*Treatment 1 1 0.01 0.44 0.511

Fasting*Treatment*Sex 1 1 0.06 1.74 0.191

Sex 1 1 0.01 10.95 0.002

QUICKI Treatment 1 1 0.00 0.05 0.825

Treatment*Sex 1 1 0.01 10.01 0.003

Sex 1 1 4.87 0.98 0.326

Treatment 1 1 4.74 0.95 0.333

Fasting 1 1 338.87 68.00 <0.0001

Adiponectin level Treatment*Sex 1 1 60.92 12.22 0.001

Fasting*Sex 1 1 0.16 0.03 0.856

Fasting*Treatment 1 1 1.31 0.26 0.610

Fasting*Treatment*Sex 1 1 31.32 6.28 0.014
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