Skip to main content
. 2022 Jan 12;12:639. doi: 10.1038/s41598-021-04637-2

Table 4.

Comparison between classification metrics of the different models in the training and validation sets.

Models Training set Validation set
Sensitivity Specificity F1-score AUC Sensitivity Specificity F1-score AUC
Random forest (RF) 0.98 0.8 0.88 0.89 0.92 0.92 0.92 0.92
Logistic regression (LR) 1 0 0 0.5 0.95 0.81 0.87 0.88
Decision tree (DT) 0.82 0.8 0.81 0.82 0.91 0.66 0.77 0.78
eXtreme gradient boosting (XGB) 0.98 0.8 0.88 0.89 0.93 0.92 0.92 0.93
Voter classifier soft 0.98 0.6 0.74 0.75 0.93 0.88 0.9 0.90
Voter classifier hard 0.95 0.8 0.87 0.88 0.91 0.92 0.91 0.92