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Abstract
The endothelium acts as the barrier that prevents circulating lipids such as lipoproteins and fatty acids into the arterial wall; 
it also regulates normal functioning in the circulatory system by balancing vasodilation and vasoconstriction, modulating 
the several responses and signals. Plasma lipids can interact with endothelium via different mechanisms and produce differ-
ent phenotypes. Increased plasma-free fatty acids (FFAs) levels are associated with the pathogenesis of atherosclerosis and 
cardiovascular diseases (CVD). Because of the multi-dimensional roles of plasma FFAs in mediating endothelial dysfunc-
tion, increased FFA level is now considered an essential link in the onset of endothelial dysfunction in CVD. FFA-mediated 
endothelial dysfunction involves several mechanisms, including dysregulated production of nitric oxide and cytokines, 
metaflammation, oxidative stress, inflammation, activation of the renin-angiotensin system, and apoptosis. Therefore, modu-
lation of FFA-mediated pathways involved in endothelial dysfunction may prevent the complications associated with CVD 
risk. This review presents details as to how endothelium is affected by FFAs involving several metabolic pathways.

Keywords  Endothelial cells · Atherosclerosis · CVD · FFA · LCPUFAs · Metaflammation · Prostaglandins

Abbreviations
ACE	� Angiotensin-converting enzyme
ANGPT2	� Angiopoietin 2
ANGPTL4	� Angiopoietin-like 4
COX	� Cyclooxygenase
CVD	� Cardiovascular disease
DAMP	� Damage-associated molecular pattern
DHA	� Docosahexaenoic acid
EPA	� Eicosapentaenoic acid
ET-1	� Endothelin-1
EPC	� Endothelial progenitor cell
FFA	� Free fatty acid
FABP	� Fatty acid-binding protein
CD36	� Cluster of differentiation 36
FATP	� Fatty acid transport proteins
LCFA	� Long-chain saturated fatty acid
LCPUFA	� Long-chain polyunsaturated fatty acid
LDL	� Low-density lipoprotein

MYC	� V-Myc avian myelocytomatosis viral onco-
gene homolog

NO	� Nitric oxide
PPARα	� Peroxisome proliferator-activated receptor 

alpha
PPARγ	� Peroxisome proliferator-activated 

receptor-gamma
PG	� Prostaglandin
PUFA	� Polyunsaturated fatty acid
RAS	� Renin-angiotensin system
ROS	� Reactive oxygen species
SREBP-1c	� Sterol regulatory element-binding protein 1c
SERCA​	� Sarco/endoplasmic reticulum calcium 

ATPase
Tx	� Thromboxane
TNFα	� Tumor necrotic factor α
TLR	� Toll-like receptor

Introduction

The tightly regulated vascular endothelium forms a vast 
interface between the flowing blood and neighboring tissues. 
The endothelium, which consists of a monolayer of endothe-
lial cells, has a thickness of ≤ 1 μm and covers a total surface 
area of 4000 -7000 m2. Endothelial cells play various roles in 
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the maintenance of vascularity of endothelium. Endothelial 
cells are responsible for a wide range of critical functions, 
including maintaining vascular tone, fluidity of blood, blood 
flow, and permeability of endothelium [1, 2]. In addition, 
the endothelium regulates normal functioning in the circula-
tory system by balancing vasodilation and vasoconstriction 
between thrombosis and hemostasis by modulating the sev-
eral responses and signals [1, 3]. Thus, impairment of the 
endothelial functions plays deleterious roles in developing 
various disorders/diseases, including inflammatory angiitis 
syndrome, thrombotic embolism, disseminated intravascular 
coagulation disorder, neovascularization, tumor progression, 
and diabetic retinopathy [4].

The presence of atherosclerosis is a prevalent charac-
teristic in cardiovascular disease (CVD), and that endothe-
lial dysfunction is thought to be one of the early steps in 
the pathogenesis of atherosclerosis. Endothelial cells can 
affect various pathophysiological properties by producing 
different molecules [5]. Endothelium-secreted compounds 
such as angiotensin II (Ang II), endothelin-1 (ET-1), 
thromboxane(Tx) A2, and prostaglandin (PG) H2 involve in 
vasoconstriction, whereas nitric oxide (NO), prostacyclin 
(PGI2), bradykinin, and hyperpolarizing factor involve in 
vasodilation thus maintain a balance between the vasocon-
striction and vasodilation [3]. Although dysregulated NO 
production is the main regulator of endothelium dysfunction, 
PGI2 and bradykinin also participate in regulating endothe-
lium function. Therefore, the delicate balance between these 
endothelium-secreted molecules is critically required for the 
appropriate functioning of the endothelium [5]. Located at 
the interface between the circulation and the vessel wall, the 
endothelium reacts by synthesizing and releasing vasoactive 
substances with anti-thrombotic, vasodilating, and anti-ath-
erogenic properties to maintain vascular homeostasis [6, 7].

The endothelium has a major function in regulating vas-
cular tone, controlling blood flow, and blood fluidity and 
inflammatory responses [7, 8]. The inner layer of endothe-
lium that comprises endothelial cells allows free blood flow 
and its cellular components. In addition, endothelial cells 
produce various factors regulating cellular adhesion, plate-
let aggregation response, smooth muscle cell proliferation, 
and inflammation [8, 9]. In addition, the endothelium exerts 
multiple actions on the expression of several pro-inflamma-
tory genes, including those encoding adhesion molecules, 
chemokines, and other soluble cytokines of the endothelium 
[10–12].

Endothelial biology is affected by circulating lipids 
such as triglycerides-rich particles, chylomicron resident 
time, lipoproteins, and free fatty acids (FFAs) [13]. FFAs 
are released into the blood through the action of hormone-
sensitive lipase on triacylglycerol stores in adipose tissue. 
Chylomicrons also contribute to plasma FFA levels, espe-
cially when high-fat diets are consumed. Increased plasma 

FFAs cause insulin resistance and endothelial dysfunction. 
The most observed lipid abnormalities in type 2 diabetes, 
metabolic syndrome, and CVD are hypertriglyceridemia, 
hyperlipoproteinemia, higher levels of FFAs, greater levels 
of small dense low-density lipoprotein (LDL) [14]. Several 
human epidemiologic and clinical intervention data sug-
gested the association between circulating triacylglycerol 
levels and atherosclerosis [15, 16]. Plasma levels of FFAs, 
a well-established risk factor of CVD [17] are strongly 
associated with metabolic syndromes, obesity, and type 2 
diabetes mellitus [18]. Several studies demonstrated that 
FFAs modulate the endothelial function and subsequent 
atherosclerosis processes. Elevated FFAs directly affect 
transcription factors of several genes involved in inflam-
mation and oxidative stress in the endothelium.

FFA-induced endothelial dysfunction is mediated via 
several mechanisms, including impaired insulin signaling, 
dysregulation of NO synthesis, oxidative stress, inflamma-
tion, and the activation of the renin-angiotensin system 
(RAS) and apoptosis. Insulin resistance, oxidative stress, 
and inflammatory conditions are responsible for FFA-
induced endothelium dysfunction [19–21]. Activation of 
endothelial cells by inflammation, proliferation, hyper-
coagulability, activation of vasoactive factors, enhanced 
apoptosis, increased vascular permeability, presence of 
free radicals is defined as endothelial dysfunction [22]. 
Because of the multifaceted roles of plasma FFAs in mod-
ulating endothelial function, elevated FFA level is now 
considered an essential link in the onset of endothelial dys-
function due to metabolic syndromes such as diabetes and 
obesity. Therefore, modulation of the signaling pathways 
involved in FFA-induced endothelial dysfunction may pro-
tect against endothelial dysfunction and subsequent CVD 
complications such as atherosclerosis.

Endothelial dysfunction is a significant feature in ath-
erosclerosis, hypertension, diabetes, and cardiovascular dis-
orders [7, 23]. Defective endothelium results in leukocyte 
adhesion, activation of platelets, pro-oxidation of mitogens, 
dysregulated synthesis of PGI2, NO, and endothelium-
derived hyperpolarizing factor (EDHF), and other vaso-
constriction factors such as Ang II and PGH2, resulting in 
atherosclerosis and thrombosis [24]. A balance between the 
levels of vasoconstrictors (TxA2, PGH2, ET-1) and vaso-
dilators (NO, EDHF, PGI2) produced by the endothelium 
determines the vascular tone. The expression of adhesion 
molecules on endothelial cells also plays an important role 
in the atherosclerosis process. The adhesive molecules 
expressed on endothelial cells are selectins, intracellular 
adhesive molecules (ICAMs), and vascular adhesive mol-
ecules (VCAM-1).

This review aimed to describe the roles and fundamen-
tal mechanisms of FFA-mediated endothelial dysfunction. 
Moreover, how the endothelium participates in the uptake 
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and metabolism of fatty acids and involves various biochem-
ical pathways in health and disease is also discussed.

Effects of fatty acids on endothelial function

Fatty acids are taken up and metabolized by endothelial 
cells, depending on the chain length, number, and position 
of double bonds. Fatty acids are beta-oxidized into mito-
chondria to fuel the tricarboxylic acid cycle and produce 
ATPs. At the same time, excess intracellular fatty acids 
are stored as cytosolic lipid droplets [25]. Protection from 
endoplasmic reticulum stress from excess FFA is correlated 
with endothelial stored lipid droplets [25]. Fatty acids are 
also synthesized de novo by endothelial cells even though 
they can uptake FFAs [26, 27]. Fatty acids are transported 
to mitochondria by the rate-limiting enzyme carnitine pal-
mitoyltransferase 1a, the key to fatty acid oxidation and 
endothelial permeability [28, 29].

High levels of blood FFAs affect endothelium function 
in different ways. First, FFAs may contribute to inflam-
mation resulting in increased permeability of the endothe-
lium. Second, elevated blood levels of FFAs also down-
regulate insulin-mediated production of NO and reduce 
blood flow peripherally. FFAs mediate these effects via 
two different mechanisms by (a) decreasing tyrosine 

phosphorylation IRS-1/2 and preventing the PI3K/Akt 
pathway, which regulates insulin-stimulated glucose 
uptake and NO production by endothelial nitric oxide syn-
thase (eNOS) [18]. Figure 1 describes the mechanism of 
FFA-induced endothelial dysfunction.

In contrast, the endothelium-independent vasodilation 
remains unaffected [30], indicating that FFAs have spe-
cific inhibitory effects on NO synthesis by the endothelial 
cells. Infusion of FFA in insulin-sensitive human subjects 
was shown to significantly reduce NOS flux and impair 
shear stress-induced NO synthesis [31]. Palmitoylation of 
eNOS regulates the bioavailability of endothelial eNOS 
and thus NO release [32]. During atherosclerotic plaque 
formation, endothelial barrier, aberrant NO production, 
ROS production, and pro-inflammatory and pro-coagula-
tive factors cause endothelial dysfunction, which enhances 
LDL transcytosis, upregulation of LDL oxidation, activa-
tion of blood platelet and leukocytes [33]. N-6 polyunsatu-
rated fatty acids (PUFAs) may lower LDL cholesterol but 
increase LDL cholesterol susceptibility to oxidation and 
lower HDL cholesterol. Monounsaturated fatty acids are 
more beneficial than SFA and n-6 PUFAs in terms of their 
effects on LDL oxidizability [34]. They also prevented n-3 
fatty acids from exerting their potential adverse effects of 
LDL oxidation. 15-Lipoxygenase is implicated in the in 
vivo oxidation of LDL and is a process thought to involved 

Fig. 1   Mechanism of free fatty acids-induced endothelial dysfunc-
tion. Increased levels of free fatty acids reduce nitric oxide production 
directly or indirectly by mediating oxidative stress (ROS upregula-
tion), upregulation of inflammatory signaling (NF-κB upregulation), 
and downregulation of insulin and calcium signaling. In addition, 
RAS activation by free fatty acids or oxidation of LDL can lead to 

vasoconstriction by ET-1 upregulation. Even apoptotic pathway acti-
vation by free fatty acids induces endothelial cells and endothelial 
progenitor cells apoptosis. Endothelial dysfunction ultimately leads 
to atherosclerosis events, coronary artery disease, hypertension, heart 
failure, peripheral vascular disease, stroke, and end-stage renal dis-
ease



18	 Molecular and Cellular Biochemistry (2022) 477:15–38

1 3

in initiation and progression of endothelium dysfunction 
and atherosclerosis.

More recently, inhibition of eNOS mRNA expression by 
FFAs was shown in rat aortic endothelial cells, thus lower-
ing the eNOS activity and increased oxidative stress and 
inflammatory status [35]. FFAs downregulate insulin-medi-
ated eNOS activity through upregulation of PTEN (phos-
phatase and tensin homolog) and simultaneous inhibition 
of Akt kinase [36]. The AMPK/PI3K/Akt/eNOS pathway 
in endothelium dysfunction was diminished with elevated 
levels of FFAs due to consuming a high-fat diet [37].

FFAs increase ROS levels in monocytes dose-depend-
ently, leading to adhesion of the monocytes to the endothe-
lial cells [38]—a critical mechanism in the development of 
atherosclerosis [39]. Furthermore, FFAs-induced increases 
in CVD risk factors, characterized by elevated endothelial 
markers, are also observed in healthy subjects [40]. There-
fore, clinical and experimental studies exploit the protective 
effects of several dietary fatty acids/functional foods and 
drugs via suppression of inflammatory conditions and oxi-
dative stress in FFA-induced endothelium dysfunction. As 
observed in human studies, calcium channel blockers such 
as dihydropyridine and amlodipine prevent FFAs-induced 
endothelium dysfunction, leucocyte activation, and oxidative 
stress. The protective effects of these drugs are mediated by 
the suppression of NF-κB p65 phosphorylation [41]. Moreo-
ver, these compounds involve in the nuclear localization of 
Nrf2 and reduce oxidative stress and enhance the expression 
of the cytoprotective genes in endothelial cells.

The RAS is one of the critical determinants of arterial 
blood pressure, and Ang II is a potent vasoconstrictor. The 
endothelial cell membrane expresses the angiotensin-con-
verting enzyme (ACE) that produces Ang II. Ang II induces 
vasoconstriction by stimulation of endothelium and exhaus-
tion of NO. Therefore, inhibition of ACE stimulates vaso-
dilation via the NO pathway [42]. While Ang II increases 
FFAs levels via downregulating the fatty acid oxidation [43], 
on the other hand, FFAs also activate the RAS system [44]. 
ACE−/− mice had increased expression of genes responsible 
for lipolysis and oxidation of fatty acids [45], explaining the 
possible interplay between RAS and FFAs. By activating 
leukocytes, thus FFAs contribute to the adhesion of leuko-
cytes to the endothelium in an Ang II-dependent manner, 
leading to the initiation of endothelium dysfunction [46]. 
Consequently, inhibition of the RAS prevents the FFA-
induced endothelium dysfunction [47]. A single dose of 
either losartan (an Ang II receptor antagonist) or perindopril 
(an ACE inhibitor) completely prevented the FFAs-induced 
dysregulation of endothelium-dependent vasodilation, sug-
gesting the blockade of RAS as an effective treatment for 
FFAs-induced endothelium dysfunction [47].

The risk of CVD is associated with saturated fatty acids 
(SFAs). In contrast, unsaturated fatty acids are unlikely 

involved in CVDs, and instead, these fatty acids are mostly 
found beneficial in CVD. SFAs increase blood LDL lev-
els, a significant risk factor for CVDs [48]. Studies have 
demonstrated that long-chain saturated fatty acids(c > 14) 
(LCFAs) impart a greater risk for CVD than by the medium-
chain fatty acids(c8-c12) (MCFAs) [48]. The most common 
saturated LCFAs present in the western diet are myristic 
acid,14:0 (MA), palmitic acid, 16:0 (PA), and stearic 
acid,18:0 (SA). While SFAs have been shown to increase 
total cholesterol and LDL cholesterol, there is also an 
increase in high-density lipoprotein (HDL) cholesterol [49]. 
CVD risk associated with SFAs varies from no association 
to a significantly significant risk [50]. SFAs, depending on 
chain length, have diverse effects on cholesterol metabo-
lism in the body. For example, stearic acid, 18:0 (SA), is 
considered neutral on cholesterol metabolism compared 
with the other long-chain SFAs due to its high conversion 
rate to oleic acid 18:1n-9 (OA) by Δ9-desaturase enzyme. 
Long-chain SFAs, the health impact of stearic acid has no 
harmful effect on CVD risk. SFAs exert their atherogenic 
and thrombogenic influence through increased production 
of VLDL particles and ApoA1, decreasing LDL receptors-
specific activity and increased platelet aggregation [51]. 
Unlikely other SFAs, SA showed no atherogenic or throm-
bogenic effect since, after absorption, it is desaturated to 
monounsaturated fatty acid, OA, which is associated with 
a beneficial effect on cardiovascular health. OA is incorpo-
rated into phospholipids rather than into triglycerides and 
cholesterol esters. OA exerts significant beneficial effects 
on atherosclerosis and thrombosis [52–54].

Various studies have concluded that PA substantially 
contributes to the development of atherosclerosis [55]. 
Both in vivo and in vitro studies have demonstrated the 
mechanisms by which PA contributes to the pathogenesis 
of CVDs. PA promotes inflammatory responses and cellular 
senescence in cardiac fibroblasts. PA achieves senescence 
in these cells by activating toll-like receptor 4 (TLR4) and 
NLRP3 inflammasome, increasing mitochondrial ROS lev-
els [56]. PA also induces apoptosis of the vascular smooth 
muscle cells by inducing the TLR4 pathway and generating 
ROS [57]. Both PA and SA downregulated eNOS in porcine 
aortic endothelial cells. Although PUFAs have a protective 
role against endothelium dysfunction [58], their elevated 
FFAs adversely affect the endothelium by decreasing NO 
release and increasing ET-1 levels. Linoleic acid,18:2n-6 
(LA) negatively regulates eNOS phosphorylation and affects 
the intracellular NO levels in ECV304 cells [59].

Many clinical studies showed protective effects of OA on 
flow-mediated dilation and other endothelial markers; how-
ever, they did not focus on FFA-induced endothelium dys-
function [60–62]. Studies demonstrated that n-3 long-chain 
polyunsaturated fatty acids (LCPUFAs) such as docosahex-
aenoic acid, 22:6n-3 (DHA), eicosapentaenoic acid,20:5n-3 
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(EPA), and polyphenols were beneficial in FFA-induced 
endothelium dysfunction [59, 63–65]. The mitochondria-
related AMPK/eNOS pathway alleviates endothelium dys-
function and atherosclerosis in mice fed with a high-fat diet 
[66]. L-carnitine, an essential factor for fatty acid transport/
oxidation in the mitochondria, attenuates FFA-induced obe-
sity-related endothelium dysfunction in human subjects [67].

Moreover, SA showed a similar reducing impact on plate-
let aggregation and coagulation factors as the OA and LA 
[68]. Besides, a high-fat diet, a significant source of SFAs 
in blood levels of FFAs, induces oxidative stress in endothe-
lium [69]. Elevated FFAs induce expression of NADPH and 
mediates oxidative stress in rats with characteristics of both 
obesity and type 2 diabetes mellitus [70]. FFAs-induced 
endoplasmic reticulum stress was observed in endothelial 
cells isolated from healthy human subjects [71]. Infusion of 
intralipid in healthy subjects increased FFAs by a 4.2-fold 
increase, and that was associated with reducing the hyper-
emic response in the leg without a change in flow-mediated 
dilation of the brachial artery. The mRNA levels of the genes 
ATF6 and IRE1, responsible for early adaptive responses to 
endothelium reticulum stress, increased in endothelial cells.

Trans fatty acids (TFAs), obtained from partial hydro-
genation of plant oils, have the highest atherogenic activity. 
Thus industrial foods—cakes, cookies, and crackers often 
contain a high content of TFAs. TFAs have one double 
bond in which the hydrogens are on the opposite side to one 
another resulting in physiochemical properties close to those 
of SFAs. Main TFAs are elaidic acid, 18:1n-9t, and trans-
vaccenic acid, 18:1n-7t. TFAs are associated with a higher 
risk of CVD and type 2 diabetes mellitus [72]. Consump-
tion of TFAs increased plasma LDL cholesterol, lowered 
HDL cholesterol, and increased lipoprotein (a) and plasma 
triglyceride levels [73] and smaller flow-mediated vasodila-
tion [74]. TFAs can influence the thrombotic state through 
the eicosanoid synthesis pathway [72]. TFAs also adversely 
affect endothelial function, which partly explains their 
association with CVD risk [75]. Intake TFAs also induced 
inflammation and endothelial dysfunction, as evidenced by 
increased plasma levels of CRP, IL-6, soluble tumor necro-
sis factor receptor (TNF-2), E-selectin, and soluble inter-
cellular and vascular cell adhesion molecules (sICAM-1 
and sVCAM-1) in apparently healthy women [75]. TFAs 
also activate the NF-κB pathway that increases endothe-
lial superoxide production and reduces NO synthesis [76]. 
FFAs-induced endothelium dysfunction is mediated via the 
activation of NF-κB [77]. Thus, the NF-κB pathway is a 
significant player mediating the harmful effects of TFAs on 
human coronary artery endothelial cells [78].

FFAs-induced NLRP3 inflammasome also increases 
endothelial permeability. PA activates the NLRP3 inflam-
masome with a resulting decrease in endothelial tight junc-
tion proteins—zonula occludens-1 and -2 in microvascular 

endothelial cells. FFAs also increases the synthesis of 
high-mobility group box 1 (HMGB1) protein, which might 
explain the early onset of endothelial injury during obesity 
by FFAs.

Endothelial progenitor cells (EPCs) participate in 
endothelial recovery following arterial injury and oxida-
tive stress-induced damages [79]. Dysfunctional EPCs are 
involved in the pathogenesis of CVD [80]. PA contributes 
to the apoptosis of EPCs mediated via the p38 and JNK/
MAPKs pathways [81]. PA has harmful impacts on EPCs in 
metabolic syndrome patients via regulating long non-coding 
RNA (LncRNA) maternally expressed gene 3 (MEG3) [81]. 
These data raise interest for further studies on the pathophys-
iological roles of MEG3 in both EPCs and endothelial cells.

Metabolism of n‑3 and n‑6 long‑chain 
polyunsaturated fatty acids and their 
impacts on endothelium

Dietary polyunsaturated fatty acids (PUFAs) commonly con-
sumed by humans encompass two major groups: the n-3 and 
n-6 families of fatty acids. Linoleic acid, 18:2n-6 (LA) and 
alpha-linolenic acid,18:3n-3 (ALA) are the dietary essential 
fatty acids (EFAs) [82]. LA and ALA are not interchange-
able but can be further elongated and desaturated by the 
same enzyme systems to produce n-6 and n-3 LCPUFAs 
in the body. Some common n-3 PUFAs include ALA, EPA 
and DHA, and common n-6 ones include LA and arachi-
donic acid,20:4n-6 (ARA). LCPUFAs are the precursors for 
eicosanoid biosynthesis and various signaling compounds 
with relevant roles in human health and disease. Whereas 
dietary LA and ALA are primarily from vegetable oils, pre-
formed LCPUFAs may also be consumed in animal-origin 
foods. The importance of LCPUFAs has been related to 
their structural action, their specific interaction with mem-
brane proteins, and their ability to serve as precursors of 
second messengers. LCPUFAs (20 carbon) are substrates for 
cyclooxygenase (prostaglandin-endoperoxide synthase) and 
lipoxygenases and produce various compounds collectively 
called eicosanoids. These compounds have diverse biologi-
cal functions in cell growth and development, inflammation, 
and the cardiovascular system. The biological response elic-
ited after eicosanoid release is dependent on the net balance 
of eicosanoids derived from n-6 and n-3 LCPUFAs. ARA 
is the most predominant precursor fatty acid of the highly 
biologically active eicosanoids of the 2 series in the West-
ern diet. Also, the endogenous formation of cyclooxygenase 
and non-cyclooxygenase metabolites of fatty acids has been 
implicated in gene expression. Because each type of EFA 
can interfere with the other's metabolism, an excess of n-6 
fatty acids will reduce the metabolism of ALA, possibly 
leading to a deficit of n-3 LCPUFA metabolites. Therefore, 
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a proper balance between the n-6 and n-3 fatty acids in the 
diet is essential to maintain optimum health.

Endothelial cells metabolize ARA in three different ways, 
cyclooxygenase (COX), lipoxygenase and, cytochrome P450 
system. The primary metabolites of the COX pathway are 
PGI2 with lesser amounts of PGE2, TxA2, and 12-hydroxy-
heptadecatrienoic acid [83]. 12- and 15-hydroxyeicosa-
tetraenoic acids are the primary lipoxygenase metabolites. 
Endothelial cells synthesize the four regioisomeric epox-
yeicosatrienoic acids (EETs), 14,15-, 11,12-, 8,9-, and 5,6-
EETs, with 14,15- and 11,12-EETs the significant metabo-
lites.EETs are cytochrome P450 epoxygenase metabolites of 
ARA. PGE2 and TxA2 play an essential role in maintaining 
vascular homeostasis [83]. PGI2 is a vasodilator and a plate-
let aggregation inhibitor, whereas TxA2 is a vasoconstrictor 
and activator/aggregator of blood platelets [84, 85]. PGI2 has 
vasodilating properties, inhibits platelet aggregation by ele-
vating intracellular levels of cAMP [86]. At the same time, 
vasorelaxation and platelet inhibitory actions of NO are 
mediated predominately by activating intracellular guany-
lyl cyclase, leading to cGMP formation [8]. Thus, PGI2 and 
TxA2 play a critical role in maintaining vascular homeosta-
sis. PGI2 is a vasodilator and an inhibitor of platelet aggre-
gation, whereas TxA2 is a vasoconstrictor and a promoter 
of platelet aggregation [86, 87]. Therefore, an imbalance in 
PGI2 or TxA2 production is implicated in the pathophysiol-
ogy of many thrombotic and cardiovascular disorders [83, 
87]. The protective effect of PGI2 against the development 
of CVD is mediated through the inhibition of various cel-
lular processes, including inhibition of platelet activation, 
leukocyte adhesion to endothelium. Prostaglandins also 
enhance endothelial cell survival through the upregulation 
of the anti-apoptotic protein B cell lymphoma (Bcl)-2 [88] 
and the activation of phosphatidylinositol (PI)3-kinase (K)-
Akt pathway [89].

N-6 LCPUFAs mediate acute inflammatory responses by 
synthesizing pro-inflammatory eicosanoids [90], whereas 
n-3 LCPUFAs produce anti-inflammatory or neutral eicosa-
noids. ARA-derived eicosanoids control cellular membrane 
lipid composition, inflammation, coagulation, and vascu-
lar homeostasis [91, 92]. Also, ARA-induced synthesized 
cytokines and adipokines play a vital role in metabolism 
and inflammation [93]. LA induces inflammation by increas-
ing the levels of TNF-α, MCP-1, VCAM-1, and ICAM-1 
through the activation of NF-κB and activator protein 1 (AP-
1) [94], and it affects the release of NO [95].

Circulating blood platelets do not attach to the negatively 
charged surface of the endothelium. However, the activated 
platelets can bind GpIbα to either P-selectin or VWF on the 
surface of the endothelium, and indirectly via a fibrin bridge 
that joins GpIIb/IIIa and ICAM-1. Whereas NO decreases 
the intracellular level of Ca2+, the transformation of GPIIb/
IIIa platelet receptor and suppresses the integrin's binding 

to fibrinogen [96, 97]. The ecto-ADPase (CD-39), on the 
surface of endothelial cells, hydrolyzes both ATP and ADP 
to generate AMP, thus decreases platelet aggregation/acti-
vation [86, 96]. TxA2, produced by the endothelium from 
ARA, aggregates platelets and expresses adhesive co-factors 
for platelets such as vWF, fibronectin, and thrombospondin 
procoagulant factors such as factor V [84, 98].

Endothelial cells actively prevent thrombus formation 
by suppressing platelet adhesion and activation [99]. The 
vasoprotective function of endothelial cells is also associ-
ated, among others, with biosynthesis and release of NO, 
PGI2, PGE2, and tissue plasminogen activator (tPA). Plate-
let activation is counteracted by PGI2 and PGE2, produced 
from ARA by the endothelium after activation by various 
vasoactive agents, including thrombin. PGI2 is produced 
by the endothelium of large vessels, while the endothelial 
cells from smaller vessels produce PGE2 [100]. The effect 
of PGI2 is enhanced by NO produced by endothelial nitric 
oxide synthase (eNOS). The endogenous fibrinolytic sys-
tem is responsible for the dissolution of the thrombus. It 
is regulated by the endothelium-derived profibrinolytic fac-
tor, tissue plasminogen activator (tPA), and its inhibitor, 
plasminogen activator inhibitor type-1 (PAI-1) [101]. Fatty 
acids, depending on their structure, regulate PAI-1 and tPA 
activity. However, the definitive conclusions are yet to be 
reached [102–104]. These endothelium-derived compounds 
can inhibit activation of platelets and leukocytes, promote 
fibrinolysis, maintain tissue perfusion and protect the vas-
cular wall against acute damage and chronic remodeling. 
Endothelial dysfunction is associated not only with suppres-
sion in the release of these compounds but also with the 
secretion of deleterious compounds such as PGH2, PGG2, 
superoxide anion (O2-, peroxynitrite (ONOO-), and plasmi-
nogen activator inhibitor (PAI-1).

Several epidemiological, experimental, and clinical stud-
ies indicate that n-3 fatty acids can decrease CVD risk via 
several mechanisms, including improving vascular func-
tion. Incorporation in cell membranes, n-3 PUFAs precisely 
activate cardiovascular protective signaling pathways [105], 
increase NO production [106], reduce oxidative stress [107] 
and inflammation [12]. N-3 fatty acids also increase eNOS 
expression in the endothelium via several pathways such as 
phosphorylation of AMPK [63] and increased expression of 
eNOS mRNA [108]; stimulation of SIRT-1 and heat-shock 
protein 90 protein [109, 110]; and finally, eNOS transloca-
tion from caveolae to the cytosol [111]. N-3 PUFAs can 
decrease the expression of these adhesive factors of endothe-
lial cells and thus reduce the activation of the endothelium.

The vasoprotective properties of n-3 fatty acids include 
decreased arterial plaque formation, anti-inflammatory activ-
ity, improved endothelial-dependent vasodilation, lowered 
arterial blood pressure, and increased antioxidant activity. 
N-3 fatty acids reduce arterial stiffness and blood pressure 
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via eNOS expression.[112, 113]. Monocyte-endothelium 
interaction is essential in many acute and chronic inflam-
matory diseases. Both EPA and DHA significantly reduce 
PAF synthesis, monocyte rolling, and adherence, whereas 
endothelial adhesion molecules expression was unaltered.

Both EPA and DHA compete with ARA as substrates to 
form pro-inflammatory mediators, such as 4 series of leukot-
rienes, 2 series of prostaglandins, and cytokines. In addition 
to competitive inhibition of the n -6 fatty acid pathway, n-3 
fatty acids also inhibit the production of C reactive protein, 
TNFα, matrix metalloproteinase (MPP)-2 and MPP-9, and 
tissue inhibitors of MPP [114–116]. Furthermore, N-3 fatty 
acids inhibit COX-2 expression as therapeutic potential as 
COX-2 overexpression is involved in different inflammatory/
degenerative diseases apart from atherosclerosis [112].

Endothelial cells express ICAM-1, VCAM-1, E-selectin, 
and P-selectin involved in leukocyte recruitment and plate-
let adhesion during thrombosis and inflammation and con-
tribute to early phases of atherosclerosis. Cytokine-induced 
endothelial activation involves increased expression of genes 
for ICAM-1, VCAM-1, and E-selectin, whereas n-3 PUFAs 
suppress the synthesis of inflammatory cytokines that acti-
vate the endothelium. Thus, n-3 PUFAs decrease athero-
sclerosis and inflammation by reducing the expression of 
adhesion and migration of monocytes to the endothelium.

N-3 LCPUFAs supplementation replaces ARA content 
in plasma membrane phospholipids to improve endothelium 
vasodilating effects [117]. Thus, n-3 PUFAs can modify n-6 
eicosanoids production to favor vasodilation and anti-throm-
botic actions. N-3 PUFAs increase endothelium-dependent 
relaxation by increased release of NO. NO inhibits platelet 
aggregation and adhesion, leukocyte adhesion, and smooth 
muscle cell proliferation. The protective role of n-3 LCPU-
FAs has been shown by reducing FFA-induced endothe-
lium dysfunction via the AMPK/PI3K/Akt/eNOS pathway. 
EPA has a protective role against PA-induced endothelium 
dysfunction mediated via activation of the AMPK/eNOS 
pathway. The EPA also inhibited PA-induced apoptosis of 
endothelial cells and activated apoptosis-related proteins, 
such as caspase-3, p53, and Bax [63]. N-3 PUFAs can 
protect endothelium by reducing platelet TxA2 synthesis, 
plasminogen activator inhibitor-1 activity, COX 1 or 2 pro-
ductions, platelet activation, and adhesion to endothelium 
[118–121]. Moreover, n-3 PUFAs interfere with the vitamin 
K-dependent carboxylation of coagulation factors II, VII, IX, 
and X) [122, 123].

Dietary n-3 PUFAs reduce plasma triglycerides and very-
low-density lipoproteins (VLDL) [124–126] and thus protect 
the endothelium from lipid stress. Inhibition of 1,2 diglycer-
ide acyltransferase or sterol regulatory element-binding pro-
tein 1c by n-3 PUFA reduces hepatic triglyceride synthesis 
[127–129]. Also, n-3 PUFA activates peroxisome prolifera-
tor-activated receptor alpha (PPARα) to favor catabolism of 

circulating triglycerides and VLDL by promoting fatty acid 
beta-oxidation [127, 130]. N-3 PUFA induced non-proteas-
omal degradation of apolipoprotein B reduces naïve hepatic 
VLDL secretion [131–133]. Several studies found that n-3 
PUFAs increase HDL levels despite fluctuating effects on 
LDL levels, possibly by decreasing cholesteryl ester transfer 
protein activity [134–138].

As an independent risk factor of CVDs, hypertension can 
be favorably regulated by n-3 PUFAs supplementation [139, 
140]. N-3 PUFAs mediated blood pressure regulation by pro-
ducing vasodilator prostaglandins, activating eNOS, incre-
menting renin release from the kidney, suppressing ACE 
activity, and activating large-conductance Ca2+-activated 
K+ channels has been demonstrated [141–144]. In addition, 
studies found that reduced n-3 PUFAs on red blood cells 
induce vasoconstriction and increased production of pro-
inflammatory eicosanoids [145, 146].

Fatty acid transport across the endothelium

Fatty acids pass through the endothelial cell membrane to 
enable tissue uptake in muscle and likely allow fatty acids 
to penetrate the arterial wall. The trans-endothelial cross-
ing could take place through movement around or between 
endothelial cells. Large topical concentrations of FFAs dis-
rupt the endothelial barrier, as does active lipolysis, which 
can also upregulate LDL passage into the artery [147]. Fatty 
acid uptake by endothelial cells is not entirely understood 
clearly; it might involve both protein-mediated uptake and 
non-specific uptake [148], which might occur in the pres-
ence of high topical fatty acid concentrations, e.g., those 
that occur during chylomicron but not VLDL lipolysis [149]. 
Fatty acid metabolism by vascular endothelial cells occurs 
both under basal conditions and following endothelial cell 
stimulation or injury.

Endothelial cell reigns in the metabolic homeostasis of 
the various tissues via their growth and function. Endothelial 
cell activates in response to vessel wall permeability and 
interaction with multiple molecules of blood. However, glu-
cose is the primary source of endothelial energy, fatty acid 
uptake, transport, and metabolic pathways on endothelial 
cells have become an arena of interest for many years [150]. 
As the metabolic gatekeeper, endothelial cells regulate fatty 
acid transcytosis, and dysregulated endothelial fatty acid 
transport can pronounce insulin resistance, which plays a 
pivotal role in various pathological processes [151].

Endothelial fatty acid transport can be either pas-
sively by crossing paracellularly through intercellular 
space between neighboring endothelial cells or actively, 
where fatty acids cross the endothelial layer by different 
transporters such as plasma membrane fatty acid-binding 
protein (FABPpm), fatty acid transport proteins (FATPs), 
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cluster of differentiation 36 (CD36), or fatty acid translo-
case (FAT), and cytoplasmic fatty acid-binding proteins 
(FABPs) [152]. Unlike fenestrated hepatic endothelial 
lining, continuous and non-fenestrated cardiac endothe-
lial lining signifies the importance of the endothelial fatty 
acid transport system. Unlike medium and short-chained 
fatty acids, generally consumed long dietary chain (c ≥ 14 
carbons) fatty acid uptake in endothelial cells is upregu-
lated by synergistic co-expression of FATP3 and FATP4. 
Secretion of vascular endothelial growth factor B by car-
diomyocytes or production of 3-hydroxy-isobutyrate by 
skeletal muscle regulates the expression of FATP3 and 
FATP4 in neighboring endothelial cells [27, 153]. FATP4 
and FATP5 are mainly expressed by capillaries and ven-
ules of the heart, skeletal muscle, and adipose tissue [154]. 
Apelin signaling within endothelial cells inhibits FATP4 
expression by activating transcription factor FOXO1, 
which may stabilize VE-cadherin-mediated endothelial 
cell junctions [155, 156]. In cardiac and skeletal muscle, 
deficiency of fatty acid uptake is compensated by glucose 
uptake for energy production [154]. Figure 2 describes the 

prostanoid-induced angiogenic role of COX-2 in endothe-
lial cells.

FAT/CD36 facilitates fatty acid transport across the 
endothelial layer and oxidation in the heart, skeletal mus-
cle, and adipose tissue [157, 158]. Silencing FAT/CD36 
or lipoprotein lipase downregulates peroxisome prolifera-
tor-activated receptor alpha mediated cardiomyocyte lipid 
deposition, ultimately resulting in lipotoxic cardiomyopa-
thy [159]. Surprisingly the opposite effect of FAT/CD36 is 
observed in the liver, which may be due to the high per-
meability of hepatic endothelial cells comparatively [160]. 
As the principal regulator of fat metabolism, peroxisome 
proliferator-activated receptor-gamma ((PPARγ) maintains 
different fatty acid transport proteins expression, including 
FAT/CD36 in nonfenestrated endothelium [161]. Ultimately 
fatty acid transport, storage, and release in heart, skeletal 
muscle, and adipose tissues solely depend on PPARγ [162].

Surprisingly, when fatty acid level crosses the metabolic 
limit, FAT/CD36 becomes dysfunctional and consistently 
stays at the plasmalemma [163]. Although n-3 PUFAs 
downregulate the ongoing relocation of FAT/CD36 on 

Fig. 2   Rate limiting the prostanoid-induced inflammatory angiogenic 
role of COX-2 on endothelial cell. N-3 or N-6 LCPUFA6 (DHA, 
EPA and ARA) from dietary or metabolism are incorporated into cell 
membrane phospholipids. DHA, EPA, or ARA can be liberated by 
phospholipase A2 or phospholipase C. COX-2 then converts ARA to 

prostaglandin H2, which can be inhibited by the liberated DHA, EPA, 
or COX-2 inhibitors. Prostaglandin H2 converts into prostaglandin D2, 
prostaglandin E2, prostaglandin F2α, prostaglandin I2, and thrombox-
ane A2 by prostanoid synthase to promote-specific angiogenic steps 
and mediators
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sarcolemma and prevents insulin resistance [164]. Differ-
ent factors control post-translational modification of FAT/
CD36, such as glycosylation, ubiquitination, acetylation, 
palmitoylation, etc. [165]. A better understanding of these 
processes will help us to understand FAT/CD36 trafficking 
in the cells.

Overexpression of FAT/CD36 upregulates fatty acid 
oxidation around three-fold [166]. FAT/CD36 works as 
the ferry for disposing fatty acids into mitochondria. Mito-
chondrial co-localization of FAT/CD36 is proportionate to 
the amount of fatty acid oxidation [167]. FAT/CD36 can 
solely upregulate fatty acid esterification and/or lipopro-
tein packaging [168]. FAT/CD36 seems to be interrelated 
with AMPK. FAT/CD36 -induced AMPK increases fatty 
acid oxidation, while AMPK induces FAT/CD36 on the cell 
membrane [163, 169, 170]. FAT/CD36 inhibits AMPK by 
allowing tyrosine kinase Fyn to block AMPK-kinase LKB1 
reversely without fatty acid. These coordinated functions 
can be dysregulated by interrupted AMPK signaling due to 
FAT/CD36 deletion [171–173].

Also, FAT/CD36 regulates cytosolic Ca2+ and 
Ca2+-dependent phospholipase A2 activation [174]. Either 
interruption of Sarco/endoplasmic reticulum calcium 
ATPase (SERCA) or following reduction of Ca2+, endoplas-
mic reticulum Ca2+ sensor Stromal interaction molecule 1 
stimulates membrane store-operated Ca2+ channels (Orai 
protein multimers) to maintain cytosolic Ca2+ [175]. FAT/
CD36 regulates store-operated Ca2+ channels, which are 
vital for maintaining myocardial health. FAT/CD36 knock-
down interrupts cytosolic Ca2+ clearance, which upregulates 
SERCA2 as compensation. Conduction anomalies, e.g., 
bradycardia, atrioventricular blockage, are obvious follow-
ing FAT/CD36 knock-down, while tachyarrhythmogenic 
effects are caused by FAT/CD36 overexpression [173, 176]. 
Although FAT/CD36 overexpressed heart reduces infarction 
size following infarction [176]. Myocardial remodeling is 
influenced by FAT/CD36 mediated Ca2+-dependent phos-
pholipase A2 activation [174].

Angiogenic regulator Notch has also shown a predomi-
nant role in FABP4, FABP5, lipoprotein lipase, FAT/CD36, 
and angiopoietin-like 4 (ANGPTL4) expression [177]. Ulti-
mately, endothelial Notch signaling interrupts insulin sen-
sitivity and glucose tolerance [178]. Even current finding 
has shown the pivotal role of another angiogenic regulator, 
angiopoietin 2 (ANGPT2), in modulating FAT/CD36 and 
FATP3 expression through integrin α5β1 signaling and key 
to insulin resistance [179]. All these findings demand to 
investigate more precisely the relationship between angio-
genesis and fatty acid transport.

It is noteworthy that fatty acid transport and intravascular 
lipoproteins transport occur on the apical endothelial sur-
face. For example, approximately 30% of LDL is metabo-
lized by fenestrated endothelium, but LDL receptors and 

CD36 are crucial for LDL internalization [180, 181]. On 
the other hand, high-density lipoprotein is known as good 
lipoprotein transcytoses by several transporters, such as ATP 
binding cassette transporter G1, A1, and scavenger recep-
tor class B type I. But it’s still obscured if triglyceride can 
cross the endothelium or not. Again glycosylphosphatidylin-
ositol-anchored high-density lipoprotein-binding protein 
1(GPIHBP1)-dependent lipoprotein lipase is transported 
from adipocytes or myocytes to endothelium for hydrolysis 
of triglyceride and lipolysis of chylomicrons [182, 183].

Cytoplasmic FABPs are highly expressed in metaboli-
cally active tissues [184]. FABPs are responsible for meta-
bolic homeostasis and different lipid-mediated biological 
processes in various tissues despite the similarities in their 
tertiary structures and ligand affinity [152, 185]. Metabolic 
disorders play a crucial role in CVDs, abnormal lipid signal-
ing, high lipids storage, trafficking, and signaling capacity 
of macrophages and adipocytes. Henceforth, the contribu-
tion of FABPs in lipid-related physiology and cardiovascular 
impacts is significant [184, 186]. However, the biological 
activities of FABPs remain a mystery [152]. Different stud-
ies have found that endothelial-FABP4 expression is upregu-
lated in various organs [187–189]. The pro-angiogenic role 
of endothelial-FABP4 is induced by promoting cell prolif-
eration, survival, and migration [188–190]. FABP4 also 
regulates the functions of various mitogenic pathways, such 
as stem cell factor/c-kit signaling, which plays a vital role 
in its pro-angiogenic activity. In turn, FABP4 expression is 
controlled by vascular endothelial growth factor-A (VEGF-
A) and mammalian endothelial target of rapamycin complex 
1 [188, 189]. FABP4 also determines the inflammatory func-
tion of endothelial cells by regulating the gene expression 
that plays crucial roles in endothelial cell activation, includ-
ing endothelial eNOS and intercellular adhesion molecule 1.

FABP5 has a 55% amino acid sequence homology with 
FABP4 and primarily microvascular expression pattern in 
endothelial cells [154, 191]. Although, the FABP5 function 
in endothelial cells remains unclear. The current research 
has found the vital role of FABP4 and FABP5 in fatty acid 
uptake in the heart and skeletal muscle endothelial cells 
[154]. In animal models, combined deficiency of FABP4 
and FABP5 ensures more excellent defence against insulin 
resistance, obesity, and atherosclerosis than mice deficient 
for either FABP4 or FABP5 [192, 193]. Along with LCFAs, 
FABP5 binds with PPARd and retinoic acid; upon binding 
these ligands, it mobilizes to the nucleus to induce PPARd 
and regulates cell growth and development. Regulation of 
endothelial cells homeostasis and vascular integrity is vital 
to organ physiology and tissue repair, regeneration, and 
tumor growth. Based on the additive functions of FABP4 
and FABP5 in other cell types and their co-expression in 
microvascular endothelial cells, FABP5 played a role in 
regulating angiogenesis-related endothelial cell functions, 
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including proliferation, migration, and survival. As a down-
stream inducer of FABP5-related effects in endothelial cells, 
the critical role of PPARδ was demonstrated.

The expression of FABP3 and FABP5 has been demon-
strated in the microvascular of cardiac tissues and skeletal 
muscles. Also, FABP4 and FABP5 expressions were figured 
out in the microvessels of other organs with higher fatty 
acids metabolic activity, such as hepatic and adipose tissues 
[194, 195]. Endothelial cells can regulate the expression 
of FABP5 depending on tissue types and microvasculature 
[191]. Further investigations are needed to figure out the 
exact role of FABPs in lipid metabolism.

Roles of fatty acid metabolism in endothelial 
cells on angiogenesis

The metabolism of endothelial cells has only recently been 
recognized as a driving force of angiogenesis. Metabolic 
pathways, such as glycolysis, fatty acid oxidation, and glu-
tamine metabolism, have distinct, essential roles during 
vessel formation. Moreover, endothelial cell metabolism is 
markedly perturbed in pathologies such as cancer and dia-
betes. For instance, because tumor endothelial cells increase 
glycolysis, lowering hyper glycolysis in tumor endothelial 
cells induces therapeutic benefits in preclinical tumor mod-
els. Expanding our knowledge of how endothelial cells alter 
their metabolism in disease could pave the way for novel 
therapeutic opportunities. The most recent data describe the 
association of endothelial cell metabolism in health and dis-
ease, emphasizing the changes in metabolism in the tumor 
endothelium.

The endothelial lining on the vessel wall is crucial for 
nutrients and oxygen supply to the tissue. Reduced nutri-
ents availability or oxygen tension stimulates activation of 
quiescent endothelial cells for angiogenesis (de novo blood 
vessel formation from pre-existing blood vessels) [196, 197]. 
Angiogenic sprouting involves interaction between endothe-
lial cells and their metabolic microenvironment. First, proan-
giogenic proteins are secreted from the oxygen and nutrition 
demanding tissues to activate endothelial cells. Activated 
endothelial cells extend filopodia (known as tip cells) 
towards angiogenic stimuli [198]. Migratory tip cells are 
followed by proliferating endothelial cells (known as stalk 
cells) to elongate the sprouting process [199]. Endothelial 
cells continuously compete to take the lead as tip cells [200]. 
Ultimately tip cells communicate with tip cells of adjunct 
sprouts to form de novo vascular circuits throughout the pro-
cess until meeting oxygen and nutritional demands. Then 
proangiogenic factors downregulate, basement matrix estab-
lishes, pericytes recruit to onset perfusion, and endothelial 
cells become quiescent again. These endothelial cells of de 
novo blood vessels are defined as phalanx cells [201].

Angiogenesis requires coordinated not only endothe-
lial morphogenic behavior but also metabolic activities. 
The metabolic activities of endothelial cells are different 
from other differentiating cells. Rapid energy production 
is needed for tip cell migration and navigation, while pro-
liferative stalk cells need to produce cellular components 
[202]. Like cancer cells, around 85% energy production of 
endothelial cells depends on the aerobic glycolytic pathway 
[203–205]. Accelerated glycolysis by VEGFA increases 
endothelial glucose uptake and upregulation of glycolysis 
activators. Moreover, VEGF induces endothelial cell prolif-
eration through the upregulation of FABP4 [190]. Figure 3 
describes the regulation of endothelial metabolism by differ-
ent factors. Also, VEGFR2 and NOTCH1 activities rely on 
glycolysis [206, 207]. But hypoxia-induced HIF1α can also 
activate glycolytic genes, e.g., SLC2A1, LDHA, PFKFB3 
[208–210]. PFKFB3 driven glycolysis is vital for tip cell 
migration and stalk cell proliferation [205]. Although, the 
rate of glycolysis varies on endothelial subtypes. Microvas-
cular endothelial cells are known to be more glycolytic and 
proliferative [205, 211]. Despite generating very little ATP, 
endothelial cells are relied on less efficient glycolysis due to 
higher endothelial cell glucose uptake capability and faster 
ATP production [212, 213]. Endothelial cells use stored gly-
cogen for energy production in vascular tissues [214, 215].

Although endothelial cells are not dependent on mito-
chondria for energy production, mitochondria act as biosyn-
thetic hub endothelial growth and proliferation. Fatty acid 
oxidation sustains vessel growth. Stalk cells rely on fatty 
acid oxidation for their normal functions. Beta oxidation of 
fatty acids supports the DNA replication process. Shuttled 
long-chain fatty acids into mitochondria are metabolized to 
acetyl-CoA, used for the citric acid cycle. The use of fatty 
acid-derived carbon for nucleotide biosynthesis differenti-
ates endothelial cells from glucose and glutamine-depend-
ent proliferating cells [28, 216]. Maybe during a nutrition-
deprived state, endothelial cells catabolize fatty acids from 
stored lipids. Growth and division, the development of 
new membrane, the generation of signaling molecules, and 
modulating cellular signaling, endothelial cells are solely 
dependent on fatty acids and other lipids [217]. To improve 
the intracellular lipid storage, oxaloacetate and acetyl-CoA 
genesis occur into the cytosol from the citric acid cycle 
derived citrate. Fatty acid synthase enzyme converts acetyl-
CoA to fatty acids, which is crucial for angiogenesis and 
vascular homeostasis [26, 218].

Though, mitochondrial fatty acid biosynthesis diminishes 
mitochondrial integrity due to exhaust the citric acid cycle 
intermediates. Anaplerosis (the replenishing process of the 
citric acid cycle intermediates) can only prevent mitochon-
drial disintegration and cell death [212]. As an essential 
nitrogen source for nucleotide biosynthesis, endocytosed 
non-essential amino acid glutamine converts to glutamate 
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and α-ketoglutarate to contribute to anaplerosis [219]. Glu-
taminase is the rate-limiting enzyme for the conversion of 
glutamine. Upregulation of glutaminase activity is apparent 
during angiogenesis [220]. Besides anaplerosis, glutamine 
can be used for energy production, biosynthesis of glu-
tathione, and reductive carboxylation for lipid production 
[219, 221]. Prostanoids mediate angiogenesis through mul-
tiple mechanisms, including the induction of VEGF pro-
duction [222], the stimulation of endothelial cell sprouting, 
migration, and tube formation [223–225].

Although extracellular-regulated kinase phosphoryl-
ated, MYC (V-Myc avian myelocytomatosis viral oncogene 
homolog) regulates endothelial metabolism and growth 
factor signaling for cell growth, proliferation, and anabolic 
metabolism [226, 227]. In addition, accumulated MYC 
increases glycolysis, mitochondrial function, and cell cycle 
progression [228]. Many studies focused on angiogenic 
endothelial cells; however, the metabolic role of quiescent 
endothelial cells is critical for normal vascular function. 

Transcription factor FOXO1 drives endothelial quiescence 
by reducing overall metabolic activity. In addition, FOXO1 
suppresses MYC activity [226].

Interestingly, quiescent endothelial cells consistently 
reduce glucose uptake or glycolysis and increase fatty acid 
uptake [29]. The change in nutrient utilization or slower 
metabolic rate in quiescent endothelial cells needs to elu-
cidate. Reduced metabolic activity helps stabilize vessels 
and ensures efficient nutrient and O2 delivery to perivascu-
lar tissues. Also, endothelial cells protect themselves from 
mitochondrial-derived ROS-mediated damage due to high 
oxygen levels in the bloodstream. So, it is convincible that 
the reduced metabolic rate of quiescent endothelial cells is 
a primary adaptive response.

Endothelial cells respond to changes in environmental 
conditions, e.g., hypoxia, glucose deprivation, and blood 
flow-mediated shear stress activates AMPK to promote cata-
bolic pathways in endothelial cells by fatty acid oxidation 
to produce energy [169, 229, 230]. Besides, AMPK inhibits 

Fig. 3   Regulation of endothelial metabolism. VEGFA induces 
LDHA, PFKFB3, GLUT1, etc., through the VEGFR2 mediated glyco-
lysis pathway to support tip cell migration. Hypoxia can also promote 
glycolysis by inducing HIF1α. Glycolysis also supports stalk cell 
proliferation by downregulating DLL4-NOTCH1 signalling-depend-
ent PFKFB3 gene expression. Furthermore, even VEGFA blocks 
growth-inhibiting transcription factor FOXO1 via VEGFR2 medi-
ated PI3K/AKT pathway to support the proliferation of stalk cells. 

Also, growth-enhancing transcription factor MYC promotes growth, 
anabolic metabolism, and proliferation of stalk cells. Along with 
glucose, proliferating stalk cells consume fatty acids, contributing to 
nucleotide synthesis for cellular proliferation. But in quiescent pha-
lanx cells, FOXO1 represses MYC signaling to reduce glycolysis and 
mitochondrial metabolism. In addition, turbulent blood flow-induced 
shear stress-mediated activation of transcription factor KLF2 leads to 
reduced metabolic rate
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metabolic sensor mammalian targets of rapamycin complex 
1 to promote endothelial cell migration and angiogenesis 
[231, 232]. In addition, another angiogenic regulator, sirtuin 
1, also senses endothelial metabolic state [233].

Metaflammation and ectopic fat deposition: 
effects on cardiovascular disease

Metabolic stress-induced chronic low-grade sterile inflam-
mation due to innate immune response has been termed 
“metaflammation” [234]. Metaflammation is the critical 
driver of various chronic diseases, e.g., CVDs, diabetes, 
nonalcoholic steatohepatitis. In the body, inflammation is 
tightly controlled by distinct signaling cascades [235]. Pro-
inflammatory mediators activate the innate immune system 
via various pattern recognition receptors [236, 237]. Most 
studies have focused on damage-associated molecular pat-
terns (DAMPs) or pathogen-associated molecular patterns 
to distort the immune system. DAMPs have been found to 
link with the pathogenesis of chronic metabolic diseases or 
disorders [238]. But DAMPs are quite varied in structure and 
origin, and the list of DAMPs is enriching rapidly. Pattern 
recognition receptors sense free fatty acids, oxidized LDL, 
cholesterol crystals, glucose, advanced glycation end prod-
ucts. To delineate the inflammatory stimuli due to metabolic 
stress from other damage-associated immune responses, 
Wang et al. have used the fresh term “metabolic-associated 
molecular patterns” [239]. Molecules derived due to per-
sistent excessive FFAs and glucose in plasma are consid-
ered to become metabolic-associated molecular patterns or 
so-called “DAMPs” for innate immune response mediated 
metaflammation [240, 241].

Pancreatic beta-cell dysfunction, metabolic syndrome, 
and insulin resistance are correlated with elevated plasma-
FFAs [242–244]. Toll-like receptor (TLR)-2 or TLR-4 
mediated production of interleukin-1β, tumor necrosis 
factor-α, macrophage inflammatory protein-1α, chemokine 
(C–C motif) ligand 2, and chemokine (C–C motif) ligand 
4 are triggered by upregulated plasma saturated fatty acids 
[245–250].

Also, oxLDL induces pattern recognition receptors 
mediated chronic inflammation, which leads to various 
metabolic diseases or disorders, e.g., atherosclerosis, heart 
disease, hypertension, obesity [251–254]. 80% oxLDL 
is taken up by transmembrane scavenger receptors (mac-
rophage scavenger receptor 1, CD36, and lectin-type ox LDL 
receptor 1) to activate different intracellular signaling path-
ways, e.g., NF-κB and MAPK [255–257]. Figure 4 shows 
the metabolic-associated molecular patterns that induce 

metaflammation. Even oxLDL can form immune complexes 
with antibodies to activate NLPR3 inflammasome, extracel-
lular signal-regulated kinase 1/2, phospholipase C gamma, 
c-Jun N-terminal kinase, paxillin, spleen tyrosine kinase, 
and cell division control protein 42 homolog signaling by 
Fc gamma receptor, CD36, and/or TLR-4 [258, 259]. Like 
oxLDL, oxidized phospholipids in platelet induce CD36/
TLR- 2/TLR-6 complex-mediated MyD88 signaling in the 
progression of atherothrombosis [260].

Inflammation provokes lipolysis in adipocytes and 
increases serum FFAs [261, 262]. Similar to adipose tis-
sue, inflammation negatively regulates lipid deposition in 
skeletal muscle [263]. However, TNFα doesn’t affect fatty 
acid oxidation but upregulates fatty acid incorporation with 
diacylglycerol [264–266]. Figure 5 summarises the effects 
of metaflammation in different organs.

As the prime metabolic organ, de novo lipogenesis 
(DNL), an influx of FFAs from adipose tissue due to lipol-
ysis, fatty acid oxidation, and VLDL secretion maintain 
hepatic lipid homeostasis [267]. In addition, inflammation 
is associated with overexpression of FAT/CD36 and FABPs 
in the liver [268–270]. Systemic inflammation also increases 
hepatic de novo lipid synthesis by upregulation of several 
genes such as sterol regulatory element-binding protein 1c 
(SREBP-1c), FAS, ACC​, and SCD-1, which can be amelio-
rated by sirtuin1 [271, 272]. More research is required to 
understand the mechanism of inflammation and its effects 
on non-adipose tissues.

Conclusions

The endothelium transcends key regulators to the function 
of every organ system. Endothelium dysfunction can lead 
to many diseases. Elevated levels of FFAs due to the result 
of metabolic defects contribute to endothelium dysfunc-
tion and subsequently lead to many diseases such as CVD. 
Dysfunction endothelium develops decreased NO produc-
tion, increased cytokine production, impaired vasodilation, 
hyperactivity of platelets, and increased oxidative stress and 
inflammation. Consuming foods rich in n-3 fatty acids can 
lower plasma FFAs and other lipids with associated inflam-
matory cytokines, oxidative stress and may protect the 
endothelium. However, it would require a better understand-
ing of FFAs and their transport and actions in endothelium 
and identify some better possible targets that could be used 
to develop better therapeutic approaches to intervene in the 
early events endothelium dysfunction.
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Fig. 4   Metabolic-associated molecular patterns induce metaflamma-
tion. High glucose/fat causes an overload of nutrient metabolites, e.g., 
glucose, advanced glycation end products, free fatty acids, oxidized 
LDL, and cholesterol crystal. MAPK and canonical NF-κB pathway-
mediated transcription of proinflammatory genes are driven by free 
fatty acids and/or oxidized LDL-induced TLRs. Transcription factors 

AP-1 and NF-κB are responsible for inciting the proinflammatory 
genes. Besides, scavenger receptors take oxidized LDL to form foam 
cells. Cholesterol crystals can damage the lysosome, which leads to 
ROS production, K+ efflux, and cathepsin leakage. These stimulatory 
factors activate the NLRP3 inflammasome and result in maturation 
and secretion of IL-1β and IL-18, thereby instigating metaflammation
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