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Abstract
Freezing tolerance of triticale is a major trait contributing to its winter hardiness. The identification of genomic regions — 
quantitative trait loci (QTL) and molecular markers associated with freezing tolerance in winter hexaploid triticale — was the 
aim of this study. For that purpose, a new genetic linkage map was developed for the population of 92 doubled haploid lines 
derived from ‘Hewo’ × ‘Magnat’ F1 hybrid. Those lines, together with parents were subjected to freezing tolerance test three 
times during two winter seasons. Plants were grown and cold-hardened under natural fall/winter conditions and then subjected 
to freezing in controlled conditions. Freezing tolerance was assessed as the plants recovery (REC), the electrolyte leakage 
(EL) from leaves and chlorophyll fluorescence parameters (JIP) after freezing. Three consistent QTL for several fluorescence 
parameters, electrolyte leakage, and the percentage of the survived plants were identified with composite interval mapping 
(CIM) and single marker analysis (SMA). The first locus Qfr.hm-7A.1 explained 9% of variation of both electrolyte leakage 
and plants recovery after freezing. Two QTL explaining up to 12% of variation in plants recovery and shared by selected 
chlorophyll fluorescence parameters were found on 4R and 5R chromosomes. Finally, main locus Qchl.hm-5A.1 was detected 
for chlorophyll fluorescence parameters that explained up to 19.6% of phenotypic variation. The co-located QTL on chromo-
somes 7A.1, 4R and 5R, clearly indicated physiological and genetic relationship of the plant survival after freezing with the 
ability to maintain optimal photochemical activity of the photosystem II and preservation of the cell membranes integrity. The 
genes located in silico within the identified QTL include those encoding BTR1-like protein, transmembrane helix proteins 
like potassium channel, and phosphoric ester hydrolase involved in response to osmotic stress as well as proteins involved in 
the regulation of the gene expression, chloroplast RNA processing, and pyrimidine salvage pathway. Additionally, our results 
confirm that the JIP test is a valuable tool to evaluate freezing tolerance of triticale under unstable winter environments.

Keywords  Freezing tolerance · Plant acclimation · Genetic map · QTL · Chlorophyll fluorescence · Transmembrane · 
Proteins · Regulation of gene expression · Cereals

Introduction

Freezing is one of the environmental stresses which can 
constrain agricultural production of winter crops; therefore, 
increasing freezing tolerance is still important for breeding 

programs in cold and temperate climates. Many plant species 
including hexaploid winter triticale (x Triticosecale Wittm.) 
have developed a specific adaptive response which allows 
to stand low and freezing temperatures. During cold accli-
mation process, plants can increase their freezing tolerance 
after an exposition to low but non-freezing temperatures 
(Levitt 1980; Winfield et al. 2010; Janeczko et al. 2019). In 

Communicated by Izabela Pawłowicz.

 *	 G. Gołębiowska 
	 gabriela.golebiowska@up.krakow.pl

1	 Institute of Biology, Pedagogical University of Cracow, 
Podchorążych 2, 30‑084 Kraków, Poland

2	 Department of Biotechnology and Bioinformatics, 
Faculty of Chemistry, Rzeszow University of Technology, 
Powstańców Warszawy 6, 35‑959 Rzeszow, Poland

3	 Department of Plant Breeding, Physiology and Seed 
Science, University of Agriculture in Kraków, Podłużna 3, 
30‑239 Krakow, Poland

4	 Plant Breeding and Acclimatization Institute, National 
Research Institute, 05‑870 Radzików, Błonie, Poland

5	 The Franciszek Górski Institute of Plant Physiology, Polish 
Academy of Sciences, Krakow, Poland

/ Published online: 7 September 2021

Journal of Applied Genetics (2022) 63:15–33

http://crossmark.crossref.org/dialog/?doi=10.1007/s13353-021-00660-1&domain=pdf


1 3

natural conditions, this process is initiated by the decreasing 
temperature in late autumn which is complex phenomenon 
associated with many molecular, biochemical and physi-
ological changes (Salinas 2002; Kaplan et al. 2004; Catala 
and Salinas 2008; Burbulis et al. 2011).

It has been previously reported that low temperature 
alters gene expression of a large number of genes encod-
ing proteins could potentially contribute to plant freezing 
tolerance (Thomashow 1998; Kovi and Ergon, 2016). Cer-
tain transcriptional responses are common for most of plant 
species such as induced expression of vernalization genes, 
CBF genes, and COR genes (Knox et al. 2008, 2010). Ver-
nalization gene group contain a VRN1, VRN2 and VRN3 
genes, whereas CBF gene group includes a set of tandemly 
duplicated CBF (C-repeat Binding Factors) transcription 
factors at the FR2 (Frost Resistance 2) locus (Galiba et al. 
2009). Furthermore, level of VRN1 transcript increase dur-
ing exposure to low temperatures (Kobayashi et al. 2005) 
and it can generate conversion from the vegetative to repro-
ductive plant growth stage (Stockinger et al. 2007). This 
transition is also associated with the suppressed induction 
of CBF group of genes in response to cold which results 
in reduced frost tolerance (Kobayashi et al. 2005; Dhillon 
et al. 2010; Zhu et al., 2014). Additionally, CBF similarly 
to COR genes enhance photosynthetic capacity which was 
reported in A. thaliana and B. napus photosynthetic capacity 
and freezing tolerance in response to temperature conditions 
(Kurepin et al. 2013). Furthermore, accumulation of proteins 
encoded by COR genes can lead to cell membrane stability 
under freezing conditions (Dong et al. 2002). 

The major group of genes associated with cereal freez-
ing tolerance have been reported and identified on the long 
arms of homeologous group 5 (Roberts 1990; Sutka 1994; 
Sutka and Snape 1989; Veisz and Sutka 1993; Kocsy et al., 
2010). Also, Danyluk et al. (1994) discovered that wCOR410 
and wCOR719 genes expression was regulated by factors 
located on chromosome 5A. Another locus, Fr-A1 on long 
arm of chromosome 5A was mapped in a close position to 
the previously described vernalization gene Vrn-A1 (Galiba 
et al. 1995). The presence of loci controlling expression of 
cor14b gene was identified on the long arm of 5A in wheat 
by Vágújfalvi et al. (2000, 2003). Additionally, wheat chro-
mosome 5D was proved to be involved in the regulation of 
freezing tolerance (Snape et al. 1997).

The measurement of chlorophyll fluorescence param-
eters proved to be the good method to evaluate the freez-
ing damage of plants reflecting freezing damages of photo-
synthetic apparatus (Rizza et al. 2001; Rapacz et al. 2011, 
2015b). Also the measurements of electrolyte leakage in 
freeze-damaged leaves are commonly used for estimation 
of freezing injury as freeze–thaw damages results in disin-
tegration of plasma membranes (Dexter et al. 1932). How-
ever, the results of chlorophyll fluorescence measurements, 

electrolyte leakage test, and plant survival count may give 
sometimes distinct results depending on environmental con-
ditions (Rapacz et al. 2015a).

Thus, we hypothesized that different effects of freezing 
on plants may be, at least partially controlled by different 
genes. In our study we decided to use quantitative trait loci 
(QTL) mapping technology performed on a newly developed 
genetic map for triticale to determine the number and to map 
position of loci of different measures of freezing tolerance 
such as chlorophyll fluorescence parameters (JIP test) after 
freezing, membrane integrity affected by freezing, and plant 
recovery after freezing tests field-laboratory freezing tests. It 
is known that interactions among loci or between genes/QTL 
and environment make a substantial contribution to varia-
tion in complex traits (Gupta et al. 2007). Additionally, we 
aimed to identify candidate genes located in genome regions 
associated with analyzed traits. Doubled haploid mapping 
population used in our study brought us a unique opportunity 
to perform all of the experiments to ensure sound quality of 
the results.

Materials and methods

Plant material

The mapping population consisting of 92 doubled haploid 
lines was derived from F1 generation of a cross between 
two triticale cultivars: cv. ‘Hewo’ used as a female parent 
(Strzelce Plant Breeding Ltd.) and cv. ‘Magnat’ as the pol-
len parent (Danko Plant Breeding Ltd.). Both parental cul-
tivars differed in tolerance to Microdochium nivale infection 
(Gołębiowska and Wędzony 2009), as well as in freezing 
tolerance in pre-tests (unpublished data). The DH ‘Hewo x 
Magnat’ lines population was developed by the androgenesis 
in the anther culture according to the method described by 
Wędzony (2003). The obtained DH lines were numbered 
from 1 to 92 in relation to the tests results of the degree of 
Microdochium nivale tolerance. This numbering has been 
kept for all experiments.

Genetic linkage map

The genomic DNA was isolated from young triticale leaves 
according to method described by Tyrka et al. (2011). Total 
DNA purity and integrity were tested on the agarose gels 
while its quantity was measured using UV–Vis Q500 spec-
trophotometer (Quawell, San Jose, USA).

Samples were genotyped in the Diversity Arrays Tech-
nology Pty Ltd (DArT P/L, Australia, www.​diver​sitya​rrays.​
com) to detect different types of DNA variation (single 
nucleotide polymorphism, indel, and methylation) and to 
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search for diagnostic markers. Using JoinMap 4 (Van Ooi-
jen 2006) software, the segregation data were analyzed to 
group all markers with LOD value > 3.0. Afterwards, mark-
ers within these groups were ordered using the RECORD 
program (Van Os et al. 2005). The marker order was used to 
sort all markers within linkage groups and graphical geno-
types were examined in Excel 2003. At this step, singletons 
were replaced by missing values in the dataset and calcula-
tions were repeated until no singletons were found (through 
three rounds). The distance between loci was calculated with 
the Kosambi function (Kosambi 1944). Finally, the final map 
has consisted of 680 DArT markers. Nomenclature of mark-
ers was synchronized with previously published map for par-
tially overlapping set of lines (Tyrka et al. 2015). Consensus 
triticale DArT map was used for group identification and 
orientation (Tyrka et al. 2018).

Simple sequence repeat (SSR) analyses comprised 56 
markers that were polymorphic between the two parental 
lines. The selected 37 mapped SSRs included the follow-
ing: 20 wms: gwm46, gwm95, gwm126, gwm130, gwm136, 
gwm146, gwm149, gwm164, gwm169, gwm181, gwm275, 
gwm332, gwm335, gwm339, gwm368, gwm375, gwm388, 
gwm495, gwm499, and gwm566 (Röder et  al. 1998); 7 
scm: scm101, scm120, scm138, scm180, scm268, scm28, 
and scm304 (Saal and Wricke 1999; Hackauf and Wehling 
2002); 7 wmc: wmc168, wmc219, wmc262, wmc289, 
wmc327, wmc434, and wmc537; and 3 other SSR markers: 
barc182, gdm109, and gdm147 (Pestsova et al. 2000; Somers 
et al. 2004). Four primer pairs (barc182, scm304, wmc168, 
and wmc327) revealed simultaneously two different loci. 
Redundant markers were shortlisted in final genetic map, 
and single representative markers with the lowest number 
of missing data were left to represent the bin with a total 
number of binned markers given in brackets.

Freezing tolerance assessment 
with the field‑laboratory method

All presented tests took place in Kraków, Poland (N 
50.069014, E 19.845528), according to the Koch and 
Lehman (1966) method with minor modifications, in three 
independent experiments with three replicates each, in the 
autumn/winter seasons. Three replicates were performed in a 
randomized complete block design in order to limit the error 
resulting from the marginal position of an individual geno-
type in the planting plastic boxes (30 cm × 38 cm × 9 cm). 
Kernels were sown in 13 rows of 10 kernels/genotype/box. 
One row per each parental line was sown in randomized 
positions in every box as a control. Total of 8 planting boxes/
replicate, 24 boxes per each experiment were planted and 
analyzed.

Plants were grown and cold-hardened under natural fall/
winter conditions in the open-air vegetation chamber. The 

temperature was monitored with an electronic weather sta-
tion WS-3600–11, Technoline, Berlin, Germany, and the 
mean values of daily temperatures are presented in Fig. 1. 
On the days indicated by arrows (Fig. 1), the exact num-
ber of growing seedlings was counted in each row, and the 
boxes with plants were moved to the freezing chamber where 
they were subjected to the cycle consisting of one day-long 
growth in − 2 °C, followed by gradual temperature decrease 
(3 °C/h) down to − 15 °C, and then stable for 6 h. Later, the 
temperature was increased at the rate 3 °C/h to + 2 °C. After 
reaching + 2 °C, the boxes were transferred to an unheated 
glasshouse maintained at 10–15 °C, and the plants were cut 
2 cm above the soil level. After 3 weeks, the number of 
surviving (regrowing) plants was established and the plant 
survival was expressed as a percentage of the survived plants 
from initially growing plants.

A

B

Experiment 1

Experiment 2 Experiment 3

Fig. 1   Daily temperatures (means) measured in the open-air veg-
etation chamber in autumn/winter seasons 2012/2013 (A) and 
2013/2014 (B). The dates of plant transfer to the freezing chamber 
(the start of the freezing test), leaves sampling for chlorophyll fluores-
cence measurements (JIP test), and electrolyte leakage measurements 
(on B) are indicated by arrows: 26 January 2012 (A), 21 January 
2013, and 4 March 2013 (B). The temperature was monitored with an 
electronic weather station (Ogimet)
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Chlorophyll a fluorescence measurements

Parameters of induction kinetics of chlorophyll a fluores-
cence in dark-adapted leaves (JIP test) were measured on the 
middle section of the second fully expanded detached leaves 
with HandyPEA fluorimeter (Hansatech Kings Lynn, UK). 
On the days indicated by arrows in Fig. 1 (experiments 1–3), 
before boxes with plants were put into the freezing chamber 
to perform freezing tests, 10–12 leaves were randomly col-
lected from each DH line, approximately the same number 
of 3–4 leaves/DH line from each of 3 replications. Since 
parental lines were present as a control in every box, parental 
samples consisted of approximately 26 leaves per each of 
3 replications. Leaves were packed into polyethylene bags 
with a string closure and frozen in − 15 °C for 6 h with the 
protocol described by Rapacz et al. (2015a). Then, the leaves 
were brought to room temperature and dark-adapted before 
measurements for 15 min in a leaf clip (Hansatech, Kings 
Lynn, UK). Chlorophyll a transient fluorescence was meas-
ured according to Rapacz (2007) with a light pulse intensity 
of 3500 μmol m−2 s−1, and the pulse duration for 0.7 s with 
the fixed gain (1 ×). The following parameters of JIP test 
were calculated and described as in Rapacz (2007): absorbed 
energy flux per leaf cross-section (CS) and the single, active 
PSII reaction center (RC) (ABS/CS, ABS/RC respectively); 
trapped energy flux in PSII reaction centers per leaf cross-
section and the single, active PSII reaction center (Tr0/CS, 
Tr0/RC, respectively); the energy flux for electron transport 
per leaf cross-section and the single, active PSII reaction 
center (ET0/CS, ET0/RC, respectively); dissipation of energy 
in PSII reaction centers per leaf cross-section and the single, 
active PSII reaction center (DI0/CS, DI0/RC, respectively); 
yield of the energy trapping in PSII (Fv/Fm); performance 
indexes of PSII (PI) normalized for minimal and maximal 
densities of active reaction centers per leaf cross-section 
(PICS0 and PICSm, respectively); minimal and maximal den-
sities of active reaction centers per leaf cross-section (RC/
CS0 and RC/CSm, respectively); and the quantum yield of 
electron transport (φEo) and the efficiency of the electron 
transfer from QA- to QB (ψo).

Electrolyte leakage measurements

The electrolyte leakage considered as the test of plasma 
membrane damages was performed in accordance with Flint 
et al. (1967), two times during winter 2013/2014 (dates indi-
cated by arrows on Fig. 1B, experiments 2 and 3). In each 
series, measurements were made in 20 biological replicates 
for each genotype (1 leaf from different plant = 1 replicate). 
Each leaf was placed separately in a 20-cm3 plastic tube 
filled with 5 cm3 of deionized water. The material was 
frozen for 6 h at − 15 °C with the protocol described for 
chlorophyll fluorescence studies. After removing from the 

freezing chamber, 10 cm3 of deionized water was added to 
each tube and then the samples were shaken (ROTH, Linegal 
Chemicals Sp. z o.o) at room temperature for 24 h. Then, 
conductivity measurements (EL1) were performed in each 
tube using a conductivity meter type OK 102/1 (Radelkis). 
Probes were then frozen in liquid nitrogen for 2 min and 
again shaken at room temperature for 24 h before the second 
electrical conductivity measurement (EL2). The EL % was 
calculated as EL = (EL1/EL2) × 100%, where EL1 = primary 
electrolyte leakage after − 15 °C treatment and EL2 = total 
electrolyte leakage after freezing in liquid nitrogen.

Statistical analysis

All the data were analyzed with Statistica 13.0 PL software 
(Statsoft, Tulsa, OK, USA). Distribution of the data was 
checked using histograms and accompanied with a Shap-
iro–Wilk test. For JIP test parameters, one-dimensional vari-
ance analysis was performed. Linear correlation coefficients 
(Pearson’s) were calculated for each of three experiments 
separately on the basis of mean value of replicates per geno-
type: (1) between percentage of survived plants and every 
parameter of fluorescence and (2) between the fluorescence 
parameters and electrolyte leakage (experiments 2 and 3). 
The regression line was presented with a 95% coefficient 
interval.

Quantitative trait loci (QTL) identification

To identify QTL regions associated with the analyzed traits, 
single marker analysis (SMA) and composite interval map-
ping (CIM) methods were calculated with the Windows 
QTLCartographer software version 2.5 (Wang et al. 2012). 
SMA analysis fits the data to the simple linear regression 
model while CIM method in turn, determines the linkage 
between QTL and markers limiting the designated interval 
on the chromosome map. The threshold logarithms of the 
odds (LOD) scores were calculated based on 1000 permu-
tations and 1 cM walk speed. QTL was accepted for LOD 
scores higher than 2.5. The percentage of phenotypic vari-
ation was calculated with a single factor regression (R2). 
Favorable alleles in each QTL region were selected on the 
basis of the additive effect (Add), where negative additive 
effect referred to cv. ‘Magnat’ and positive referred to cv. 
‘Hewo’. The CIM and SMA analyses were performed sepa-
rately for each experiment. Results of QTL analysis were 
visualized using CorelDRAW9 software.

The label of each identified QTL region was created from 
the short name of each parameter (ex., Qrec for recovery, 
survival; Qel for electrolyte leakage). For loci explained 
more than one trait, the general name was given (ex., Qfr 
for loci co-located for recovery, survival, and electrolyte 
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leakage; Qchl for loci containing analyzed chlorophyll a 
fluorescence parameters) Hewo × Magnat (hm), chromo-
some names (wheat A and B group, rye group R), and QTL 
number on the chromosome (1–4).

The in silico location of genes within the QTL

Within the localized QTL, candidate genes associated with 
the analyzed traits were identified in silico according to Kar-
barz et al. (2020) with modifications. Sequences correspond-
ing to the wheat, rye and triticale DArT clones of the flank-
ing and maximal LOD peak markers of the significant QTLs 
were downloaded from the Diversity Arrays Technology 
webpage (https://​www.​diver​sitya​rrays.​com/​techn​ology-​and-​
resou​rces/​seque​nces/). Then, DArT sequences were used to 
query the IWGSC RefSeq 1.0 wheat genome for physical 
mapping using the BLAST tool in the Unité de Recherche 
Génomique URGI database (https://​urgi.​versa​illes.​inra.​fr). 
Subsequently, DArT sequences were used to query all avail-
able wheat and rye genome collections for physical mapping 
using the BLAST tool of GrainGenes Blast Service beta 
(https://​doi.​org/​10.​1093/​molbev/​msz185). Genes localized 
on target physical wheat and rye regions were retrieved 
and annotated with the use of BLAST® (https://​blast.​ncbi.​
nlm.​nih.​gov/​Blast.​cgi); the sequences producing significant 
alignments and the highest query cover were selected. Next, 
the function of candidate genes was deduced from the Uni-
Prot database.

Results

Genetic map of the DH ‘Hewo’ x ‘Magnat’ population 
with SSR and DArT markers

A set of 92 DH lines derived from F1 triticale plants that 
originated from a cross between cv. ‘Hewo’ and cv. ‘Mag-
nat’ were used to create a new and unique genetic linkage 
map. Upon the multiple-mapping approaches, a total of 41 
SSR and 680 diversity array technology (DArT) markers 
were ordered into 22 linkage groups assigned to the A, B, 
and R genomes (Table 1; Fig. S1 A, B, R; Table S1). The 
mapped markers with common segregation pattern were 
binned. Markers representing bins were referred as ‘unique’ 
while number of all markers in a bin was treated as ‘total’ 
(Table 1). Additionally, three chromosomes, 7A, 2B, and 
3B, were represented by double linkage groups. All mapped 
DArT markers belonged to three groups, rPt, tPt, and wPt, 
that were developed respectively from rye, triticale, and 
wheat. Additionally, during the map construction a small 
number of markers were eliminated, mainly owing to a high 
percentage of missing data or a lack of linkage with estab-
lished markers clusters at LOD value of 2.0. Finally, all 

remaining markers have covered a total of 1367.7 cM with 
a mean distance between two markers of 4.7 cM. Micros-
atellite markers allowed assignment of linkage groups to 
chromosomes of the A and B genomes of wheat and to five 
chromosomes of rye (1R, 3R, 4R, 5R, and 6R) (Table 1). 
Comparative analyses with triticale maps (Tyrka et al. 2011, 
2015) and additional information on distribution of wheat 
DArT markers (series wPt) were provided by Diversity 
Arrays Technology Pty Ltd. and validated the assignment 
of linkage groups to rye chromosomes. The order of DArT 
and SSR markers that were used to develop this linkage 
map are presented in Supplementary Fig. S1 A, B and R 
and Supplementary Table S1. Details on the distribution of 
SSR and DArT markers across triticale genomes of Hewo 
x Magnat population showed the highest saturation of R 
genome with unique markers, whereas lower densities were 

Table 1   Genetic linkage map developed for ‘Hewo × Magnat’ DH 
mapping population. The mapped markers with common segrega-
tion pattern were binned. Markers representing bins were referred as 
‘unique’ while number of all markers in a bin was treated as ‘total’. 
The numbers in bold indicate the length of the entire map and the 
total number of markers

Genome Linkage 
group

Lenght (cM) Marker nos

Total Unique Density

A 1A 54.3 24 17 3.4
2A 45.0 10 6 9.0
3A 43.9 10 3 22.0
4A 76.1 34 13 6.3
5A 78.1 12 8 11.2
6A 48.3 8 4 16.1
7A.1 61.8 25 11 5.6
7A.2 53.3 17 10 5.9

Total genome A 460.8 140 72 6.4
B 1B 93.3 55 21 4.7

2B.1 65.1 16 10 7.2
2B.2 48.6 16 8 6.9
3B.1 22.9 14 8 3.3
3B.2 115.1 38 18 6.8
4B 42.5 12 7 7.1
5B 41.9 13 8 6.0
6B 97.6 42 16 6.5
7B 89.5 49 17 5.6

Total genome B 616.5 255 113 5.5
R 1R 17.5 20 5 4.4

3R 37.5 31 7 6.3
4R 71.6 82 17 4.2
5R 36.6 66 19 2.0
6R 127.2 127 58 2.2

Total genome R 290.4 326 106 2.7
Total 22 1367.7 721 291 4.7
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identified for the A and B genomes. R genome was covered 
by 326 markers with total length of 290.4 cM and a mean 
distance between two unique markers of 2.7 cM, whereas 
140 and 255 markers were distributed within genome A and 
B respectively, with total length of 460.8 and 616.5 cM and 
density 6.4 and 5.5 cM (Table 1; Table S1).

Freezing tolerance of plants cold acclimated 
under field conditions

From October to January of winter 2012/2013, plants 
of the experiment 1 grew under an average temperature 
about + 4 °C, mostly above 0 °C with few days decrease 
below (minimum in the average daily temperature 
to − 6.3 °C in December) (Fig. 1A). The winter 2013/2014 
was more severe. Plants of experiment 2 grew under 
large fluctuations of the average temperature which was 
mostly above 0 °C in October and November, but below 
0 °C in December and January, with minimum − 12.3 °C 
(Fig.  1B). The period with an average temperature of 
approximately − 2 °C started in December and continued 
until March, when temperature raised to about + 2 °C just 

before the experiment 3 measurements were performed 
(Fig. 1B).

The results of the freezing tolerance testing

The mean percentage of survived plants from three inde-
pendent freezing test performed during winter 2012/2013 
and 2013/2014 varied from 0 to 85% (Fig. 2). Transgressive 
segregation of plant recovery was observed in the evaluated 
population of DH lines. The minimal (0%) percentage of 
survived plants was observed for HM DH 59 line and the 
maximal for HM DH 22 (85%) line. Relatively high stand-
ard deviation for most DH lines clearly indicates that plants 
recovery strongly depend on weather conditions. Parent 
Hewo revealed higher percentage of survived plants after 
freezing (56%) than parent Magnat (48.5%).

PSII photochemical efficiency and membrane 
stability after freezing

Changes in photochemical efficiency under different stresses 
can be expressed by the chlorophyll a fluorescence param-
eters (Kurepin et al. 2013; Rapacz 2007). In our study, the 
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photosynthesis efficiency during cold hardening of triticale 
plants was evaluated based on the maximum quantum yield 
of photosystem II (PSII) (Fv/Fm), the overall performance 
indexes of PSII (PI) and particular JIP test parameters which 
were recommended by Rapacz et al. (2015a) as a good tools 
to evaluate freezing tolerance (RC/CSm, RC/CS0, TR0/CS, 
and ET0/CS). For all evaluated chlorophyll fluorescence 
parameters transgressive segregation was observed in our 
mapping population. The values of each parameter were 
different and dependent (Table 2, Figure S2). Relatively 
high standard deviation of chlorophyll fluorescence param-
eters for parents may result from the high impact of various 
weather conditions. In general, the photosynthetic apparatus 
for Hewo was more active and functioned better than that for 
Magnat, resulting in significantly higher ABS/CS (character-
izing light energy absorption), RC/CSm (number of active 
reaction centers). Fv/Fm (maximum quantum yield of PSII) 
and PI (overall performance index of PSII photochemistry) 
also had trends for higher means in Hewo, though similar 
amounts of energy used for electron transport and amount of 
excitation energy trapped in PSII reaction centers (ET0/CS 
and TR0/CS, respectively) were for both parents. However, 
the dissipation of energy in PSII reaction centers (DI0/CS 
and DI0/RC) was higher for Magnat than Hewo.

The degree of damage to cell membranes under frost was 
determined by the measurement of electrolyte leakage (EL) 
from leaf tissues. The statistically significant differences 
between parents were not observed. The value of the elec-
trolyte leakage for parental cvs.: Hewo and Magnat was 69% 
and 77%, respectively. The DH lines differed from parental 

values of electrolyte leakage. The transgression segregation 
was clearly highlighted: 65% of the DH lines from the popu-
lation were characterized by a lower statistically significant 
EL in relation to both Magnat and Hewo parental cultivars. 
In contrast, 11% of the DH lines showed a higher statistically 
significant EL value in relation to both parents. The min and 
max values of EL was 19% and 90%, respectively (Table 2).

Correlation between plant recovery, electrolyte 
leakage and chlorophyll a fluorescence parameters

A relationship was established between the average per-
centage of survived plants from three independent experi-
ments and the mean values of the electrolyte leakage and JIP 
parameters. For that purpose, the Pearson correlation coef-
ficient (r) was calculated between the individual parameters 
(Table 3). There was no statistically significant correlation 
between plant recovery and electrolyte leakage. In contrast, a 
relatively high positive correlation (0.34 to 0.62) was found 
between plant recovery (REC) and JIP parameters: Fv/Fm, 
Ψ0, φE0, PI, PICSo, PICSm, ABS/CS, TR0/CS, ET0/CS, ET0/
RC, RC/CS0, RC/CSm, and negative statistically significant 
correlation (− 0.32 to − 0.35) for ABS/RC, DI0/RC, and DI0/
CS. The correlation between freezing tolerance and TR0/RC 
was not statistical significant (Table 3, Fig. 2S).

EL was significantly negatively correlated with the indi-
vidual chlorophyll a fluorescence parameters: Fv/Fm, Ψ0, and 
φE0. Positive correlation was statistically significant from 0.36 

Table 2   Phenotypic 
performance for traits related 
to chlorophyll a fluorescence 
parameters and electrolyte 
leakage (EL) from leaves of 
doubled haploid lines and their 
parents

* Significance levels between parents ≤ 0.05

Traits Parents (mean ± SD) DH lines

Hewo Magnat Mean ± SD Min Max

Fv/Fm 0.71 ± 0.45 0.63 ± 0.36 0.66 ± 0.05 0.54 0.77
PI 0.89 ± 0.31 0.69 ± 0.34 0.66 ± 0.13 0.32 0.95
ψo 0.39 ± 0.12 0.38 ± 0.11 0.35 ± 0.03 0.29 0.44
φEo 0.28 ± 0.13 0.28 ± 0.13 0.25 ± 0.03 0.19 0.34
PICSo 324.48 ± 143.21 300.42 ± 122.62 287.98 ± 54.53 142.91 425.80
PICSm 1458.53 ± 426.89 1384.42 ± 512.49 1314.71 ± 319.48 525.43 2281.35
ABS/CS 432.54 ± 3.20 412.11 ± 16.77* 444.36 ± 31.73 348.74 547.45
TRo/CS 295.09 ± 117.95 291.41 ± 59.38 293.32 ± 31.66 223.70 364.88
ETo/CS 120.06 ± 58.22 115.08 ± 55.24 113.21 ± 15.14 72.19 157.70
DIo/CS 109.82 ± 33.17 148.65 ± 70.08* 151.45 ± 24.27 101.80 230.45
ABS/RC 5.20 ± 4.17 6.03 ± 5.53 6.27 ± 3.19 2.78 18.05
ETo/RC 0.87 ± 0.24 0.83 ± 0.25 0.80 ± 0.06 0.58 1.00
TRo/RC 2.31 ± 0.15 2.25 ± 0.16 2.34 ± 0.13 1.88 2.61
DIo/RC 0.77 ± 0.16 1.81 ± 0.19* 1.37 ± 0.52 0.68 3.26
RC/CSo 131.85 ± 39.94 127.45 ± 38.72 129.02 ± 13.61 102.28 158.47
RC/CSm 560.25 ± 239.73 526.87 ± 240.07* 521.11 ± 69.45 394.86 707.95
EL 69.51 ± 9.61 77.05 ± 15.54 59.12 ± 21.53 18.98 90.02
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to 0.48 between EL and the parameters: ABS/CS, DI0/CS, 
TR0/RC, and DI0/RC (Tqb. 3).

Quantitative trait loci (QTL) for plants recovery

Using CIM analysis, QTL regions for recovery (REC) 
expressed as percentage of survived plants were identified on 
chromosomes 7A.1, 1B, 2B.1, 4R, and 5R (Table 4; Fig. 3). 
Additionally, all QTL regions identified by SMA method are 
shown in Table S3. The phenotypic variation explained by 
those QTL ranged from 4.4 to 15.8% depending on winter 
conditions and method used (Table 4; Table S3). The QTL for 
percentage of survived plants evaluated in two experiments 
were co-located on chromosome 7A.1 and 1B and named Qfr.
hm-7A.1 and Qrec.hm-1B.1, respectively (Table 4; Fig. 3). 
Those loci covered 27.5–57.2 cM distance for Qfr.hm-7A.1 
and explained up to 9.5% of phenotypic variation. For second 
locus, Qrec.hm-1B.1 CIM analysis showed only one marker 
wPt-5899(3) in experiment 3 (Table 4; Fig. 3). Those loci 
explained up to 8.2% of phenotypic variation with the LOD 
value 2.5 (Table 4).

Quantitative trait loci (QTL) for electrolyte leakage

Electrolyte leakage (EL) was measured two times during win-
ter 2012/2013. QTL controlling EL after freezing, identified by 
CIM method were on chromosomes 7A.1, 7A.2, 4R, and 5R 
(Table 4; Fig. 3). Additionally, all QTL regions identified by 
SMA method are shown in Table S4. The phenotypic variation 
explained by those QTL ranged from 3.3 to 22.8% depend-
ing on experiment and method used (Table 4; Table S4). The 
locus Qfr.hm-7A.1, which was identified as associated with 
EL in experiment 3 was also co-located with QTL identified 
for plants recovery on chromosome 7A.1. Locus Qfr.hm-7A.1 
explained 9.5% of phenotypic variation observed for EL 
(Table 4) with LOD value 3.1 and was in similar position in 
cM to loci identified for plants recovery (Table 4). Another 
locus identified on chromosome 7A, Qel.hm-7A.2 was located 
in 8.9–19.9 cM distance and explained up to 13% of pheno-
typic variation; it contained loci found in experiment 2 and 3 
(Table 4; Fig. 3). Locus Qel.hm-4R.1 located in 9.8–16.5 cM 
distance on chromosome 4R was also identified in experi-
ment 2 and 3 (Table 4; Fig. 3). It explained up to 22.8% of 
phenotypic variation with the LOD value 6.5 in experiment 2 
(Table 4). One loci identified in experiment 3 was located on 
chromosome 5R and covered by wmc289 to rPt-506350(10) 
markers (Table 4; Fig. 3). This loci explained 6.8% of pheno-
typic variation (Table 4).
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Quantitative trait loci (QTL) for chlorophyll 
a fluorescence parameters

QTL for chlorophyll a fluorescence parameters identified 
by CIM method were located on chromosomes 4A, 5A, 
5B, 4R, and 5R (Table 5; Fig. 3). Additionally, QTL iden-
tified by SMA method are shown in Tables S5–S7.

Locus Qchl.hm-4A.1 identified on chromosome 4A in 
a distance between 21.1 cM to 56.6 cM consisted QTL 
for ET0/RC and explained 9.1%of phenotypic variation 
with the LOD value 2.5 (Table 5; Fig. 3). Locus Qchl.
hm-5A.1 covered by wmc327.1 to wPt-1370(2) markers 
was identified for Fv/Fm, PI, ABS/CS, ET0/CS and TR0/
CS in experiment 2 and 3 (Table 5; Fig. 3). It explained 
up to 19.6% of phenotypic variation with the LOD value 
up to 5.4 for TR0/CS (Table 5). On chromosome 5B, locus 
Qchl.hm-5B.1 was identified for ABS/CS with the LOD 
value 3.9 and phenotypic variation 11.6% (Table 5; Fig. 3). 
Locus Qchl.hm-4R.1 was identified on chromosome 4R for 
TR0/CS measured in experiment 2 and ABS/CS for experi-
ment 2 and 3 (Table 5; Fig. 3). Loci identified for ABS/CS 
and TR0/CS measured in experiment 2 were located in the 
same position (32.9–33.9 cM; Table 5). On chromosome 
5R, locus Qchl.hm-5R.1 was identified for PI, TR0/CS and 
ABS/CS measured in experiment 2 and TR0/CS measured 
in experiment 1 (Table 5; Fig. 3). This QTL explained up 
to 10.8% of phenotypic variation with LOD value up to 
3.2 (Table 5).

Candidate genes for analyzed traits

Seven candidate genes were in silico identified within QTL 
found for plants recovery (REC) and electrolyte leakage 
(EL) as well as trapped energy flux in PSII reaction cent-
ers per leaf cross-section (Tr0/CS), the energy flux for elec-
tron transport per leaf cross-section (ET0/CS) and absorbed 
energy flux per leaf cross-section (ABS/CS) traits (Table 6). 
Gene coding PPR protein involved in chloroplast RNA pro-
cessing, modification, and splicing was identified as asso-
ciated with plants recovery (Table 6). Genes identified as 
associated with electrolyte leakage encode mRNA-binding 
protein BTR1-like and involved in regulation of gene expres-
sion as well as transmembrane cyclic nucleotide-gated ion 
channel (Table 6). In turn, genes associated with chlorophyll 
a fluorescence parameters were chloroplastic uridine kinase-
like protein 1 involved in the pyrimidine salvage pathway, 
uncharacterized LOC119301557 and phosphoinositide phos-
phatase SAC9 involved in stress signaling (Table 6).

Discussion

Recently, climate change has been disturbing the natural 
hardening process (Dalmannsdottir et al. 2017). Global 
warming caused by the increase in average temperature on 
Earth is reflected in climate instability and violent local 
breakdowns of the weather. This leads to the limitation of 

Table 4   Summary of QTL identified using CIM method for plant recovery (REC), percentage of survived plants and electrolyte leakage (EL) 
from leaves after plant freezing

a R2 (%), the percentage of phenotypic variance explained by the QTL
b Add, additive effects of QTL expressed in the trait unit
c Favorable allele for each QTL: H, cv. Hewo and M, cv. Magnat

QTL name QTL name Trait-experiment Flanking markers Interval/position (cM) LOD R2 (%)a Addb Favora-
ble 
allelec

Qel.hm-7A-1.4 Qfr.hm-7A.1 EL-3 wPt-6668(4)-wPt9207(2) 27.5–38.3 3.1 9.5  − 5.5 M
Qrec.hm-7A-1.4 REC-2 wPt-6668(4)-wPt-6824(2) 27.5–57.2 2.6 6.9 6.6 H

REC-3 wPt-0393-wPt-6824(2) 36.2–57.2 2.5 9.2 6.5 H
Qel.hm-7A-2.1 Qel.hm-7A.2 EL-2 tPt-513624-tPt-2230(2) 8.9–19.9 2.6 8.7 8.1 H

EL-3 tPt-513624-wPt-1961 8.9–19.3 4.1 13.0 6.4 H
Qrec.hm-1B.1 Qrec.hm.1B.1 REC-3 wPt-5899(3) 79.9 2.5 8.2 6.7 H
Qrec.hm-2B.1 Qrec.hm-2B.1 REC-3 wPt-9402(4)-wPt-1920 36.3–46.1 2.9 10.4 7.2 H
Qel.hm-4R.1 Qel.hm-4R.1 EL-2 rPt-389466-rPt-389872(5) 9.8–16.5 6.5 22.8 18.7 H

EL-3 rPt-389466-rPt-389872(5) 9.8–16.5 2.5 7.7 4.9 H
Qrec.hm-4R.1 Qrec.hm-4R.2 REC-1 tPt-402470-rPt402563(5) 22.6–25.2 3.5 12.9 -0.8 M
Qrec.hm-4R.2 Qrec.hm-4R.3 REC-3 tPt-402443(4) 57.2 3.0 10.8  − 10.8 M
Qrec.hm-5R.1 Qrec.hm-5R.1 REC-2 rPt-508323(2)-tPt-390596(4) 22.2–26.5 2.5 6.3  − 6.9 M
Qel.hm-5R.1 Qel.hm-5R.2 EL-3 wmc289-rPt-506350(10) 32.0–32.9 2.5 5.0 6.8 H
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seamless adjustment of plant physiology to the prevailing 
conditions, including the course of winters (Rapacz et al. 
2014; Dalmannsdottir et al. 2017). Thus, an effective method 
to evaluate plant freezing tolerance and/or winter hardiness 
under unstable winter conditions is urgently needed. In our 
study, we observed differences in plant recovery of DH 
‘Hewo x Magnat’ lines population after freezing depend-
ing on the experiment condition. Furthermore we observed 
that differences in plant recovery between those DH lines 
were closely related to damages of photosynthetic appa-
ratus measured by means of JIP analysis. The relationship 
between plant survival and photochemical efficiency of PSII 
under unstable winter conditions was confirmed earlier in 
wheat (Clement and van Hasselt 1996; Rapacz 2007), oat 

(Rizza et al. 2001), barley (Francia et al. 2004), and triticale 
(Rapacz et al. 2011, 2015ab).

The most commonly reported fluorescence parameter for 
evaluating plant responses to abiotic stress is Fv/Fm which 
informs about the maximum photochemical PSII activity 
(Del Rosso et al. 2009). In the studied population, a high 
positive and statistically significant correlation (0.52) 
between plant survival and Fv/Fm was obtained. However, 
there are many reports available showing that different 
parameters of chlorophyll fluorescence parameters followed 
by JIP tests could be used as the more effective indicators 
of freezing tolerance than Fv/Fm, especially when plants are 
well cold acclimated before the measurements, which was 
also reported for triticale (Rapacz et al. 2011, 2015ab, 2017). 

Fig. 3   Interval map (cM) for 4A, 5A, 7A.1, 7A.2, 1B, 2B.1, 5B, 4R, and 5R chromosomes of ‘Hewo’ x ‘Magnat’ DH population with QTL iden-
tified by CIM method for plant recovery (REC), and electrolyte leakage (EL), Fv/Fm, PI and energy fluxes parameters
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In the present study, we confirmed high statistically signifi-
cant correlation values of the remaining JIP parameters with 
plant survival. Similarly to Rapacz et al. (2015a) study, in 
our results on the JIP test, best correlating with plant sur-
vival were ET0/CS and RC/CSm parameters. Moreover, in 
our study, the dependence of plants ability to recover after 
freezing on photosynthetic apparatus was also reflected in 
the colocation of quantitative traits loci on chromosomes 4R 
and 5R, where many genes related with freezing tolerance 
were earlier identified.

The location of QTL that control the photochemical 
efficiency of PSII on chromosome 5 group (5A, 5B, and 
5R) may indicate that this trait is partially controlled by the 
frost-resistance genes. The main QTL associated with pho-
tochemical activity of PSII were mapped on chromosome 
5A at 58.7–78.1 cM, within the range for which the major 
frost-resistance loci Fr-A1 and Fr-A2 identified by other 
authors (Vágújfalvi et al. 2000, 2003). The QTL identified 
on chromosome 5A for chlorophyll fluorescence parameters 
may also contain the vrn1 gene (located in close proximity 
to the Fr-A1 frost-resistance locus). This hypothesis may be 
supported by the fact that the wPt-1370 marker located on 
chromosome 5A in DH Hewo x Magnat mapping population 
used in our study was reported as a marker in close proxim-
ity to the gene vrn1 on the genetic map developed for the 

wheat population Berkut/Krichauff (Genc et al. 2010). On 
chromosome 5A, the following genes have been also iden-
tified: Cor14b, Cbf3 (Vágújfalvi et al. 2000, 2003; Miller 
et al. 2006), Cbf14, and Cbf15 (Båga et al. 2007). In addi-
tion, the Cbf genes: TmCBF12 and HvCbf14 recognized as 
candidate genes for frost-resistance genes were also located 
on chromosome 5A at the locus labeled Fr-A2 in wheat 
and respectively at the locus labeled Fr-H2 in barley at the 
homeological chromosome 2H (Knox et al. 2008; Fricano 
et al. 2009). On the 5B wheat chromosome, genes associated 
with flowering and frost tolerance have been identified and 
the locus was labeled Fr-B1 (Toth et al. 2003). These results 
clearly indicate an important role of 5 chromosome groups 
in the creating of plant freezing tolerance not only in wheat 
but also in triticale (Alm et al. 2011).

For the purpose of present QTL analysis, new genetic 
map of DH ‘Hewo’ x ‘Magnat’ lines population was devel-
oped. The unique set of SSR and DArT markers enabled 
to assign a total of 721 markers into 22 linkage groups of 
triticale. Diversity Arrays Technology (DArT) used in our 
research is known as a tool used to construct genetic maps 
of many crop species (Wenzl et al. 2004). That microarray 
technology can provide the information of several thousand 
sequence-specific markers without sequence information 
(Jaccoud et al. 2001; Karbarz et al. 2020). In our research, 

Table 5   Summary of QTL for Fv/Fm (the yield of the energy trap-
ping in PSII), PI (performance indexes of PSII) and energy fluxes 
(RC per single, active PSII reaction center and CS per leaf cross-sec-

tion) identified using CIM methods. QTL name includes each param-
eter name (after the letter Q)

a R2 (%), the percentage of phenotypic variance explained by the QTL
a Add, additive effects of QTL expressed in the trait unit
c Favorable allele for each QTL: H, cv. Hewo and M, cv. Magnat
Abbreviations: ABS/CS, absorbed energy flux per leaf cross-section (CS); Tr0/CS, trapped energy flux in PSII reaction centers per leaf cross-
section; ET0/CS, the energy flux for electron transport per leaf cross-section; ET0/RC, the energy flux for electron transport per the single, active 
PSII reaction center; Fv/Fm, yield of the energy trapping in PSII; PI, performance indexes of PSII

QTL QTL name Trait-experiment Flanking markers Interval/position (cM) LOD R2 (%)a Addb Favora-
ble 
allelec

Qetorc.hm-4A.1 Qchl.hm-4A.1 ET0/RC-1 wPt-7280-wPt-2151 32.3–56.6 2.5 9.1 3.7 H
Qfvfm.hm-5A.2 Qchl.hm-5A.1 Fv/Fm-3 wmc327.1-wPt-1370(2) 0.0–19.4 3.3 12.0 0.1 H
Qpi.hm-5A.2 PI-2 wmc327.1-wPt-1370(2) 0.0–19.4 3.8 11.5 0.1 H
Qabscs.hm-5A.2 ABS/CS-3 wmc327.1-wPt-1370(2) 0.0–19.4 3.3 12.7 25.5 H
Qetocs.hm-5A.2 ET0/CS-3 wmc327.1-wPt-1370(2) 0.0–19.4 3.9 13.0 11.4 H
Qtrocs.hm-5A.2 TR0/CS-3 wmc327.1-wPt-1370(2) 0.0–19.4 5.4 19.6 36.8 H
Qabscs.hm-5B.1 Qchl.hm-5B.1 ABS/CS-3 wPt-7167-wmc537 28.6–41.9 3.9 11.6 24.8 H
Qabscs.hm-4R.2 Qchl.hm-4R.1 ABS/CS-2 tPt-513729-tPt-508199(2) 32.9–33.9 2.5 7.5  − 11.3 M
Qtrocs.hm-4R.2 TR0/CS-2 tPt-513729-tPt-508199(2) 32.9–33.9 2.8 8.8  − 9.0 M
Qabscs.hm-4R.2 ABS/CS-3 wPt-4487(3)-tPt-402443(4) 45.0–57.2 3.1 10.3  − 22.8 M
Qpi.hm-5R.1 Qchl.hm-5R.1 PI-2 gwm136-tPt-508190(6) 0.0–28.7 3.2 9.6 0.1 H
Qtrocs.hm-5R.1 TR0/CS-2 gwm136-rPt-507354(4) 0.0–8.0 3.1 10.8  − 10.6 M
Qabscs.hm-5R.1 ABS/CS-2 tPt-390596(4)-rPt-508323(2) 22.2–26.5 2.5 7.5  − 11.8 M
Qtrocs.hm-5R.1 TR0/CS-1 rPt-505449(6) 13.5 2.6 6.2  − 6.1 M
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the distribution of DArT and SSR markers showed the 
highest saturation of R genome in contrast to the A and B 
genomes. Similar effect with the best coverage and highest 
density of R genome in triticale genetic maps were previ-
ously described by Tyrka et al. (2011) and Karbarz et al. 
(2020). Up to now, several genetic maps have been devel-
oped and reported QTL analysis in triticale (Alheit et al. 
2011; Badea et al. 2011; González et al. 2005; Tyrka et al. 
2011, 2015; Krzewska et al. 2012, 2015; Dyda et al. 2019; 
Karbarz et al. 2020).

Numerous QTL associated with the most commonly ana-
lyzed Fv/Fm chlorophyll a fluorescence parameter have been 
identified in association with various types of stress (Yang 
et al 2007; Liang et al 2010; Alm et al. 2011; Zhang et al. 
2017; Czyczyło-Mysza et al. 2011, 2013; Kumar et al. 2012; 
Cheng et al. 2012; Bhusal et al. 2018; Dyda et al. 2019). 
QTL for Fv/Fm under drought stress was identified in wheat 
on chromosome 5A (Czyczyło-Mysza et al. 2011; Liang 
et al. 2010; Alm et al. 2011). No correlation was observed in 
our study between plant recovery after freezing and electro-
lyte leakage from freezing-damaged leaf tissues of triticale. 
On the other hand, 10 QTL regions related to the stability of 
cell membranes measured by electrolyte leakage from leaf 
tissues after freezing have been identified. Further studies 
would help assess whether the identified QTLs for the EL 
could be related to other parameter/s related to plant survival 
after freezing that was not measured in this work. The QTL 
identified for freezing tolerance of photosynthetic apparatus 
was located on chromosomes inherited from wheat, 4A, 5A, 
5B, and on rye chromosomes, 4R and 5R. QTL on chromo-
somes 4A, 5A, and 5B, two loci on chromosome 4R as well 
as loci on 5R chromosome were identified in both experi-
ments conducted during winter 2012/2013. In our study, loci 
related to cell membrane stability were identified on chromo-
some 7A, that is the same chromosome where Morgan and 
Tan (1996) identified QTL associated with osmoregulation 
in wheat. In rice (Oryza sativa L.) under drought stress, QTL 
of the cell membranes stability were identified on chromo-
somes 1, 3, 7, 9, 11, and 12 (Tripathy et al. 2000) as well as 
chromosome 8 (Lilley et al. 1996; Tripathy et al. 2000). The 
literature also provides a lot of information on the genes that 
are expressed in response to the stress of drought and low 
temperature and regulate the condition of cell membranes 
(Danyluk et al. 1998; Nylander et al. 2001; Alm et al. 2011; 
Kocheva et al. 2014; Janeczko et al. 2019).

In our research, we mainly focused on finding the molecu-
lar background of freezing tolerance based on the crosstalk 
between chlorophyll fluorescence measurements of photo-
synthetic apparatus freezing tolerance, cell membrane sta-
bility, and plant recovery abilities after freezing. For these 
three components of plant freezing tolerance, we found 
durable, strong, constant quantitative trait loci regardless 
on plant growth conditions. A total of 9 genomic regions 

(QTL on 7A, 1B, 2B, 4R and 5R chromosomes) associated 
with plant survival after freezing were identified. Four of 
them were mapped in at least two experiments (7A, 1B and 
one locus on 4R chromosome). In contrast, QTL identified 
for one seasons can be considered as potential loci and/or 
loci specific to particular weather conditions. QTL of plant 
survival after freezing identified on chromosome 1B con-
firmed previous results obtained for Norstar × Cappelle-
Desprez DH population where locus of frost resistance was 
mapped (Chodaparambil 2009). Frost-resistance loci in the 
DH Norstar × Cappelle-Desprez population were identified 
on chromosome 1B at 90–118 cM. In the present study, 
QTL of plant recovery was located in a close position on 
chromosome 1B at position 79.9 cM. Similar to the results 
obtained for the Hewo × Magnat DH population, also some 
of the earliest studies have indicated that genes associated 
with wheat frost resistance are located on chromosomes 7A 
and 2B (Sutka 1981; 1994; Galiba et al. 2003) and addition-
ally on chromosomes: 4B and 4D (Law and Jenkins 1970; 
Puchkov and Zhirov 1978; Sutka 1981; Roberts 1986). Chro-
mosome groups 1, 2, and 7 indicated in this study as contain-
ing strong QTL of plant survival regardless of environmental 
conditions, could mainly carry loci responsible for vernali-
zation, flowering and photoperiod regulation, which only 
may indirectly affect cereal frost resistance (Galiba et al. 
1995; Law and Worland 1997; Mahfoozi et al. 2000; Skinner 
et al. 2004). Genes related to the vernalization process are 
located, for example, on the wheat group 1 homeological 
chromosome (vrn3 gene) (Law and Worland 1997) and on 
barley 7 chromosomes (sh2 gene) (Pan et al. 1994; Galiba 
et al. 1995) and on the 7 rye chromosome (Plaschke et al. 
1993; Galiba et al. 1995). In the presented study, QTL of 
plant survival after freezing was located exclusively on one 
of the chromosomes of 5 group, rye chromosome (5R). The 
reason why the locus responsible for plant survival was not 
mapped on chromosome 5A in the studied population is 
probably the lack of variation between parents in this region. 
Moreover, in triticale the absence of important freezing tol-
erance loci on wheat chromosome 5D are reported to be 
compensated by 5R loci.

On chromosome 5R many authors have identified genes 
of freezing tolerance described as CBF family, closely 
related to the locus corresponding to the locus Fr2 on home-
ological chromosomes of the 5 group in barley, diploid, and 
hexaploid wheat and meadow fescue (Francia et al. 2007; 
Baga et al. 2007; Knox et al. 2008; Tamura and Yonemaru 
2010; Alm et al. 2011; Zhang et al. 2019). Campoli et al. 
(2009) also identified 12 different Cbf family genes on 
the long arm of the 5R chromosome. Loci ScCbf (ScCbf2, 
ScCbf6, ScCbf9b, ScCbf12, ScCbf15, ScIce2, ScDhn3) were 
mapped on chromosome 5R in similar positions to the frost-
resistance loci Fr-H2/Fr-am2 in barley and diploid wheat, 
respectively (Li et al. 2011a, b). The described Cbf family 
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genes (Campoli et al. 2009; Li et al. 2011a, b) were located 
on the 5R chromosome in similar position as Qrec.hm-5R.1 
identified in our study. Campoli et al. (2009) clearly showed 
that the expression of Cbf family genes is closely related 
to the temperature during the acclimation process and the 
measurement time. This hypothesis could explain why this 
QTL was identified in our study only in experiment 3.

In the evaluated Hewo × Magnat DH population, QTL 
regions co-located for plant survival, membrane stability, 
and photochemical PSII efficiency were identified on rye 
chromosomes 4R and 5R. QTL for these parameters could 
indicate the partially general genetic background respon-
sible for the survival of whole plants and the protection of 
their photosynthetic apparatus after freezing. The colocation 
of the QTL for photochemical PSII efficiency, membrane 
stability and plant survival may be due to the fact that co-
located genes can control the effectiveness of photosynthesis 
under stress conditions and affect protection during acclima-
tization or to aid plant regeneration after stress. The involve-
ment of such mechanisms can be jointly controlled at the 
genome level, and even the efficiency of the photosynthetic 
apparatus can directly be responsible for the ability of plant 
to survive freezing. On the other hand, the incomplete cor-
relation between the chlorophyll fluorescence parameters, 
membrane stability and the plant survival and the lack of 
collocation of many QTL obtained between these parameters 
suggest that not all physiological mechanisms were indicated 
and plant recovery, membrane stability, and photosynthetic 
efficiency of PSII under stress conditions in many aspects 
are controlled by different genes.

Our results of QTL and gene identification strongly indi-
cate physiological and genetic relationship of the plant sur-
vival after freezing with the photochemical activity of the 
photosystem II. For plants recovery after freezing stress, 
gene coding pentatricopeptide repeat-containing protein 
At4g18520, involved in chloroplast RNA processing, modi-
fication, and splicing, was identified. Such a result indicates 
a significant role of chloroplast genes in winter triticale seed-
lings frost survival. Other authors research, conducted in 
Arabidopsis thaliana showed that protein At4g18520 may be 
required for proper chloroplast development, the regulation 
of the plastid gene expression probably through regulation 
of plastid-encoded polymerase (PEP) dependent chloroplast 
transcription, for RNA editing of several chloroplastic tran-
scripts (especially accD transcripts), for processing of the 
chloroplastic rpoA pre-mRNA as well as for the monocis-
tronic rpoA transcript processing (Yin et al. 2012).

In turn, genes identified as associated with chlorophyll 
a f luorescence parameters were chloroplastic uridine 
kinase-like protein 1, uncharacterized LOC119301557, 
and phosphoinositide phosphatase SAC9. Uridine kinase 
is plasma membrane protein, involved in CTP and UMP 
salvage, nucleoside metabolic process, protein secretion, 

regulation of exocytosis, and vesicle docking involved 
in exocytosis. Phosphoinositide phosphatase could be 
involved in stress signaling (Williams et al. 2005). At the 
same time, these genes were identified for the chlorophyll 
fluorescence parameters, the values of which showed a 
positive correlation with the plants recovery tests result. 
Genes found for electrolyte leakage code mRNA-binding 
protein BTR1-like involved in regulation of gene expres-
sion as well as transmembrane cyclic nucleotide-gated 
voltage-gated potassium channel. Protein-forming potas-
sium channel was identified among abiotic stress respon-
sive proteins of wheat grain determined using proteomics 
technique by Kamal et al. (2010).

In conclusion, QTL that control the PSII photochemi-
cal efficiency were identified on chromosome 5 group 
(5A, 5B, and 5R). Six genomic regions associated with 
plant survival after freezing (REC) were identified and 
two of them were mapped in two experiments (chromo-
somes 7A.1, 1B, 5R, and 4R). Co-located QTL for plant 
survival, membrane stability, and photochemical PSII effi-
ciency were identified on chromosomes 4R and 5R. The 
collinearity of the QTL for PSII photochemical efficiency, 
membrane stability, and plant survival may be due to the 
fact that co-located genes can control the effectiveness of 
photosynthesis under stress conditions and affect protec-
tion during acclimatization or to aid plant regeneration 
after stress. The same QTL for electrolyte leakage and 
plant recovery Qfr.hm-7A.1 was identified in two experi-
ments indicating that these QTL are responsible for dif-
ferences in freezing tolerance in our mapping population 
regardless on strong genotype-environmental interaction 
observed for freezing tolerance in triticale making this 
regions particularly interesting for breeders. QTL for 
percentage of plant survival and electrolyte leakage were 
both co-located on chromosomes 4R and 5R with QTL for 
several chlorophyll fluorescence parameters. Such results 
indicate that the correlation exist between freezing toler-
ance of photosynthetic apparatus, plasma membranes and 
plant regrowth after freezing. This conclusion is also sup-
ported by chloroplast and membrane genes identified in 
genome regions associated with these traits.
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