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ABSTRACT
Objectives  Predicting diagnosis and prognosis of 
traumatic brain injury (TBI) at the prehospital stage is 
challenging; however, using comprehensive prehospital 
information and machine learning may improve the 
performance of the predictive model. We developed and 
tested predictive models for TBI that use machine learning 
algorithms using information that can be obtained in the 
prehospital stage.
Design  This was a multicentre retrospective study.
Setting and participants  This study was conducted at 
three tertiary academic emergency departments (EDs) 
located in an urban area of South Korea. The data from 
adult patients with severe trauma who were assessed by 
emergency medical service providers and transported to 
three participating hospitals between 2014 to 2018 were 
analysed.
Results  We developed and tested five machine learning 
algorithms—logistic regression analyses, extreme gradient 
boosting, support vector machine, random forest and 
elastic net (EN)—to predict TBI, TBI with intracranial 
haemorrhage or injury (TBI-I), TBI with ED or admission 
result of admission or transferred (TBI with non-discharge 
(TBI-ND)) and TBI with ED or admission result of death 
(TBI-D). A total of 1169 patients were included in the final 
analysis, and the proportions of TBI, TBI-I, TBI-ND and 
TBI-D were 24.0%, 21.5%, 21.3% and 3.7%, respectively. 
The EN model yielded an area under receiver–operator 
curve of 0.799 for TBI, 0.844 for TBI-I, 0.811 for TBI-ND 
and 0.871 for TBI-D. The EN model also yielded the highest 
specificity and significant reclassification improvement. 
Variables related to loss of consciousness, Glasgow Coma 
Scale and light reflex were the three most important 
variables to predict all outcomes.
Conclusion  Our results inform the diagnosis and 
prognosis of TBI. Machine learning models resulted in 
significant performance improvement over that with 
logistic regression analyses, and the best performing 
model was EN.

INTRODUCTION
Traumatic brain injury (TBI) is a significant 
health burden worldwide.1 It is the leading 
cause of mortality and disability among young 
individuals.2 Patients with TBI are vulnerable 

to hypoxia and hypotension in the early 
period of their course, and these insults are 
associated with poor outcomes.3 4 Prehospital 
assessment and management of patients with 
TBI are important,5 as early prediction of 
TBI and correcting hypoxia and hypotension 
during the prehospital stage could be benefi-
cial.3 However, the identification of TBI can 
often be challenging in the prehospital area.5 
Vulnerable patients, including the elderly 
or patients who take medications like anti-
platelet or anticoagulant drugs, often have 
TBI owing to low energy insults.6 Prehospital 
clinical signs are also reported to have poor 
sensitivity for raised intracranial pressure 
following TBI.7

Several prediction models to target patients 
with TBI have been reported.8–12 However, 
most incorporated information is available 
only in the hospital, such as laboratory results 
or image findings.8 9 13 In addition, most 
previous prediction models focused on the 
outcomes of patients with TBI,14–16 not the 
identification of TBI. Previously, predictors 
of older adult patients with TBI who required 
transport to a trauma centre were identi-
fied. However, this was consensus based; 
therefore, there is a lack of clinical data.17 

Strengths and limitations of this study

	► This study presented prehospital factors that could 
predict traumatic brain injury in patients with trau-
ma chosen by model-specific metrics.

	► We treated the missing variables as a different cat-
egory, reflecting prehospital field uncertainties and 
increasing data utilisation.

	► The retrospective observational study design could 
lead to certain types of bias (eg, selection bias, con-
founding bias).

	► External validation for other areas should be con-
ducted to generalise the developed prediction model.
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Accurate prehospital prediction of TBI and its severity 
could prevent delays to definite care for patients with TBI. 
Most emergency medical service (EMS) providers collect 
various information including demographics, previous 
medical history, circumstances of the trauma and clin-
ical signs including vital signs; but those variables have 
not been evaluated together as predictors of TBI and its 
severity. Using a variety of prehospital information and 
adapting newly emerging machine learning algorithms 
for predicting diagnosis, disposition and outcome of TBI 
might improve the accuracy of identification of TBI and 
its severity.

The aim of this study was to develop and test predic-
tion models for the diagnosis and prognosis of TBI using 
prehospital information and machine learning algo-
rithms among patients with severe trauma. We hypothe-
sised that incorporating prehospital information could 
achieve acceptable performance in predicting TBI, and 
machine learning algorithms could contribute to perfor-
mance improvement.

MATERIALS AND METHODS
Study design and settings
This was a multicentre retrospective study conducted at 
three tertiary academic emergency departments (EDs) 
located in an urban area (Seoul and Bundang) of South 
Korea. These EDs received 50 000–90 000 visits annually 
and are not designated trauma centres. We adhered to 
the Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis statement on 
reporting predictive models.18

The EMS system in South Korea is operated by the 
National Fire Agency. The EMS level is considered inter-
mediate, as EMS providers can perform bleeding control, 
spinal motion restriction, immobilisation and splintage, 
advanced airway management and administer fluid intra-
venously. As only physicians can declare death in South 
Korea, EMS providers cannot stop resuscitation and must 
transport all patients including those in cardiac arrest to 
the ED. For all EMS transport, EMS providers record an 
ambulance run sheet by law. Since 2012, the National Fire 
Agency adapted the US Centres for Disease Control and 
Prevention of the US field triage decision scheme to eval-
uate patients with trauma,19 and they developed an EMS 
severe trauma in-depth registry. For said patients, EMS 
providers evaluate whether patients met trauma centre 
transport criteria in the field triage decision scheme. If 
they did, the in-depth registry should be recorded, and 
EMS transport protocol recommends that patients are 
transferred to a near-regional trauma centre; but it is not 
mandatory.

The Ministry of Health and Welfare designated three 
ED levels according to the resources and functional 
requirements; level 1 (n=36) and level 2 (n=118) EDs 
have more resources and better facilities for emergency 
care and must be staffed by emergency physicians 24 
hours a day/365 days a year, whereas level 3 EDs (n=248) 

can be staffed by general physicians. In accordance with 
the EMS Act, all EDs participated annually in a nation-
wide functional performance evaluation programme, 
which was administered by the Ministry of Health and 
Welfare. The three participating hospitals in this study 
were all level 1 EDs that can perform acute trauma care 
for patients with TBI 24 hours a day/365 days a year—
including emergency neurosurgical operation and 
angiographic interventions. The Ministry of Health and 
Welfare also designated trauma centres in Korea. Total 
16 trauma centres were designated as trauma centres in 
2018. Among them, 15 were level I EDs.

Data source
We used an EMS ambulance run sheet, EMS trauma 
in-depth registry and ED administrative database. The 
EMS database information, including ambulance run 
sheet and trauma in-depth registry, was collected elec-
tronically by EMS providers using tablets. The EMS 
record review for each severe trauma has been performed 
by EMS medical directors of each fire department since 
2012. The ED administrative database contains patients’ 
demographic characteristics, route of visit, time of visit 
and diagnosis and disposition. We merged the EMS 
database with the ED administrative database based on 
patients’ arrival time, age and sex.

Study population
We included adult (age ≥15) EMS users who were trans-
ported to participating hospitals with severe trauma from 
1 January 2014 to 31 December 2018. Severe trauma was 
assessed by EMS providers and defined as patients who 
fulfilled trauma centre transport criteria (physiologic 
criteria, anatomic criteria, mechanism of injury criteria 
or special patients or system consideration criteria) in 
the field triage decision scheme.20 Patients were excluded 
if they had out-of-hospital cardiac arrest or their main 
cause of EMS call was medical or non-traumatic injury, 
including choking, drowning, fire, flame, heat, cold, 
poisoning, chemical, sexual assault, weather or natural 
disaster. Patients with an unknown outcome were also 
excluded.

Outcome measure
The primary outcome measure was the diagnosis of TBI. 
TBI diagnosis was defined as patients whose diagnostic 
code, according to the International Statistical Classifica-
tion of Diseases and Related Health Problems (ICD-10), 
was between S06.0 and S06.9.21 22 Although S06.7 is coded 
for the duration of unconscious, we included S06.7 in 
our study outcome according to the previous studies.21–23 
However, no patients only have S06.7 code for TBI diag-
nosis in our study. The ED administrative database has 
two types of primary diagnostic codes: the final diag-
nostic codes at ED discharge and at hospital discharge. 
We extracted up to 20 codes for each. We defined the 
diagnostic code as positive for TBI if a confirmative 
diagnostic code was found in any level of the discharge 
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record. Because ICD 10 code is not directly linked to the 
severity of TBI, we further included a variety of additional 
outcome measures to perform analysis that takes into 
account severity. A secondary outcome measure was TBI 
diagnosis with intracranial haemorrhage or injury (TBI-
I), defined as patients with TBI excluding concussion 
(ICD 10 code with S06.0). A tertiary outcome was TBI 
with non-discharge (TBI-ND), defined as patients with 
TBI excluding ED discharged patients. Because patients 
with TBI-ND needed further management by hospitalisa-
tion or transfer, we thought that this group of patients 
had clinically significant severity. A quaternary outcome 
measure was TBI with death (TBI-D), defined as patients 
with TBI who died in ED or hospital. Because patients 
with TBI-D are most severe group, patients with TBI-D 
were also included in TBI-ND.

Variables and preprocessing
We collected patients’ demographic data, circumstances 
of trauma, chief complaints, EMS vital sign assessment, 
EMS management and hospital outcomes. The detailed 
descriptions of each variable are described in online 
supplemental table 1. Categorical variables were prepro-
cessed with the one-hot encoding (dummy variable 
encoding) method. Continuous variables were divided 
into four quantiles, and unknown or missing values were 
categorised as a fifth category. One hot encoding was also 
applied to discretised continuous variables. Preprocessing 
measures including discretisation results of continuous 
variables are presented in online supplemental table 1.

Model development
We developed prediction models for outcomes by using 
five machine learning algorithms: traditional logistic 
regression (LR) analyses, extreme gradient boost (XGB), 
random forest (RF), support vector machine (SVM) and 
elastic net (EN). The LR algorithm was chosen as base-
line comparison algorithm because it is widely used in 
the medical field and has been used for previous predic-
tion model development in TBI studies.12 Backward step-
wise LR was selected for feature selection, and we used 
the default parameter of stepAIC function from MASS 
package (V.7.3–53.1) in R for the selection. The other 
four algorithms were selected based on their ability to 
model non-linear associations, their relative ease of imple-
mentation and their general acceptance in the machine 
learning community.24–26 All algorithms have a method to 
calculate the probability of the outcome occurring and 
algorithms other than LR need hyperparameter tuning 
for proper training and prediction.

The study population was split into training cohorts 
that included development, validation and test cohorts. 
The development cohort included a training cohort from 
which each of the machine learning prediction models 
were derived and a validation cohort in which the predic-
tion models were applied to adjust the hyperparameters 
of the algorithm. The test cohort was used for the final 
evaluation of the performance of the prediction models. 

Chronological split was used for data split. Patients 
enrolled from 1 January 2014 to 31 December 2016 were 
used as the training cohort; patients from 1 January 2017 
to 31 December 2017 were used as the validation cohort 
and patients from 1 January 2018 to 31 December 2018 
were used as the test cohort. Hyperparameter tuning 
using validation data was conducted by, first, a random 
search within 10 000 randomly generated hyperparam-
eters; then, grid search hyperparameters were chosen 
from random search with five candidates per each hyper-
parameter. Finally, hyperparameter with best area under 
receiver–operation curve (AUROC) in validation cohorts 
were selected. Test data were separated during training 
and tuning processes and used to measure algorithm 
performance.

Statistical analysis
The demographic findings and outcomes of the study 
population were described in this study. Additionally, 
the baseline characteristics of the training cohort and 
the validation cohort were compared. The continuous 
variables were compared by using Student’s t test or the 
Wilcoxon rank sum test, and the categorical variables 
were compared by using the χ2 test or the Fisher exact 
test, as appropriate.

We assessed discrimination performance by comparing 
the AUROC for each model in the test cohort. We consid-
ered an AUROC of 0.5 as no discrimination, 0.7–0.8 as 
acceptable, 0.8–0.9 as excellent and more than 0.9 is 
considered outstanding.27 Area under the precision-
recall curve (AUPRC) was assessed for each model in the 
test cohort. We assessed the calibration power by using 
the Hosmer–Lemeshow test, the scaled Brier score and a 
calibration plot in the test cohort. For the delineation of 
test characteristics, the sensitivity, specificity and positive 
and negative predictive values with 95% CIs were deter-
mined using a cut-off probability at a sensitivity of 80%. 
Given that poor sensitivity of clinical predictors for TBI 
in previous studies,7 and almost 75% sensitivity level for 
other severe disease prediction in prehospital settings,28 29 
we thought that 80% sensitivity was an appropriate target 
for our prediction model. We calculated false-positive rate 
as 1—specificity. The added prognostic power of each 
prediction model compared with the LR model was also 
evaluated by continuous net reclassification index (NRI). 
NRI is a statistical method to quantify how well a new 
model correctly reclassifies the study population with the 
other models. Details of NRI are described elsewhere.30

By using a model-specific metric, the variable impor-
tance of each model was assessed, except for the SVM 
algorithm. The variable importance was determined by 
the coefficient effect sizes for the LR model. The XGB 
and RF models were ranked by variable importance on 
the selection frequency of the variable as a decision node. 
The absolute value of the coefficients corresponding to 
the tuned model were used for the measurement of vari-
able importance in the EN algorithm. To compare the 
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variable importance of each prediction model efficiently, 
top five variables of each model were presented.

All statistical analyses were performed with R Statis-
tical Software (V.4.0.1; R Foundation for Statistical 
Computing, Vienna, Austria). Packages included caret, 
e1071, xgboost, randomForest and glmnet for the anal-
ysis of the machine learning algorithms.

Patient and public involvement
This research was done without patient involvement. 
Patients were not invited to comment on the study 
design and were not consulted to develop patient rele-
vant outcomes or interpret the results. Patients were not 
invited to contribute to the writing or editing of this docu-
ment for readability or accuracy.

RESULT
Demographic findings
Among the 157 134 EMS users transported to three hospi-
tals from 2014 to 2018, 1169 patients were included in the 
final analysis (figure 1). Patients were split into two data 
sets: data from 2014 to 2017, consisting of 867 patients 
(74.2%) in the development cohort and the remaining 
data from 2018 consisting of 302 patients (25.8%) in the 
test cohort (figure 1). Among the development cohort, 
data from 2014 to 2016—consisting of 661 patients—were 
used as the training cohort, and 2017 data—consisting of 
206 patients—were used as the validation cohort in the 
model.

Table 1 shows key demographic findings of the devel-
opment and test cohorts. Median (IQR) age was 52 years 
(35–66) in the development cohort and 56 years (40–69) 

in the test cohort. Traffic accident was most common 
mechanism of trauma (43.3% for the development 
cohort and 41.4% for the test cohort). The proportion of 
patients with alert mental status was 58.1% for the devel-
opment cohort and 69.5% in the test cohort. Overall, 
TBI, TBI-I, TBI-ND, TBI-D occurred in 215 (24.8%), 195 
(22.5%), 192 (22.1%) and 32 (3.7%) in the development 
cohort; and 66 (21.9%), 56 (18.5%), 57 (18.9%) and 11 
(3.6%) in the test cohort. All demographic characteris-
tics of the development and test cohorts are described in 
online supplemental table 2.

Main analysis
The final hyperparameters of prediction models are 
described in online supplemental table 3. The discrimina-
tion and NRI of the prediction models on the test cohort 
are presented in table 2. The AUROC for outcomes was 
0.770–0.809 for TBI, 0.812–0.844 for TBI-I, 0.767–0.811 
for TBI-ND and 0.664–0.889 for TBI-D (table  2 and 
online supplemental figure 1). Compared with LR, XGB 
performed significantly well in predicting TBI, and RF 
and EN performed well in predicting TBI-ND and TBI-D. 
EN model generally performed well on all outcomes. 
The AUROC of the EN model for outcomes was 0.799 
(95% CI 0.732 to 0.867), 0.844 (95% CI 0.779 to 0.910), 
0.811 (95% CI 0.741 to 0.882) and 0.871 (95% CI 0.764 
to 0.978) for TBI, TBI-I, TBI-ND and TBI-D, respectively. 
Machine learning models generally resulted in significant 
reclassification improvement compared with LR for TBI, 
TBI-I and TBI-ND. Prediction of TBI-D, AUROC differ-
ence and reclassification improvement compared with LR 
was non-significant in all machine learning models. The 

Figure 1  Population flow. EMS, emergency medical service; OHCA, out-of-hospital cardiac arrest; TBI, traumatic brain injury.
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precision-recall curve is shown in online supplemental 
figure 2. AUPRC was 0.479–0.564 for TBI, 0.469–0.606 for 
TBI-I, 0.477–0.551 for TBI-ND and 0.094–0.293 for TBI-D. 
EN model showed highest AUPRC among all prediction 
models. Online supplemental figure 3 shows the calibra-
tion plot of prediction models according to outcomes. 
All prediction models generally showed poor calibration. 
Given the high AUROC and AUPRC among prediction 
models, and reclassification improvement compared with 

LR, we determined EN as a best-performing prediction 
model in our analysis.

Using cut-off of 80% sensitivity, specificity was 47.5%–
72.5% for TBI, 71.1%–81.3% for TBI-I, 46.1%–74.3% 
for TBI-ND and 42.6%–79.0% for TBI-D. EN showed the 
highest specificity and PPV among all outcomes. False-
positive rate (1—specificity) was almost 19.7%–39.0% 
according to outcomes in the EN model. The 95% CI of 
specificity of the EN model was not overlapped with LR 

Table 1  Key characteristics of the development and test cohorts

n (%) or median (IQR)

PTotal Development cohort Test cohort

Total N=1169 n=867 n=302

Demographics

 � Age, years 53 (36–66) 52 (35–66) 56 (40–69) <0.01

 � Male 809 (69.2) 592 (68.3) 217 (71.9) 0.25

 � Job, unemployed 299 (25.6) 197 (22.7) 102 (33.8) <0.01

 � Diabetes 62 (5.3) 35 (4.0) 27 (8.9) <0.01

 � Hypertension 105 (9.0) 61 (7.0) 44 (14.6) <0.01

Circumstances of trauma

 � Location, road/highway 444 (38.0) 326 (37.6) 118 (39.1) 0.65

 � Season, summer 336 (28.7) 253 (29.2) 83 (27.5) 0.57

 � Weekday, weekend 811 (69.4) 599 (69.1) 212 (70.2) 0.72

 � Time, 18:00 to midnight 361 (30.9) 265 (30.6) 96 (31.8) 0.69

 � Mechanism of injury, TA 500 (42.8) 375 (43.3) 125 (41.4) 0.57

Chief complaint

 � Fracture/abrasion/laceration 302 (25.8) 204 (23.5) 98 (32.5) <0.01

EMS vital sign assessment

 � SBP, mm Hg 130 (109–150) 130 (104–146) 131 (115–150) <0.01

 � DBP, mm Hg 80 (70–91) 80 (69–90) 80 (70–92) 0.21

 � RR, /min 18 (16–20) 18 (16–20) 18 (16–20) 0.33

 � HR, /min 86 (75–99) 86 (74–99) 86 (76–100) 0.40

 � SpO2, % 98 (95–99) 98 (95–99) 98 (96–99) 0.67

 � AVPU scale, alert 714 (61.1) 504 (58.1) 210 (69.5) <0.01

EMS management

 � Intravenous route 176 (15.1) 129 (14.9) 47 (15.6) 0.77

 � Haemorrhage control 586 (50.1) 426 (49.1) 160 (53.0) 0.25

 � Spinal motion restriction 811 (69.4) 606 (69.9) 205 (67.9) 0.51

 � Oxygen supply 233 (19.9) 176 (20.3) 57 (18.9) 0.59

In-hospital mortality 90 (7.7) 74 (8.5) 16 (5.3) 0.07

Outcomes

 � TBI 281 (24.0) 215 (24.8) 66 (21.9) 0.30

 � TBI with intracranial injury 251 (21.5) 195 (22.5) 56 (18.5) 0.15

 � TBI-related non-discharge 249 (21.3) 192 (22.1) 57 (18.9) 0.23

 � TBI-related death 43 (3.7) 32 (3.7) 11 (3.6) 0.95

AVPU, mental status in alert, verbal, pain, and unresponsive scale; DBP, diastolic blood pressure; EMS, emergency medical service; RR, 
respiratory rate; SBP, systolic blood pressure; TA, traffic accident; TBI, traumatic brain injury.
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in TBI, TBI-ND and TBI-D predictions. NPV was almost 
89%–99% for all outcomes in the prediction models 
(table 3).

Table  4 shows the top five variable importance of 
prediction models according to outcomes. Variables 
related to patients’ symptom of loss of consciousness, 
Glasgow Coma Scale component and light reflex were the 
three most important variables to predict all outcomes. 
Compared with other outcomes, the difference between 
variable importance for TBI-D was prominent, and the 
mechanism of injury, heart rate and age showed the 
highest importance for predicting TBI-D.

DISCUSSION
By using prehospital data from EMS users visiting three 
teaching hospitals, we developed and validated prediction 
models for the diagnosis and prognosis of TBI using machine 
learning algorithms among patients with severe trauma, 

identified by EMS providers in South Korea. We found that 
24% of patients were diagnosed with TBI, 22% showed 
intracranial injury, 21% could not be discharged from the 
ED with a TBI diagnosis and 4% showed TBI-related death. 
Machine learning models showed acceptable-to-excellent 
discrimination performance (AUROCs were 0.799–0.871 
according to outcomes in the best-performing EN model). 
When identifying 80% of target patients with TBI, the 
false-positive rate was almost 19.7%–39.0%. Consciousness 
status-related variables ranging from patients’ symptom to 
EMS providers’ assessment showed the highest importance 
for predicting all outcomes. This study adds considerably to 
the understanding of prehospital prediction performance 
of TBI among patients with severe trauma. Use of compre-
hensive prehospital information and certain machine 
learning approaches led to increased performance with a 
diminished false-positive rate compared with those of the 
traditional statistical model.

Table 2  Discrimination and reclassification of prediction models for outcomes on test cohort

Outcome Model AUROC (95% CI) p* NRI (95% CI) p† AUPRC

TBI

LR 0.770 (0.698 to 0.841) NA NA NA 0.492

XGB 0.809 (0.743 to 0.876) 0.04 0.689 (0.427 to 0.951) <0.01 0.552

SVM 0.776 (0.708 to 0.844) 0.77 0.339 (0.072 to 0.607) 0.01 0.479

RF 0.800 (0.735 to 0.865) 0.13 0.308 (0.047 to 0.569) 0.02 0.532

EN 0.799 (0.732 to 0.867) 0.06 0.698 (0.441 to 0.954) <0.01 0.564

TBI-I

LR 0.820 (0.751 to 0.890) NA NA NA 0.551

XGB 0.838 (0.775 to 0.901) 0.28 0.539 (0.258 to 0.821) <0.01 0.554

SVM 0.812 (0.748 to 0.875) 0.66 0.729 (0.464 to 0.994) <0.01 0.469

RF 0.836 (0.772 to 0.899) 0.38 0.333 (0.058 to 0.607) 0.02 0.552

EN 0.844 (0.779 to 0.910) 0.15 1.093 (0.845 to 1.342) <0.01 0.606

TBI-ND

LR 0.767 (0.690 to 0.844) NA NA NA 0.482

XGB 0.800 (0.727 to 0.873) 0.07 0.605 (0.326 to 0.884) <0.01 0.496

SVM 0.778 (0.704 to 0.852) 0.56 0.285 (−0.001 to 0.572) 0.05 0.477

RF 0.809 (0.739 to 0.880) 0.03 0.194 (−0.059 to 0.448) 0.13 0.535

EN 0.811 (0.741 to 0.882) 0.02 0.768 (0.496 to 1.039) <0.01 0.551

TBI-D

LR 0.664 (0.490 to 0.838) NA NA NA 0.138

XGB 0.714 (0.512 to 0.917) 0.64 −0.026 (−0.605 to 0.553) 0.93 0.094

SVM 0.814 (0.718 to 0.910) 0.09 0.209 (−0.325 to 0.742) 0.44 0.140

RF 0.889 (0.801 to 0.976) <0.01 −0.204 (−0.742 to 0.334) 0.46 0.196

EN 0.871 (0.764 to 0.978) 0.01 0.119 (−0.415 to 0.654) 0.66 0.293

*Comparing the AUROC and the logistic regression model.
†Comparing the NRI and the logistic regression model.
AUPRC, area under precision-recall curve; AUROC, area under the receiver operating characteristic curve; EN, elastic net; LR, logistic 
regression analysis; NRI, net reclassification index; RF, random forest; SVM, support vector machine; TBI, traumatic brain injury; TBI-D, 
traumatic brain injury with death; TBI-I, traumatic brain injury with intracranial injury; TBI-ND, traumatic brain injury with non-discharge; XGB, 
extreme gradient boosting.
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Several studies reported that EMS providers’ assess-
ment using prehospital information is effective for the 
identification of patients with severe trauma who require 
direct transport to a trauma centre.31–33 Because TBI 
accounts for a significant portion of patients with severe 
trauma,32 and the majority of patients have poor access 
to trauma centres,34 identification of TBI among patients 
with severe trauma by EMS providers could contribute to 
proper prehospital management and destination hospital 
decisions.3 However, prehospital identification of TBI 
is challenging.35 Prehospital clinical signs showed poor 
predictive performance for differentiating patients with 
TBI,7 and previous prediction models related to TBI 
mostly focused on TBI outcomes.8 9 13 One study reported 
the predictors for mild TBI with persistent symptoms, but 
a single-centre case–control study design and ED-based 
model development lack applicability to prehospital 
settings.36 In this study, we developed and tested TBI 
prediction models that used prehospital information, 
and we found acceptable discrimination power for the 
prediction of diagnosis and prognosis of TBI. Uniquely, 
we incorporated various demographic variables, trauma 
circumstances, patients’ complaints and EMS assessment 

information in the prediction models, and we adapted 
the machine learning algorithms.

When using a cut-off for 80% sensitivity for TBI detec-
tion, the false-positive rate was 19.7%–39.0% (table  2). 
Those false-positive rate levels are plausible for detecting 
severe diseases in EMS settings. A previous study reported 
a 26% of false-positive rate of EMS triage for myocardial 
infarction with a sensitivity of 74% and 50% of false-
positive rate of EMS recognition of stroke in sensitivity 
of 74%.28 29 Considering the prevalence of outcomes 
(24% in TBI, 22% in TBI-I, 21% in TBI-ND and 4% in 
TBI-D; table  1), there would be 16, 9, 12 and 67 false-
positive patients for every 10 patients who are accurately 
identified as TBI, TBI-I, TBI-ND and TBI-D, respectively 
(online supplemental table 4). Because of the low prev-
alence of TBI-D, a similar specificity of the prediction 
model for outcomes resulted in a very low positive predic-
tive value and a high proportion of false-positive cases, 
which suggested the limited applicability of prediction 
models for TBI-D in prehospital settings.

Consciousness-status-related variables ranging from 
patients’ complaints to EMS assessment showed the 
highest importance regardless of models and outcomes 

Table 3  Test characteristics of prediction models for outcomes on test cohort

Outcome Model Specificity (95% CI) Sensitivity (95% CI) PPV (95% CI) NPV (95% CI) Cut-off

TBI

LR 47.5 (40.9 to 54.0) 80.3 (68.7 to 89.1) 29.9 (23.3 to 37.3) 89.6 (82.9 to 94.3) 0.136

XGB 72.5 (66.3 to 78.1) 80.3 (68.7 to 89.1) 44.9 (35.7 to 54.3) 92.9 (88.2 to 96.2) 0.268

SVM 64.8 (58.4 to 70.9) 80.3 (68.7 to 89.1) 39.0 (30.7 to 47.7) 92.2 (87.0 to 95.8) 0.191

RF 68.2 (61.9 to 74.1) 80.3 (68.7 to 89.1) 41.4 (32.8 to 50.4) 92.5 (87.6 to 96.0) 0.185

EN 61.0 (54.5 to 67.3) 80.3 (68.7 to 89.1) 36.6 (28.7 to 44.9) 91.7 (86.3 to 95.5) 0.205

TBI-I

LR 71.1 (65.0 to 76.7) 80.4 (67.6 to 89.8) 38.8 (29.9 to 48.3) 94.1 (89.7 to 97.0) 0.164

XGB 74.0 (68.0 to 79.4) 80.4 (67.6 to 89.8) 41.3 (31.9 to 51.1) 94.3 (90.0 to 97.1) 0.143

SVM 71.1 (65.0 to 76.7) 80.4 (67.6 to 89.8) 38.8 (29.9 to 48.3) 94.1 (89.7 to 97.0) 0.172

RF 76.0 (70.2 to 81.2) 80.4 (67.6 to 89.8) 43.3 (33.6 to 53.3) 94.4 (90.3 to 97.2) 0.205

EN 81.3 (75.9 to 86.0) 80.4 (67.6 to 89.8) 49.5 (38.8 to 60.1) 94.8 (90.9 to 97.4) 0.204

TBI-ND

LR 46.1 (39.8 to 52.6) 80.7 (68.1 to 90.0) 25.8 (19.6 to 32.9) 91.1 (84.7 to 95.5) 0.090

XGB 66.5 (60.2 to 72.4) 80.7 (68.1 to 90.0) 35.9 (27.7 to 44.9) 93.7 (89.0 to 96.8) 0.242

SVM 59.2 (52.7 to 65.4) 80.7 (68.1 to 90.0) 31.5 (24.1 to 39.7) 92.9 (87.7 to 96.4) 0.147

RF 60.4 (54.0 to 66.6) 80.7 (68.1 to 90.0) 32.2 (24.6 to 40.5) 93.1 (88.0 to 96.5) 0.138

EN 74.3 (68.3 to 79.6) 80.7 (68.1 to 90.0) 42.2 (32.8 to 52.0) 94.3 (90.0 to 97.1) 0.201

TBI-D

LR 42.6 (36.9 to 48.5) 81.8 (48.2 to 97.7) 5.1 (2.4 to 9.5) 98.4 (94.4 to 99.8) 0.005

XGB 57.7 (51.8 to 63.5) 81.8 (48.2 to 97.7) 6.8 (3.2 to 12.5) 98.8 (95.8 to 99.9) 0.002

SVM 74.2 (68.8 to 79.2) 81.8 (48.2 to 97.7) 10.7 (5.0 to 19.4) 99.1 (96.7 to 99.9) 0.039

RF 74.9 (69.5 to 79.8) 81.8 (48.2 to 97.7) 11.0 (5.1 to 19.8) 99.1 (96.8 to 99.9) 0.005

EN 79.0 (73.9 to 83.6) 81.8 (48.2 to 97.7) 12.9 (6.1 to 23.0) 99.1 (96.9 to 99.9) 0.033

EN, elastic net; LR, logistic regression analysis; RF, random forest; SVM, support vector machine; TBI, traumatic brain injury; TBI-D, traumatic brain 
injury with death; TBI-I, traumatic brain injury with intracranial injury; TBI-ND, traumatic brain injury with non-discharge; XGB, extreme gradient 
boosting.
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in our study. Consciousness status is closely associated 
with head trauma. Head trauma can result in structural 
brain injury or physiological disruption of brain func-
tion, which could result in altered mental status.37 Mental 
status is also associated with TBI severity38 and its associ-
ation with TBI outcomes has been reported.8 9 13 History 
taking and physical examination for altered mental status 
are key to early diagnosis and proper management of TBI 
in prehospital settings.39

We adapted machine learning algorithms for the predic-
tion of TBI-related outcomes and found an improvement 
in discrimination and an increase in specificity with the 
same sensitivity thresholds. However, the LR model also 
showed acceptable or similar performance compared with 
machine learning models, according to the outcomes. In 
clinical prediction models, a previous systematic review 
reported no performance benefit of the machine learning 
model over LR.40 The previous study stated that machine 
learning models tend to show high performance with a 
strong signal-to-noise ratio problem like gaming, image 
recognition. However, clinical prediction problems often 

result in a poor signal-to-noise ratio.40 If we could use 
unstructured data, which have strong signal-to-noise ratio 
like continuous vital sign monitoring data or audiovisual 
data for patients’ appearance, machine learning models 
might perform better than LR models. In addition, if we 
analysed more patient data, the performance improve-
ment of machine models might be elucidated.

Precise assessment in prehospital field could contribute 
to improved patient-related outcomes. High demand of 
EMS call and response, disparity in accessibility to defini-
tive care capable hospitals according to regions34 and the 
importance of timely management in acute disease care 
are the chief reasons behind the necessity for the accu-
rate assessment of EMS providers. Although information 
acquisition and processing are quite difficult in prehos-
pital areas, various instruments and information systems 
could attribute to diminish those problems. Complex data 
acquisition like mobile CT or other unstructured data,41 
information sharing through telemedicine42 and deci-
sion support tools in prehospital environments43 could 
contribute to the accurate assessment of EMS providers. 

Table 4  Top five important variables for outcomes in descending order using model-specific metrics

Outcome Rank LR XGB RF EN

TBI

1 Loss of consciousness Loss of consciousness Loss of consciousness Loss of consciousness

2 GCS, eye, 1 GCS, eye, 1 GCS, eye, 1 GCS, motor, 1

3 GCS, verbal, 1 GCS, verbal, 1 GCS, verbal, 1 GCS, motor, 2

4 Light reflex Other mechanism Light reflex GCS, eye, 1

5 GCS, motor, 1 GCS, verbal, 2 GCS, motor, 1 GCS, verbal, 1

TBI-I

1 Loss of consciousness Loss of consciousness Loss of consciousness GCS, eye, 1

2 GCS, eye, 1 GCS, eye, 1 GCS, eye, 1 Loss of consciousness

3 GCS, verbal, 1 GCS, verbal, 1 GCS, verbal, 1 GCS, motor, 1

4 Light reflex GCS, verbal, 2 Light reflex GCS, verbal, 1

5 GCS, motor, 1 Other mechanism GCS, motor, 1 Light reflex

TBI-ND

1 Loss of consciousness Loss of consciousness Loss of consciousness Loss of consciousness

2 GCS, eye, 1 GCS, eye, 1 GCS, eye, 1 GCS, eye, 1

3 GCS, verbal, 1 GCS, verbal, 1 GCS, verbal, 1 GCS, motor, 1

4 Light reflex GCS, verbal, 2 GCS, verbal, 2 GCS, verbal, 1

5 GCS, motor, 1 GCS, motor, 1 GCS, motor, 4 Light reflex

TBI-D

1 Loss of consciousness GCS, verbal, 1 GCS, verbal, 1 GCS, motor, 2

2 GCS, verbal, 1 Oxygen saturation<96% Light reflex GCS, verbal, 1

3 GCS, eye, 1 Fall mechanism Loss of consciousness Loss of consciousness

4 Light reflex Afternoon GCS, eye, 1 Age over 80

5 GCS, motor, 1 Light reflex GCS, motor, 1 HR 87–99

EN, elastic net; GCS, Glasgow coma scale; HR, heart rate; LR, logistic regression; RF, random forest; TBI, traumatic brain injury; TBI-D, 
traumatic brain injury with death; TBI-I, traumatic brain injury with intracranial injury; TBI-ND, traumatic brain injury with non-discharge; XGB, 
extreme gradient boosting.
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More information acquisition and real-time processing of 
those data could improve the clinical prediction models 
in prehospital areas, which could lead to the improve-
ment of patients’ safety and outcomes.

Our study had several limitations. First, our data were 
collected at three teaching hospitals in urban areas of 
South Korea. Therefore, external validation for other 
areas should be conducted to generalise the developed 
prediction model. Second, we used retrospective analysis 
of electronically collected prehospital and hospital data. 
There might be various information loss and missing 
data. We treated missing status as a separate category for 
our analysis;44 however, there could be different reasons 
for missing data. Third, there is a possibility that the 
prediction model was overfitted or underfitted. The use 
of large number of predictors also can contribute to over-
fitting. To minimise this issue, we rigorously searched 
hyperparameters and carefully chose hyperparameters 
according to the performance in independent valida-
tion cohorts. Fourth, we selected our study population 
using trauma centre transport criteria for EMS providers 
in Korea. Although those criteria are based on the field 
triage decision scheme, which is the most widely used 
prehospital trauma triage protocol,6 extrapolation to 
another EMS setting or general trauma patients would 
be limited. Fifth, Abbreviated Injury Scale codes were 
not used to identify our study outcome because of a lack 
of information. To compensate for this limitation, we 
further identified patients with TBI-I, TBI-ND and TBI-D 
to consider severity. However, different definitions of clin-
ical severity, including ICU admission or emergency oper-
ation, might be possible.Finally, this study was performed 
in an intermediate-service-level EMS system. The gener-
alisation of our study findings to different EMS settings 
should be made with caution.

In conclusion, we presented data on TBI among 
patients with severe trauma assessed by EMS providers, 
and our results inform the development of prediction 
models for the diagnosis and prognosis of TBI in our 
population. We used various information that can be 
obtained in prehospital settings and showed acceptable 
outcome performance. The consistent importance of 
consciousness-status-related variables emphasises the 
importance of assessment and monitoring of conscious-
ness status in prehospital areas. Although prospective, and 
implementation studies are needed for TBI prediction in 
prehospital areas, our study outlined a novel method for 
the precise assessment of EMS providers using a machine 
learning-based prediction model. Further collection of 
various types of patient-related data would contribute 
to the enhanced performance of the clinical prediction 
model in prehospital settings.
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