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Summary
Background Thromboembolism is a life-threatening manifestation of coronavirus disease 2019 (COVID-19). We
investigated a dysfunctional phenotype of vascular endothelial cells in the lungs during COVID-19.

Methods We obtained the lung specimens from the patients who died of COVID-19. The phenotype of endothelial cells
and immune cells was examined by flow cytometry and immunohistochemistry (IHC) analysis. We tested the presence of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the endothelium using IHC and electron microscopy.

Findings The autopsy lungs of COVID-19 patients exhibited severe coagulation abnormalities, immune cell infiltra-
tion, and platelet activation. Pulmonary endothelial cells of COVID-19 patients showed increased expression of pro-
coagulant von Willebrand factor (VWF) and decreased expression of anticoagulants thrombomodulin and
endothelial protein C receptor (EPCR). In the autopsy lungs of COVID-19 patients, the number of macrophages,
monocytes, and T cells was increased, showing an activated phenotype. Despite increased immune cells, adhesion
molecules such as ICAM-1, VCAM-1, E-selectin, and P-selectin were downregulated in pulmonary endothelial cells
of COVID-19 patients. Notably, decreased thrombomodulin expression in endothelial cells was associated with
increased immune cell infiltration in the COVID-19 patient lungs. There were no SARS-CoV-2 particles detected in
the lung endothelium of COVID-19 patients despite their dysfunctional phenotype. Meanwhile, the autopsy lungs of
COVID-19 patients showed SARS-CoV-2 virions in damaged alveolar epithelium and evidence of hypoxic injury.

Interpretation Pulmonary endothelial cells become dysfunctional during COVID-19, showing a loss of thrombomo-
dulin expression related to severe thrombosis and infiltration, and endothelial cell dysfunction might be caused by a
pathologic condition in COVID-19 patient lungs rather than a direct infection with SARS-CoV-2.
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Introduction
The global pandemic of coronavirus disease 2019
(COVID-19) is caused by a novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection that
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Research in context

Evidence before this study

Normally functioning endothelial cells protect the blood
vessel by preventing unwanted coagulation. In COVID-
19 patients, plasma levels of soluble markers associated
with endothelial cell activation and dysfunction are ele-
vated. To understand the phenotypic changes of vascu-
lar endothelial cells during COVID-19, we searched the
PubMed database with the terms “COVID-19 endothelial
cells” in combination with “phenotype”, “flow cytome-
try”, or “immunohistochemistry”. However, there was no
article showing a comprehensive profile of endothelial
cell phenotype in COVID-19.

Added value of this study

In this study, we report a phenotypic profile of endothe-
lial cells in the COVID-19 patient lungs by using flow
cytometry and immunohistochemistry (IHC) analysis.
Pulmonary endothelial cells of COVID-19 patients exhib-
ited a dysfunctional phenotype related to thrombosis.
Especially, we found a loss of thrombomodulin expres-
sion, a potent anticoagulant and anti-inflammatory mol-
ecule, in endothelial cells of COVID-19 patients. As a
mechanism of endothelial dysfunction in COVID-19, we
tested if SARS-CoV-2 can directly infect endothelial cells.
We found no clear evidence of SARS-CoV-2 infection in
endothelial cells using IHC stain, electron microscopy,
and in vitro viral infection.

Implications of all the available evidence

These findings provide evidence that endothelial cells
may be a critical player to contribute to severe throm-
bosis in the lungs of COVID-19 patients and that endo-
thelial thrombomodulin expression would be a
potential therapeutic target for COVID-19-related
immunothrombosis.
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primarily affects the respiratory tract.1 These respiratory
effects can range from mild upper respiratory disease to
severe pneumonia and acute respiratory distress syn-
drome (ARDS).1 However, patients hospitalized with
COVID-19 also experienced an increased incidence of
venous and arterial thromboembolic complications
including acute pulmonary embolism (PE), deep vein
thrombosis (DVT), ischemic stroke, or myocardial
infarction.2�4 The incidence of thrombotic complica-
tions in intensive care unit patients has been reported
between 16 and 49 percent.2�4 In a meta-analysis of
277 autopsy cases, small vessel thrombi were found in
10¢8 percent of cases, and 19¢1 percent had macrovascu-
lar thrombi such as DVT, PE, and mural thrombi.5

Patients hospitalized with COVID-19 have elevated lev-
els of D-dimer, a thrombosis biomarker, and fibrin deg-
radation products.6 Given the prominence of
microthrombi in COVID-19, it was proposed to rename
COVID-19 as MicroCLOTS (microvascular COVID-19
lung vessels obstructive thromboinflammatory
syndrome).7

Normally functioning vascular endothelium protects
blood vessels by regulating vascular tone and preventing
unwanted coagulation, playing an essential role in pre-
venting ARDS.8,9 Endothelial cells express key mole-
cules that regulate the balance between hemostasis and
thrombosis such as thrombomodulin and von Wille-
brand factor (VWF).9�12 In COVID-19 patients, elevated
plasma levels of soluble VWF, thrombomodulin, inter-
cellular adhesion molecule 1 (ICAM-1), vascular adhe-
sion molecule 1 (VCAM-1), and P-selectin have been
shown, suggesting endothelial cell activation and dys-
function.13�16 Several researchers predicted that vascu-
lar endothelial cells in COVID-19 increased adhesion
molecule expression for platelet and leukocyte migra-
tion and pro-inflammatory cytokine and chemokine
production.8,17,18 Moreover, endothelial cell activation
and damage were proposed to play a central role in the
pathogenesis of COVID-19 associated with ARDS, vas-
cular leakage, pulmonary edema, and a procoagulant
state.8,18,19 Endothelial cell dysfunction was also
expected to cause children’s multisystem inflammatory
syndrome, which develops in a small percentage of chil-
dren infected with SARS-CoV-2.20

However, the phenotypic and transcriptional changes
of endothelial cells in COVID-19 have not been fully
described. Many single-cell RNA sequencing (scRNA-seq)
studies on COVID-19 were performed with non-tissue
samples such as peripheral blood mononuclear cells, bron-
choalveolar lavage fluid, nasopharyngeal swab, and spu-
tum, barely containing endothelial cells.21�25 Several
studies using the lung tissues from human or non-human
primates have been conducted, but they intended to inves-
tigate a host entry for SARS-CoV-2 � angiotensin-convert-
ing enzyme 2 (ACE2) and transmembrane serine protease
2 (TMPRSS2) � not showing a comprehensive profile of
endothelial cell phenotype and transcriptome.26�30 Fur-
thermore, endothelial transmembrane molecules such as
thrombomodulin and ICAM-1 are generally cleaved by
enzymes and released into the blood in diseased condi-
tions, suggesting that a transcriptional profile of endothe-
lial cells would not reflect their dysfunctional phenotype
during COVID-19.11,12,31 Also, it remains unclear whether
endothelial cell dysfunction and damage in COVID-19 are
induced by direct SARS-CoV-2 infection or indirectly
through pathologic conditions such as hypoxia and pro-
inflammatory cytokine milieu. Some studies have shown
ACE2 expression on endothelial cells with limited evidence
for the direct infection by SARS-CoV-2.32,33 However,
others have disputed ACE2 expression on endothelial cells
and further infection by SARS-CoV-2.34�41

Here, we provide a unique perspective on the pheno-
typic changes of endothelial cells in the autopsy lungs,
hearts, and kidneys of COVID-19 patients using flow
cytometry and immunohistochemistry (IHC) analyses.
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Pulmonary endothelial cells showed a prothrombotic
and dysfunctional phenotype during COVID-19, espe-
cially a loss of thrombomodulin expression, an anticoag-
ulant and anti-inflammatory molecule. In addition,
macrophages, monocytes, and T cells were increased
and activated in the lungs of COVID-19 patients. How-
ever, we found no evidence of SARS-CoV-2 infection in
the pulmonary endothelium, while the alveolar epithe-
lium exhibited severe SARS-CoV-2 infection and dam-
age, causing hypoxia during COVD-19. We confirmed
hypoxic stress on endothelial cells and immune cells in
the COVID-19 patient lungs.
Methods

Human samples
We obtained seven lung samples, seven heart samples,
and eight kidney samples from nine autopsies of
patients who died of COVID-19 at the Johns Hopkins
University (Table 1 and Supplementary Table S1). We
were unable to collect all three tissues from all patients
for technical reasons. As a non-COVID-19 control, eight
lung specimens, eleven heart specimens, and ten kid-
ney specimens were obtained from autopsies of patients
who had no respiratory, cardiovascular, and renal dis-
eases. Samples were fixed for histology study or cryopre-
served for flow cytometry and RT-PCR analysis. For
cryopreservation, samples were stabilized in HypoTher-
mosol FRS preservation media (Stemcell) and then fro-
zen in CryoStor CS10 cryopreservation media
(Stemcell) at -80°C.
Ethics
Written informed consent was obtained from subjects,
and the study protocol was approved by the Committee
for the Protection of Human Subjects (IRB
NA_00036610). This study was conducted in
COVID-19 patients

Number of patients 9

% of males 55¢6% (5/9)

Age (years) 66¢1 § 14¢2
Ventilation (days) 12¢0 § 12¢3
ICU admission (days) 9¢9 § 12¢2
Hospitalization (days) 10¢6 § 11¢9
SaO2 (%) 76¢8 § 17¢5
CRP (mg/ml) 55¢1 § 46¢7
D-dimer (µg/ml) 11¢2 § 12¢0
Date of tissue collection 4/7/2020 � 5/2/2020

Controls

Number of patients 12

% of males 41¢7% (5/12)

Age (years) 56¢4 § 18¢9

Table 1: Clinical and demographic characteristics of patients.
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accordance with the guidelines in the Declaration of
Helsinki.
SARS-CoV-2 in vitro infection of primary human
endothelial cells
Human coronary artery endothelial cells (HCAECs)
were purchased from Cell Applications (300-05a). Cells
were cultured in Human Meso Endo Growth Medium
(Cell Applications). All infections were performed in a
biosafety level (BSL) 3 environment. HCAECs were
seeded onto 6-well plates at a density of 200,000 cells/-
well. At the time of infection, the growth medium was
replaced with media containing SARS-CoV-2 (SARS-
CoV-2/USA/DC-HP00007/2020, GISAID EPI_-
ISL_434688) at a multiplicity of infection (MOI) of 5
infectious units per cell.42 Cells were then incubated for
1 hour at 37°C. Media containing the virus was aspirated
and replenished with fresh media. Samples were then
incubated for 24 hours. Cell images were taken using
an EVOS XL Core Imaging System (Invitrogen).
Histology study
Lung, heart, and kidney tissues were paraffin-embed-
ded, cut as 4-mm-thick sections, and stained with H&E.
Coagulation abnormalities were graded by microscopic
assessment of the severity of thrombus formation
(graded from 0 to 5) and hemorrhage (from 0 to 5), and
the sum of two item scores was shown. Infiltration was
separately scored from 0 to 5. Grading was performed
by two independent blinded investigators. Images were
acquired on a BX43 microscope (Olympus) with a DS-
Fi3 camera (Nikon) using NIS-Elements D Software
(Nikon).
Immunohistochemistry staining
The tissue slides were deparaffinized, rehydrated, and
blocked with Duel Endogenous Enzyme Block (Dako).
Tissue sections were probed with the primary antibody
against fibrin (59D8; Millipore), CD42b (SP219;
Abcam; RRID: AB_2814749), VWF (F8/86; Invitrogen;
RRID: AB_11001165), PECAM-1 (JC/70A; Abcam;
RRID: AB_307284), or SARS-CoV-2 spike S1 protein
(007; Sino Biological; AB_2827979) and then treated
with HRP-conjugated secondary goat anti-rabbit or anti-
mouse IgG antibody (Leica). The slides were counter-
stained with 50% hematoxylin in water.
Cell isolation from autopsy tissue samples
All procedures involving SARS-CoV-2-infected tissue
samples were performed in a BSL3 environment until
the virus is inactivated. Tissues were minced using a
single-edge scalpel and then incubated with 5 mL of tis-
sue digestion enzyme solution for 30 minutes at 37°C
with intermittent vortexing. The digestion enzyme solu-
tion was prepared with 200 U/ml Collagenase
3
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(Worthington) for lungs or 400 U/ml for hearts and
kidneys and supplemented with 50 U/ml DNase I (Wor-
thington) and 50 U/ml Hyaluronidase (Sigma) for all
organs. Cells were washed and filtered through 40 mm
cell strainers (Falcon).
Flow cytometry
Flow cytometry samples from autopsy tissues were pre-
pared in a BSL3 condition. Single cells were first stained
with Live/Dead Fixable Aqua (Invitrogen) and 7-AAD
(BioLegend). After blocking with TruStain FcX (BioLe-
gend; RRID: AB_2818986) and normal mouse serum
(Invitrogen), cells were surface-stained with fluoro-
chrome-conjugated antibodies (Supplementary Table
S2). Cells were then fixed, permeabilized with Cyto-Fast
Fix/Perm Buffer (BioLegend), and stained with antibod-
ies against intracellular antigens (Supplementary Table
S2). Sample acquisition was performed on a BD FAC-
Symphony flow cytometer (BD) running FACSDiva
(BD). Results were analysed using FlowJo software
(BD).
Real-time RT-PCR
Total RNA from tissues or cultured cells was extracted
using RNeasy Plus Mini Kit (Qiagen) or TRIzol (Invitro-
gen) in a BSL3 environment. Single�stranded cDNA
was synthesized with iScript Reverse Transcription
Supermix (Bio-Rad). Target genes were amplified using
Power SYBR Green PCR Master Mix (Applied Biosys-
tems), and real-time cycle thresholds were detected via
MyiQ2 thermal cycler (Bio-Rad). Data were analysed by
the 2�DDCt method and were normalized to GAPDH or
HPRT expression and then to biological controls.
SARS-CoV-2 RNA detection
Total RNA extracted from autopsy tissues or cultured
cells were reverse transcribed and then amplified with
primers specific for SARS-CoV-2 nucleocapsid (N)
genes. Primers for SARS-CoV-2 N1, SARS-CoV-2 N2,
and internal control RNase P were obtained from the
Integrated DNA Technologies. According to the Centers
for Disease Control and Prevention (CDC) guideline, a
test is considered positive for SARS-CoV-2 if both
SARS-CoV-2 N1 and N2 markers show Ct value <40.
Electron microscopy
The lung tissue was excised from patient autopsies and
cut into 2�3 mm3 pieces, and immediately fixed in
2¢5% glutaraldehyde (EM grade; Electron Microscopy
Sciences) dissolved in 0¢1 M Na cacodylate, pH 7¢4, for
2 hours at room temperature. Samples were processed
as previously described by the Electron Microscopy Lab-
oratory in the Department of Pathology at the Johns
Hopkins University School of Medicine before examina-
tion with an electron microscope CM120 (Philips)
under 80 kV.43 Images were acquired with Image Cap-
ture Engine V602 (Advanced Microscopy Techniques).
Mice
Wild-type male C57BL/6 mice (JAX 000664) were pur-
chased from the Jackson Laboratory. Mice were housed
in specific pathogen-free animal facilities at the Johns
Hopkins University School of Medicine. Experiments
were conducted with 6- to 10-week-old age-matched
mice. For hypoxia exposure, mice were housed in Plexi-
glas hypoxia chambers with 10¢0% O2 that had continu-
ous airflow.44 The O2 concentration was monitored and
controlled with a ProOx model 350 unit (BioSpherix) by
infusion of N2. CO2 and ammonia were removed
throughout the experiment. Control mice were exposed
to normal room air (20¢8% O2). On day 8 of hypoxia
exposure, lungs were perfused with PBS and then har-
vested. All methods and protocols were approved by the
Animal Care and Use Committee of the Johns Hopkins
University.
Statistics
GraphPad Prism 8 software was used for statistical anal-
ysis. Data shown are mean values of two or three inde-
pendent experiments. Data were analysed using non-
parametric Mann-Whitney test or Kruskal-Wallis test
followed by post-hoc Dunn’s multiple comparison test.
Statistically significant comparisons were represented
by asterisks in figures: *P < 0¢05; **P < 0¢005; ***P <

0¢0005. Actual P-values were reported in figure
legends. Linear regression using Spearman correlation
was tested for correlation analysis. Actual r- and P-val-
ues were reported in figures.
Role of the funding source
The funding sources had no involvement in study
design, data collection, data analyses, interpretation, or
writing of this report.
Results

Coagulation abnormality and infiltration are presented
in the lungs of COVID-19 patients
Thromboembolism is the most common pathologic
finding in the postmortem lungs of patients who died
of COVID-19.45�48 Thrombus formation is also
observed in the autopsy hearts and kidneys from
COVID-19 patients.46,48,49 To test whether thrombosis
is present in the lungs, hearts, and kidneys from
COVID-19 patient autopsies collected at the Johns Hop-
kins University, we analysed histologic sections of those
tissue specimens. Clinical characteristics of our
COVID-19 patient cohort are summarized in Table 1
and Supplementary Table S1. We tested seven lung
samples, seven heart samples, and eight kidney samples
www.thelancet.com Vol 75 Month January, 2022
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collected from the autopsy of COVID-19 patients. Many
postmortem lungs from COVID-19 patients showed
severe coagulation abnormalities such as vascular con-
gestion, thrombus formation, and hemorrhage, which
were not observed in non-COVID-19 autopsy controls
(Fig. 1a and Supplementary Fig. S1a). Fibrin deposition
normally occurs at the site of the damaged blood vessel
during coagulation, however, excessive formation or
impaired clearance of a fibrin clot contributes to throm-
bosis development in pathologic conditions and dis-
eases.50 IHC studies confirmed the development of
fibrin- and platelet-rich thrombi in the lungs of COVID-
19 patients (Fig. 1b and c and Supplementary Fig. S1b
and c). The autopsy hearts and kidneys of COVID-19
patients exhibited congested blood vessels and fibrin-
rich thrombi (Fig. 1a and b and Supplementary Fig. S1a
and b). However, the severity of coagulation abnormali-
ties in the hearts and kidneys of COVID-19 patients was
milder compared to the lungs (Fig. 1d). No platelet-
rich thrombi were found in the hearts and kidneys
of COVID-19 patient autopsies (data not shown). Ele-
vated plasma D-dimer levels confirmed thrombosis
development in our COVID-19 patient cohort tested
upon their hospitalization (Fig. 1e). In addition, we
found that the number of platelets in the COVID-19
patient lungs was increased compared with controls
by using flow cytometry (Fig. 1f and Supplementary
Fig. S2). The number of platelets in the COVID-19
patient lungs was correlated with the severity of
hypercoagulability (Fig. 1g). In the hearts and kid-
neys, the platelet counts were comparable between
COVID-19 and control groups (Fig. 1f).

Severe infiltration was another histological finding
in the lungs of COVID-19 patients (Fig. 1a). The num-
ber of CD45+ infiltrating cells was significantly
increased in the COVID-19 patient lungs compared
with controls (Fig. 1h and Supplementary Fig. S2). The
number of CD45+ cells in the COVID-19 patient lungs
analysed by flow cytometry was correlated with the infil-
tration score histologically graded (Fig. 1i). In contrast,
CD45+ cell number was reduced in the hearts of
COVID-19 patients compared to controls (Fig. 1h). The
kidneys of COVID-19 patients presented a comparable
number of CD45+ infiltrating cells to the controls
(Fig. 1h). These results indicate that severe hypercoagu-
lability and infiltration develop in the lungs of COVID-
19 patients.
Platelets and endothelial cells show a prothrombotic
phenotype in COVID-19 patient lungs
To investigate if platelets are activated in the lungs of
COVID-19 patients, causing a severe hypercoagulable
state, we characterized the phenotype of platelets in the
autopsy lungs, hearts, and kidneys. In COVID-19
patients, blood platelets showed upregulated P-selectin
and other receptors contributing to aggregation and
www.thelancet.com Vol 75 Month January, 2022
activation of platelets.51,52 Our flow cytometry analysis
revealed that platelet P-selectin level was increased in
the hearts but not in the lungs and kidneys from
COVID-19 patient autopsies compared to controls
(Fig. 2a and b). We also tested the platelet expression of
PF4 (CXCL4), which promotes blood coagulation and is
a target of autoantibodies causing heparin-induced
thrombocytopenia.53 Platelet PF4 expression showed a
significant increase in the lungs of COVID-19 patients
compared to controls (Fig. 2c and d). PF4 level in the
heart platelets was also increased in the COVID-19
group, although it was not significant (Fig. 2c and d). In
the kidneys, no different PF4 level was found between
groups (Fig. 2c and d). Platelet expression of other
receptors such as CD40L, CD42b (glycoprotein Iba),
and CXCR4 in the COVID-19 autopsy tissues was com-
parable to controls (data not shown). In addition, we
found a massive production of VWF, a procoagulant, in
most COVID-19 patient autopsy tissues � lungs, hearts,
and kidneys � using IHC staining (Fig. 2e and Supple-
mentary Fig. S3). VWF was detected in the outer layer
of the thrombus and CD31-expressing vascular endothe-
lium in the COVID-19 patient tissues, suggesting VWF
expression by both activated platelets and endothelial
cells. In contrast, control tissues showed a low level of
VWF production only in the vascular endothelial lining
(Fig. 2e and Supplementary Fig. S3).

Platelets exhibited an activated phenotype in the
lungs, hearts, and kidneys of COVID-19 patients
(Fig. 2a-e). However, severe hypercoagulability mainly
developed in the lungs of our samples and barely in the
hearts and kidneys (Fig. 1a-g). To test whether endothe-
lial cells provide a prothrombotic environment specifi-
cally in the lungs during COVID-19, we examined a
phenotype of endothelial cells in the lungs, hearts, and
kidneys of COVID-19 patients using flow cytometry
analysis. We found that endothelial cell expression of
anticoagulants thrombomodulin and endothelial cell
protein C receptor (EPCR) were significantly downregu-
lated in the lung of COVID-19 patients compared with
controls (Fig. 2f-h). Endothelial cells in the hearts of
COVID-19 patients showed a slight decrease in
thrombomodulin and EPCR expression, but it was
not significant (Fig. 2f-h). The kidney endothelial
cells expressed thrombomodulin and EPCR with no
differences between groups (Fig. 2f-h). In hemostatic
conditions, endothelial cells produce nitric oxide and
prostaglandin I2 by utilizing the enzymes endothe-
lial nitric oxide synthase (eNOS) and cyclooxygenase
2 (COX-2), respectively, to inhibit platelet aggrega-
tion and activation9. In the COVID-19 patient organs
that we examined, endothelial cells expressed a com-
parable level of those enzymes to controls (data not
shown). Collectively, endothelial cells represent a
prothrombotic phenotype in COVID-19 patient lungs,
leading to platelet recruitment and coagulation
abnormalities.
5



Figure 1. Hypercoagulable state and infiltration in lungs during COVID-19. (a) Representative images of H&E staining on post-
mortem lungs, hearts, and kidneys from COVID-19 patients and non-COVID-19 controls. Scale bars: 25 µm. (b) Representative images
of immunohistochemistry (IHC) for fibrin (brown) on autopsy lungs, hearts, and kidneys of COVID-19 patients. Scale bars: 25 µm. (c)
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Macrophages, monocytes, and T cells are increased and
activated in COVID-19 patient lungs
We found an increased CD45+ cell infiltration in the
lungs of COVID-19 patients (Fig. 1a and h). To further
investigate the immune profile of COVID-19 patient
lungs, we analysed the number and phenotype of differ-
ent immune cells in the autopsy lungs of COVID-19
patients using flow cytometry. Macrophages were the
largest immune cell population in both COVID-19 and
control lungs and significantly increased in the COVID-
19 patients compared with controls (Fig. 3a and Supple-
mentary Fig. S4a). Similarly, the number of monocytes,
CD4+ T cells, and CD8+ T cells was increased in the
lungs of COVID-19 patients, while the neutrophil count
was comparable between COVID-19 and controls
(Fig. 3a and Supplementary Fig. S4a). In the phenotype
analysis, macrophages in the COVID-19 patient lungs
exhibited downregulated HLA-DR expression compared
to controls (Fig. 3b and c). CD40 expression on macro-
phages was increased in the COVID-19 patients,
although it was not significant (Fig. 3b and d). Mono-
cytes in the COVID-19 patient lungs revealed upregu-
lated CD16 expression compared with controls but not
significantly (Fig. 3e and f). In CD4+ T cells of the
COVID-19 patient lungs, CCR7+CD45RA� central
memory T cells (TCM) were proportionally increased
compared to controls, while CCR7�CD45RA+ effector
memory T cells re-expressing CD45RA (TEMRA) were
decreased (Fig. 3g and h). However, the absolute num-
ber of most CD4+ T cell subsets including CCR7+CD45+

naÿve T cells (TN), TCM cells, and CCR7�CD45RA�

effector memory T cells (TEM) was significantly
increased in the COVID-19 patient lungs compared to
controls (Fig. 3i). Similarly, the number of CD4+ TEMRA

cells was inclined in the COVID-19 patient, although
there was no significance (Fig. 3i). The cell frequencies
and numbers of CD8+ T cell subsets in the COVID-19
patient lungs exhibited similar results to CD4+ T cells
(Supplementary Fig. S4b and c). These data demon-
strate that immune cells such as macrophages, mono-
cytes, and T cells are increased and activated in the
lungs during COVID-19.
Representative image of IHC for CD42b (brown) on autopsy lungs of
ity score of COVID-19 patient lungs, hearts, and kidneys examined
sons test was used for statistical analysis. P-values: 0¢0260 (Lung v
Plasma D-dimer level in COVID-19 patients upon their hospitalizatio
neys from COVID-19 patients and controls determined by flow cytom
(Supplementary Fig. S2). Mann-Whitney test was used for statistical a
(g) Correlation between platelet number and coagulation abnormali
lation was used for statistical analysis. (h) Number of CD45+ cells in C
were gated on EpCAM�CD45+ (Supplementary Fig. S2). Mann-Whitn
0¢0122 (Heart); 0¢8286 (Kidney). (i) Correlation between CD45+ infilt
score histologically graded in postmortem lungs of COVID-19 pat
COVID-19 patient group, seven lung samples, seven heart samples
samples, eleven heart samples, and ten kidney samples were use
experiments. *P < 0¢05; **P < 0¢005.
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Adhesion molecule expression is reduced in endothelial
cells of COVID-19 patient lungs
We and others found increased immune cell infiltration
in the autopsy lungs of COVID-19 patients (Fig. 3).45,48

Several researchers predicted that endothelial cell
expression of adhesion molecules such as ICAM-1,
VCAM-1, E-selectin, and P-selectin would be upregu-
lated to recruit immune cells in COVID-19.8,17,18 We
tested whether adhesion molecule expression on endo-
thelial cells is altered in the postmortem lungs, hearts,
and kidneys from COVID-19 patients. Unexpectedly,
endothelial adhesion molecule expression was reduced
in the COVID-19 patient lungs compared to controls
(Fig. 4a-f). In the lungs, endothelial cells in both
COVID-19 and control groups were positive for ICAM-1
(Fig. 4a and b). However, we found a significant down-
regulation of ICAM-1 in the COVID-19 lungs. Endothe-
lial cells in the control lungs expressed a low level of
VCAM-1, E-selectin, and P-selectin, while the COVID-
19 lungs showed even lower expression of those mole-
cules (Fig. 4a, c, d, e, and f). In the COVID-19 autopsy
hearts, ICAM-1 and E-selectin were significantly down-
regulated compared to controls, while VCAM-1 and P-
selectin expression levels showed no differences
(Fig. 4a-f). Endothelial cells in the kidneys from
COVID-19 patients expressed a comparable level of
adhesion molecules to controls except VCAM-1 (Fig. 4a-
f). VCAM-1 was significantly decreased in the COVID-
19 kidneys (Fig. 4a and c).

In the COVID-19 patient lungs, a loss of ICAM-1
expression in endothelial cells was not associated with
the severity of immune cell infiltration, suggesting that
other mechanisms would be involved in the pulmonary
infiltration (Fig. 4g). Decreased expression of thrombo-
modulin in endothelial cells was significantly correlated
with an increased infiltration in the lungs of COVID-19
patients (Fig. 4h). Thrombomodulin plays an anti-
inflammatory role as well as an anticoagulant
function.11,12,54,55 These data suggest that endothelial
cell dysfunction with downregulated adhesion mole-
cules occurs in the lungs of COVID-19 patients and that
downregulated thrombomodulin expression in
COVID-19 patients. Scale bar: 25 µm. (d) Coagulation abnormal-
by H&E stain. Kruskal-Wallis test with Dunn’s multiple compari-
s Heart); 0¢0201 (Lung vs Kidney); 0¢9999 (Heart vs Kidney). (e)
n. (f) Number of platelets in postmortem lungs, hearts, and kid-
etry. Platelets were gated on EpCAM�CD45�PECAM-1dimCD41+

nalysis. P-values: 0¢0205 (Lung); 0¢3845 (Heart); 0¢9999 (Kidney).
ty score in autopsy lungs of COVID-19 patients. Spearman corre-
OVID-19 patient lungs, hearts, and kidneys. CD45+ immune cells
ey test was used for statistical analysis. P-values: 0¢0037 (Lung);
rating cell number examined by flow cytometry and infiltration
ients. Spearman correlation was used for statistical analysis. In
, and eight kidney samples were tested. In controls, eight lung
d. Data shown are mean values of two or three independent
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Figure 2. Prothrombotic phenotype of platelets and endothelial cells in COVID-19 patient lungs. (a and b) Flow cytometry
analysis (a) and frequencies (b) of P-selectin expression on platelets in lungs, hearts, and kidneys of COVID-19 patients and controls.
Platelets were gated on EpCAM�CD45�PECAM-1dimCD41+ (Supplementary Fig. S2). Mann-Whitney test was used for statistical anal-
ysis. P-values: 0¢2319 (Lung); 0¢0003 (Heart); 0¢0676 (Kidney). (c and d) Histograms (c) and mean fluorescent intensity (MFI) (d) of
PF4 expression in platelets of lungs, hearts, and kidneys from COVID-19 patients and controls. Mann-Whitney test was used for sta-
tistical analysis. P-values: 0¢0289 (Lung); 0¢1422 (Heart); 0¢7577 (Kidney). (e) Representative images of immunohistochemistry stain-
ing for VWF (red) and CD31 (brown) on lung, heart, and kidney sections from COVID-19 and control autopsies. Scale bars: 12¢5 µm.
(f) Histograms for thrombomodulin (TM) and endothelial protein C receptor (EPCR) expression on endothelial cells in postmortem
lungs, hearts, and kidneys. Endothelial cells were gated on EpCAM�CD45�PECAM-1hiCD34+ (Supplementary Fig. S2). (g and h) MFI
of endothelial TM (g) and EPCR (h) expression in lungs, hearts, and kidneys from COVID-19 and control autopsies. Mann-Whitney
test was used for statistical analysis. P-values: 0¢0022 (Lung); 0¢2109 (Heart); 0¢1728 (Kidney) (g). P-values: 0¢0003 (Lung); 0¢0556
(Heart); 0¢5884 (Kidney) (h). In COVID-19 patient group, seven lung samples, seven heart samples, and eight kidney samples were
tested. In controls, eight lung samples, eleven heart samples, and ten kidney samples were used. Data shown are mean values of
two or three independent experiments. *P < 0¢05; **P < 0¢005, ***P < 0¢0005.
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Figure 3. Increased macrophages, monocytes, and T cells with activated phenotype in lungs of COVID-19 patients. (a) Num-
bers of macrophages (CD68+CD206+), monocytes (CD68+CD206�CD169�), CD4+ T cells (CD3+CD4+), CD8+ T cells (CD3+CD8+), and
neutrophils (CD15+CD66b+) in autopsy lungs of COVID-19 patients and controls. The gating strategy for flow cytometry analysis was
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endothelial cells is related to severe infiltration during
COVID-19.
SARS-CoV-2 does not directly infect endothelial cells or
induce their dysfunction
To understand if SARS-CoV-2 directly infects endothe-
lial cells leading to a prothrombotic and dysfunctional
state, we first tested the presence of the SARS-CoV-2
genome in the lungs, hearts, and kidneys from COVID-
19 patients. All COVID-19 lung specimens were positive
for viral RNA in the RT-PCR test (Fig. 5a and Supple-
mentary Fig. S5a). However, two of seven heart samples
and six of eight kidney samples tested positive for
SARS-CoV-2 RNA (Fig. 5a and Supplementary Fig. S5b
and c). Second, we searched SARS-CoV-2 spike protein
in the COVID-19 autopsy tissues using IHC stain to
detect virus-infected cells. The spike protein was present
in all SARS-CoV-2 RNA-positive tissue specimens and
was located outside the vascular endothelial layer in the
lungs, hearts, and kidneys of COVID-19 patients
(Fig. 5b and Supplementary Fig. S5d). Significantly less
viral antigen was detected in the heart and kidney tis-
sues compared to the lungs. We could not detect SARS-
CoV-2 virions in the vascular endothelium of COVID-19
patient lungs using electron microscopy but were able
to identify virus-like particles in the epithelium (Fig. 5c).
Those particles represented a SARS-CoV-2-specific
ultrastructure described by Miller and Goldsmith.56 In
addition, alveolar epithelial cells of the COVID-19
patients showed an abnormal ultrastructure, which has
been observed in ciliary dyskinesia induced by respira-
tory syncytial virus (RSV) infection (Fig. 5c).57

Since endothelial cells of the COVID-19 patient
lungs exhibited a prothrombotic and dysfunctional phe-
notype despite no signs of a direct SARS-CoV-2 infec-
tion, we hypothesized that endothelial cell dysfunction
is not caused directly by the viral infection. To test this
hypothesis, we infected HCAECs with SARS-CoV-2 in
vitro. HCAECs showed no cytopathic changes at
16 hours post-infection (Fig. 5d). In the RT-PCR test, we
found no detectable level of virus RNA in both SARS-
CoV-2 and mock infection groups (Supplementary Fig.
S5e). Importantly, no downregulation of thrombomodu-
lin, ICAM-1, and VCAM-1 was shown in the SARS-CoV-
shown in Supplementary Fig. S4a. Mann-Whitney test was used
(Monocytes); 0¢0205 (CD4+ T cells); 0¢0093 (CD8+ T cells); 0¢4634 (
expression in COVID-19 patient lungs. (c and d) Mean fluorescent i
expression (d) in lung macrophages from COVID-19 and control auto
ues: 0¢0175 (c); 0¢0541 (d). (e and f) Flow cytometry analysis (e) and
from COVID-19 patients. Mann-Whitney test was used for statistical
files of CD4+ T cells from COVID-19 and control lungs. (h and i) Fre
numbers (i) in postmortem lungs of COVID-19 patients and contro
0¢6943 (CCR7+CD45RA+); 0¢0289 (CCR7+CD45RA�); 0¢6126 (CCR
(CCR7+CD45RA+); 0¢0022 (CCR7+CD45RA�); 0¢0205 (CCR7�CD45RA
and eight control lung samples were tested. Data shown are mean
< 0¢005.
2-infected HCAECs compared with mock infection con-
trol (Fig. 5e). Thus, we did not find evidence of direct
endothelial cell infection by SARS-CoV-2 despite a dys-
functional phenotype of endothelial cells in COVID-19
patient lungs.
Epithelial cells are involved in endothelial dysfunction,
coagulation, and infiltration in COVID-19 patient lungs
Nasal epithelial cells and type II alveolar epithelial cells
in the respiratory system are a primary target of SARS-
CoV-2 entry, and the resultant lung injury can cause
hypoxia in COVID-19.58�60 Since we found the SARS-
CoV-2 infection and ultrastructural damage in alveolar
epithelial cells of COVID-19 patients (Fig. 5c), we tested
whether a hypoxic injury occurred in the lungs. In our
COVID-19 patient cohort, the average oxygen saturation
before death was 76¢8% and ranged between 49% and
100% (Fig. 6a, Table 1 and Supplementary Table S1).
The mRNA level ofHIF1A, a hypoxia-induced gene, was
upregulated in the COVID-19 patient lungs compared
to controls, while the hearts and kidneys showed no dif-
ferences (Fig. 6b). In the COVID-19 patients, lung epi-
thelial cells showed increased GLUT1 expression,
another hypoxia-induced molecule, compared to con-
trols, although epithelial HIF1a expression was compa-
rable between COVID-19 and control groups (Fig. 6c).
Endothelial cells and immune cells in the lungs of
COVID-19 patients exhibited increased HIF1a and
GLUT1 expression, confirming hypoxic stress in the
lungs (Fig. 6d and Supplementary Fig. S6). To investi-
gate if hypoxia can directly cause endothelial cell dys-
function in the lungs, we housed naÿve mice in the
hypoxia chamber with 10% O2 for eight days (Fig. 6e).
In the hypoxia-exposed mice, the lung endothelial cells
showed decreased thrombomodulin and ICAM-1
expression compared to the normal oxygen control,
mimicking the dysfunctional phenotype of lung endo-
thelial cells in the COVID-19 patients (Fig. 6f and Sup-
plementary Fig. S7). Other adhesion molecules
including VCAM-1, E-selectin, and P-selectin were
expressed at comparable levels between the hypoxia and
control groups (Fig. 6f and data not shown).

Next, we tested if damaged epithelial cells are
directly involved in a hypercoagulable state and
for statistical analysis. P-values: 0¢0041 (Macrophages); 0¢0140
Neutrophils). (b) Histograms of macrophage HLA-DR and CD40
ntensity (MFI) of HLA-DR expression (c) and frequency of CD40
psies. Mann-Whitney test was used for statistical analysis. P-val-
frequency (f) of CD16 expression in monocytes of autopsy lungs
analysis. P-value: 0¢1807. (g) CCR7 and CD45RA expression pro-
quencies of T cell subsets among CD4+ T cells (h) and absolute
ls. Mann-Whitney test was used for statistical analysis. P-values:
7�CD45RA�); 0¢0037 (CCR7�CD45RA+) (h). P-values: 0¢0037
�); 0¢0721 (CCR7�CD45RA+) (i). Seven COVID-19 lung samples
values of two or three independent experiments. *P < 0¢05; **P
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Figure 4. Downregulated adhesion molecules in lung endothelial cells during COVID-19. (a) Flow cytometry analysis of ICAM-1
and VCAM-1 expression on endothelial cells of postmortem lungs, hearts, and kidneys from COVID-19 patients and controls. (b)
Mean fluorescent intensity (MFI) of ICAM-1 expression on endothelial cells in lungs, hearts, and kidneys from COVID-19 and control
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immune cell infiltration during COVID-19. We found
that pulmonary epithelial cells in the COVID-19
patients expressed a higher level of tissue factor, a pro-
coagulant, compared with controls (Fig. 6g and h). Ele-
vated tissue factor expression level in epithelial cells was
significantly associated with increased platelet number
in the COVID-19 patient lungs (Fig. 6i). In addition,
unlike endothelial cells, pulmonary epithelial cells
exhibited an increase of ICAM-1 expression in the
COVID-19 patients compared to controls, although it
was not significant (Fig. 6g and h). These data suggest
that pulmonary epithelial cells might participate in
endothelial cell dysfunction, platelet activation and
aggregation, and immune cell infiltration directly or
indirectly via hypoxia during COVID-19.
Discussion
Many researchers have speculated about a phenotype of
activated endothelial cells in COVID-19.8,17,18 However,
direct evidence was missing. Most human studies on
SARS-CoV-2 infection have used the blood or pharyn-
geal swab specimens that can be conveniently acquired
but barely contain endothelial cells.61 In this study, we
elucidated the dysfunctional phenotype of endothelial
cells associated with hypercoagulability and severe infil-
tration in the lungs during fatal COVID-19. As previ-
ously shown by other researchers, we found severe
coagulation abnormalities and infiltration in the
autopsy lungs from COVID-19 patients.45�48 Pulmo-
nary endothelial cells exhibited prothrombotic and dys-
functional phenotype with upregulated procoagulant
and downregulated anticoagulants and adhesion mole-
cules in COVID-19. However, we were unable to find
clear evidence of direct endothelial cell infection by
SARS-CoV-2 in the postmortem COVID-19 specimens
and the primary cell in vitro culture. This suggests that
endothelial cell dysfunction might not be directly
caused by SARS-CoV-2 infection but rather induced by
the pathophysiologic conditions during COVID-19.
Unlike the lungs, the hearts and kidneys in COVID-19
showed a mild level of hypercoagulable state, infiltra-
tion, and endothelial cell dysfunction.

Several researchers predicted activated and dysfunc-
tional phenotype of endothelial cells showing strong
expression of procoagulant VWF in COVID-19.17,18
autopsies. Mann-Whitney test was used for statistical analysis. P-val
cies of VCAM-1+ cells among endothelial cells in postmortem lungs
statistical analysis. P-values: 0¢0401 (Lung); 0¢2463 (Heart); 0¢0263
expression on endothelial cells of autopsy lungs, hearts, and kidneys
(e) and P-selectin (f) expression in endothelial cells from postmorte
statistical analysis. P-values: 0¢0059 (Lung); 0¢0268 (Heart); 0¢5726 (
ney) (f). (g and h) Correlation between endothelial ICAM-1 (g) or thro
ically evaluated. Spearman correlation was used for statistical analy
samples, and eight kidney samples were tested. In controls, eight lu
used. Data shown are mean values of two or three independent exp
Indeed, we found that VWF expression was strikingly
increased in endothelial cells of the lungs, hearts, and
kidneys from COVID-19 patients. The VWF is a multi-
meric glycoprotein secreted exclusively by endothelial
cells and platelets into the circulation and involved in
thrombus formation by tethering platelets to endothelial
cells.9,10 In addition, we found the downregulation of
anticoagulants thrombomodulin and EPCR in the lung
endothelial cells of COVID-19 autopsies. Thrombomo-
dulin is a transmembrane glycoprotein expressed
mainly on endothelial cells but also found in immune
cells, vascular smooth muscle cells, keratinocytes, and
lung alveolar epithelial cells.9,11,12 Thrombomodulin is a
potent anticoagulant that binds to thrombin and then
deactivates it to initiate an anticoagulation cascade.
Thrombin-thrombomodulin complex activates protein
C, which is a crucial mediator to inactivate coagulant
Factors Va and VIIIa and to further reduce thrombin
generation in the anticoagulation processes.11,12,62

EPCR, another coagulant, presents the protein C to the
thrombin-thrombomodulin complex to accelerate pro-
tein C activation.11,62 This suggests that endothelial cell
dysfunction with increased procoagulant production
and decreased anticoagulant expression is associated
with severe thrombus formation and hypercoagulability
in the lung of COVID-19 patients.

In the hearts and kidneys of COVID-19 patients, pla-
telets showed an activated phenotype with increased P-
selectin, PF4, and VWF expression at a similar level as
the lungs. Furthermore, endothelial cells largely pro-
duced VWF to a similar degree in the lungs, hearts, and
kidneys in the COVID-19 patients. However, the hearts
and kidneys from COVID-19 patients exhibited only
mild coagulation abnormalities, while the lungs devel-
oped fatal thrombosis. This suggests that platelet activa-
tion and partial dysfunction of endothelial cells are
insufficient for developing a severe multi-organ hyper-
coagulable state during COVID-19. A loss of thrombo-
modulin and EPCR expression on endothelial cells
seems critical for the progression to fatal thrombotic
disorders. Previous studies showed that endothelial
expression of those anticoagulant molecules is downre-
gulated in thrombosis associated with meningococcal
sepsis, purpura fulminans, and cerebral malaria.63�65

In mice, endothelial cell-specific thrombomodulin dele-
tion resulted in lethal thrombosis development.66 We
ues: 0¢0037 (Lung); 0¢0154 (Heart); 0¢2031 (Kidney). (c) Frequen-
, hearts, and kidney specimens. Mann-Whitney test was used for
(Kidney). (d) Flow cytometry plots of E-selectin and P-selectin
from COVID-19 patients and controls. (e and f) MFI of E-selectin
m lungs, hearts, and kidneys. Mann-Whitney test was used for
Kidney) (e). P-values: 0¢0939 (Lung); 0¢0853 (Heart); 0¢8968 (Kid-
mbomodulin (TM) (h) expression and infiltration score histolog-
sis. In COVID-19 patient group, seven lung samples, seven heart
ng samples, eleven heart samples, and ten kidney samples were
eriments. *P < 0¢05; **P < 0¢005.
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Figure 5. No endothelial cell infection or dysfunction by SARS-CoV-2. (a) Pie charts showing the presence of SARS-CoV-2 RNA
tested by RT-PCR in postmortem lungs, hearts, and kidneys from COVID-19 patients. Each pie slice represents one patient. (b) Repre-
sentative images of immunohistochemistry for SARS-CoV-2 spike protein (brown) on lungs, hearts, and kidneys from COVID-19
autopsies. Scale bars: 25 µm (top); 6¢25 µm (bottom). Arrows indicate the blood vessel. (c) Representative images of SARS-CoV-2 in
the pulmonary epithelium of COVID-19 patient. Scale bars: 2 µm (left); 200 nm (right). (d) Microscopic images of primary human cor-
onary artery endothelial cells (HCAECs) with in vitro SARS-CoV-2 or mock infection. Images were acquired 16 hours after virus inocu-
lation. Scale bars: 125 µm. (e) Frequencies of thrombomodulin (TM)+, ICAM-1+, and VCAM-1+ cells among HCAECs with in vitro
SARS-CoV-2 or mock infection assessed by flow cytometry. Mann-Whitney test was used for statistical analysis. P-values: 0¢7000
(TM); 0¢9999 (ICAM-1); 0¢9999 (VCAM-1). Seven lung samples, seven heart samples, and eight kidney samples were tested. Data
shown are mean values of two or three independent experiments.
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found a significant loss of thrombomodulin and EPCR
expression in the lungs of COVID-19 patients. In con-
trast, those anticoagulants in the hearts and kidneys
were relatively preserved. Recently, decreased endothe-
lial thrombomodulin and ECPR expression in COVID-
19 patient lungs was reported by using IHC stain.67

In COVID-19 patients, it is reported that the plasma
level of soluble thrombomodulin was elevated.13,15,16

Since pathophysiological conditions such as infection,
sepsis, inflammation, and ischemic disease can cause
thrombomodulin release from the endothelial cell
membrane into the blood, soluble thrombomodulin is
considered as a useful biomarker to diagnose endothe-
lial damage and dysfunction.11,12 Meanwhile, those dis-
ease conditions can downregulate endothelial
thrombomodulin mRNA transcription through hypoxic
stress and pro-inflammatory cytokine milieu.11 We
found hypoxic stress in the endothelial cells of COVID-
19 patient lungs. Thus, our finding of decreased
www.thelancet.com Vol 75 Month January, 2022
thrombomodulin expression on endothelial cells in
COVID-19 might be mediated by two regulation pro-
cesses � release in a soluble form and downregulation
of gene transcription.

We elucidated an increase of macrophages, mono-
cytes, CD4+ T cells, and CD8+ T cells in the postmortem
lungs of COVID-19 patients using flow cytometry analy-
sis, while other researchers have mainly utilized IHC or
scRNA-seq analysis.68�70 In our analysis, lung macro-
phages of COVID-19 patients expressed a lower level of
HLA-DR and a higher level of CD40 than those of con-
trols. Severe COVID-19 patients showed an increased
number of HLA-DRlo monocytes in the blood, a dysre-
gulated or immunosuppressive subset of mono-
cytes.25,71-73 This suggests that abnormally or
alternatively activated macrophages emerged in the
lungs during COVID-19. The role of CD40 expressed
on macrophages in COVID-19 remains unclear. How-
ever, SARS-CoV-2 infection increased CD40 expression
13



Figure 6. Hypoxic stress induced by activated epithelial cells in lungs of COVID-19 patients. (a) Arterial oxygen saturation
(SaO2) of COVID-19 patients. (b) HIF1A gene expression in autopsy lungs, hearts, and kidneys of COVID-19 patients and controls
determined by RT-PCR. Mann-Whitney test was used for statistical analysis. P-values: 0¢0089 (Lung); 0¢5358 (Heart); 0¢0553 (Kidney).
(c) Mean fluorescent intensity (MFI) of HIF1a and GLUT1 expression on lung epithelial cells in COVID-19 autopsies and controls. Epi-
thelial cells were gated on EpCAM+CD45� (Supplementary Fig. S2). Mann-Whitney test was used for statistical analysis. P-values:
0¢3969 (left); 0¢0003 (right). (d) MFI of HIF1a expression in endothelial cells and CD45+ immune cells in postmortem lungs of COVID-
19 patients and controls. Mann-Whitney test was used for statistical analysis. P-values: 0¢0541 (left); 0¢0012 (right). (e) Scheme of
experimental timeline for 10% O2 hypoxia exposure to C57BL/6 mice. Mice were sacrificed on day 8 of hypoxia. (f) MFI of thrombo-
modulin (TM), ICAM-1, and VCAM-1 expression on lung endothelial cells collected from mice exposed to hypoxia or normal level of
oxygen. Mouse lung endothelial cells were gated on EpCAM�CD45�PECAM-1+CD34+ (Supplementary Fig. S7). P-values: 0¢0079
(TM); 0¢0079 (ICAM-1); 0¢3095 (VCAM-1). (g) Flow cytometry analysis of tissue factor (TF) and ICAM-1 expression in pulmonary epithe-
lial cells from COVID-19 patients and controls. (h) MFI of TF and ICAM-1 expression in epithelial cells of COVID-19 patient lungs.
Mann-Whitney test was used for statistical analysis. P-value: 0¢0059 (left); 0¢2810 (right). (i) Correlation between epithelial TF expres-
sion and platelet number in lungs of COVID-19 patients. Spearman correlation was used for statistical analysis. In COVID-19 patient
group, seven lung samples, seven heart samples, and eight kidney samples were tested. In controls, eight lung samples, eleven heart
samples, and ten kidney samples were used. In mouse experiment, five mice were used for each group. Data shown are mean values
of two or three independent experiments. *P < 0¢05; **P < 0¢005; ***P < 0¢0005.
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and decreased HLA-DR expression in M2 macrophages
in vitro, supporting our findings on the lung macro-
phages of COVID-19 patients.74 Our data revealed an
increase of CD16+ inflammatory monocytes in the
autopsy lungs of COVID-19 patients. Some studies
showed an elevated number of CD14�CD16+ non-classi-
cal monocytes in COVID-19 patient blood, while others
disagreed.25,71,75,76 Additionally, we showed that the
number of CD4+ TEM and CD8+ TEM cells was signifi-
cantly increased in the COVID-19 patient lungs. In
agreement with this, other studies showed an elevated
frequency or number of activated T cells in the blood
during COVID-19, although they have used different
markers to define T cell subsets than ours.77,78
www.thelancet.com Vol 75 Month January, 2022
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In SARS-CoV-2 infection, it is speculated that vascu-
lar endothelial cells exhibit increased expression of
adhesion molecules.8,17,18 ICAM-1 upregulation is gen-
erally mediated by various biological stimuli such as
inflammation, bacteria or virus infection, and oxidative
stress.79 Endothelial cell expression of other adhesion
molecules including VCAM-1, E-selectin, and P-selectin
would be increased similarly to ICAM-1 upregulation.
In pathologic conditions, adhesion molecules anchored
in endothelial cell transmembrane are cleaved by matrix
metalloproteinases (MMPs) and released into the
blood.31 Several studies showed that soluble forms of
ICAM-1, VCAM-1, E-selectin, and P-selectin are highly
elevated in severely ill COVID-19 patients.13,14 In our
flow cytometry analysis, the lung endothelial cells in
COVID-19 exhibited reduced expression of surface
ICAM-1, VCAM-1, E-selectin, and P-selectin despite
increased pulmonary infiltration. It is unclear why
adhesion molecule expression was decreased in acti-
vated endothelial cells in COVID-19. Since CD45+ cell
number was increased in the lungs of COVID-19
patients, it could be hypothesized that endothelial cells
upregulate adhesion molecules upon SARS-CoV-2
infection to recruit immune cells from the blood, and
then the adhesion molecule expression is downregu-
lated after the infiltration. As a possible cause of down-
regulation, activated endothelial cells release
endothelial microparticles (EMPs), which induce
ICAM-1 downregulation on adjacent endothelial cells.80

In addition, COVID-19 patients showed excessively
increased plasma MMP level and enzymatic activity,
suggesting the massive cleavage of membrane-bound
adhesion molecules on endothelial cells.81�83 More
studies will be necessary to determine how ICAM-1 and
other adhesion molecules are downregulated on endo-
thelial cells after the immune cell infiltration in
COVID-19. Meanwhile, we found that decreased
endothelial thrombomodulin expression was signifi-
cantly associated with increased infiltration in the
lungs of COVID-19 patients, while ICAM-1 expres-
sion showed no correlation. Thrombomodulin plays
an anti-inflammatory role besides its anticoagulant
function by inhibiting immune cell adhesion and
suppressing complement system activation.11,12,54,55

Thus, a loss of thrombomodulin expression on endo-
thelial cells could trigger or accelerate a pathogenic
infiltration of immune cells into the lungs during
COVID-19.

Since we observed prothrombotic endothelial cells
with downregulated adhesion molecule expression in
the COVID-19 patient lungs, we wanted to examine the
cause of endothelial cell dysfunction. We investigated
the hypothesis that SARS-CoV-2 directly infects endo-
thelial cells leading to dysfunction. Although we
detected SARS-CoV-2 RNA by RT-PCR test in all
autopsy lung specimens with COVID-19, the spike pro-
tein was not seen in endothelial cells by IHC stain. We
www.thelancet.com Vol 75 Month January, 2022
found the SARS-CoV-2 particles in the pulmonary epi-
thelium but not in the endothelium using electron
microscopy. Interestingly, the SARS-CoV-2 virions were
mostly located around the ciliated epithelium, where
highly expresses ACE2 and TMPRSS2 allowing a strong
SARS-CoV-2 infection.22 In addition, we were unable to
infect endothelial cells in vitro with SARS-CoV-2 or
induce endothelial cell dysfunction by the virus infec-
tion. Thus, endothelial cells are unlikely to be infected
directly by SARS-CoV-2. Several recent studies showed
the low susceptibility of endothelial cells to SARS-CoV-
2 due to low ACE2 expression.35�41 This is supported by
the fact that recombinant ACE2 transduction is required
for sufficient SARS-CoV-2 infection of endothelial
cells.40 Some researchers published electron micro-
scope studies showing SARS-CoV-2 particles present in
endothelial cells.33,47 However, others clarified that
those shown particles were indeed cellular ribosomal
complexes or vesicles.34,84

We sought a pathophysiological condition in SARS-
CoV-2 infection that can mediate endothelial cell dys-
function. We found a low oxygen saturation in the
COVID-19 patients of our cohort and an increased
HIF1A gene expression in their lungs, supporting hyp-
oxic stress during COVID-19. The protein levels of
HIF1a or GLUT1 were upregulated in epithelial cells,
endothelial cells, and immune cells of COVID-19
patient lungs, confirming a hypoxic condition in SARS-
CoV-2-infected lungs. Hypoxia can cause endothelial
cell dysfunction and further thrombosis.85,86 In our
mouse experiment, hypoxia induced endothelial cell
dysfunction exhibiting thrombomodulin and ICAM-1
downregulation, which we observed in the COVID-19
patient lungs. Thus, pulmonary epithelial cells infected
and damaged by SARS-CoV-2 could cause hypoxia lead-
ing to endothelial dysfunction in COVID-19 patients.
Wang et al. reported that epithelial cells were more sus-
ceptible to SARS-CoV-2 infection compared with endo-
thelial cells in their in vitro co-culture system.38 Co-
cultured endothelial cells in the system revealed altered
proteomic profile despite no direct SARS-CoV-2 infec-
tion, suggesting crosstalk between SARS-CoV-2-
infected epithelial cells and endothelial cells. In addi-
tion, we found an increased expression of tissue factor
and ICAM-1 in pulmonary epithelial cells of COVID-19
patients. Thus, injured epithelial cells may be directly
involved in thrombosis and infiltration in the lungs of
COVID-19 patients. Alternatively, microparticles
derived from platelets, monocytes, and endothelial cells
can act as a procoagulant contributing to thrombosis
development.87 Elevated circulating microparticles have
been reported in COVID-19 patients, suggesting a path-
ogenic role of microparticles in COVID-19-related
immunothrombosis.88 Future studies should explore
whether microparticles are involved in thrombosis
development and further endothelial cell dysfunction in
the lungs of COVID-19 patients.
15
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Microbial infection can be a common cause of
inflammation-involved thrombosis.89 Notably, one-half
of COVID-19 non-survivors revealed a secondary infec-
tion diagnosed by clinical symptoms, signs, or culture
tests in Wuhan.90 In our COVID-19 patient cohort, only
two revealed a suspected secondary infection tested by
sputum culture, suggesting thrombosis mainly caused
by primary SARS-CoV-2 infection or following patho-
logic conditions.

In this study, we demonstrated the downregulation
of endothelial thrombomodulin in the COVID-19 autop-
sies and suggested a prominent role of thrombomodu-
lin in preventing severe thrombosis and infiltration. In
murine models, overexpression of human thrombomo-
dulin or the engineered preservation of thrombomodu-
lin expression protected the lungs from thrombotic
disorders and inflammation.54,91 Moreover, recombi-
nant thrombomodulin or thrombomodulin analog Solu-
lin treatment ameliorated the infarct volume in
ischemic stroke.92,93 Recombinant soluble thrombomo-
dulin administration was also beneficial in patients with
disseminated intravascular coagulation and different
inflammatory diseases.12,55,94 Based on our finding of
endothelial thrombomodulin downregulation in
COVID-19, recombinant thrombomodulin treatment
could be considered as a potential therapy.

In conclusion, we found a procoagulant phenotype
of endothelial cells with upregulated VWF and downre-
gulated thrombomodulin and EPCR in the lungs and,
to a lesser extent, hearts and kidneys during COVID-19.
The number of macrophages, monocytes, and T cells
was increased in the lungs of COVID-19 patients, and
all of them exhibited activated phenotype. Despite
increased infiltration, endothelial cell expression of
ICAM-1, VCAM-1, E-selectin, and P-selectin was down-
regulated in the lungs of COVID-19 patients. However,
decreased thrombomodulin expression in endothelial
cells was related to increased infiltration in the COVID-
19 patient lungs. We showed that endothelial cell dys-
function was not caused directly by SARS-CoV-2 infec-
tion. Interestingly, we found pulmonary epithelial cell
infection and damage by SARS-CoV-2 in the COVID-19
patients. Hypoxia caused by infected epithelial cells
would lead to endothelial cell dysfunction in COVID-19.
The main limitation of our study is the small sample
size. In addition, since we did not have access to biopsy
samples of COVID-19 patients, our study was con-
ducted using autopsy specimens. Further studies con-
firming our findings in fresh biopsy samples from
COVID-19 patients are needed.
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