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Abstract

Objective: Cone-beam CT (CBCT) in modern pre-clinical small-animal radiation research 

platforms provides volumetric images for image guidance and experiment planning purposes. 

In this work, we implemented multi-energy element-resolved (MEER) CBCT using three scans 

with different kVps on a SmART platform (Precision X-ray Inc.) to determine images of relative 

electron density (rED) and elemental composition (EC) that are needed for Monte Carlo-based 

radiation dose calculation.

Approach: We performed comprehensive calibration tasks achieve sufficient accuracy for this 

quantitative imaging purpose. For geometry calibration, we scanned a ball bearing phantom and 

used an analytical method together with an optimization approach to derive gantry-angle specific 

geometry parameters. Intensity calibration and correction included the corrections for detector lag, 

glare, and beam hardening. The corrected CBCT projection images acquired at 30, 40 and 60 

kVp in multiple scans were used to reconstruct CBCT images using the Feldkamp-Davis-Kress 

reconstruction algorithm. After that, an optimization problem was solved to determine images 

of rED and EC. We demonstrated effectiveness of our CBCT calibration steps by showing 

improvements in image quality and successful material decomposition in cases with a small 

animal CT calibration phantom and a plastinated mouse phantom.

Main results: It was found that artifacts induced by geometry inaccuracy, detector lag, glare and 

beam hardening were visually reduced. CT number mean errors were reduced from 19% to 5%. 

In the CT calibration phantom case, median errors in H, O, and Ca fractions for all the inserts 

were below 1%, 2%, and 4% respectively, and median error in rED was less than 5%. Compared 

to standard approach deriving material type and rED via CT number conversion, our approach 

improved Monte Carlo simulation-based dose calculation accuracy in bone regions. Mean dose 

error was reduced from 47.5% to 10.9%.

Significance: The MEER-CBCT implemented on an existing CBCT system of a small animal 

irradiation platform achieved accurate material decomposition and significantly improved Monte 

Carlo dose calculation accuracy.
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1. Introduction

Preclinical small animal irradiation is an integral component of cancer radiation therapy. 

Over the years, several dedicated image-guided small animal irradiators have been 

successfully developed that can administer radiation accurately to a targeted area, while 

minimizing radiation to other regions (Verhaegen et al., 2011). These irradiators are 

equipped with advanced image guidance tools to allow the imaging of the animal subject at 

the experimental position to aid the development of an experiment plan and the positioning 

of the animal against the radiation beam. For example, cone beam CT (CBCT), the currently 

most widely used image guidance tool in human radiotherapy (Jaffray et al., 2002), has 

been successfully implemented on the preclinical irradiation platforms. It was found that 

CBCT can provide soft-tissue imaging at acceptable imaging doses to ensure sub-millimeter 

geometric and targeting accuracy for radiation delivery (Clarkson et al., 2011).

At our group at the University of Texas Southwestern Medical Center, a SmART preclinical 

radiation platform (Precision X-ray Inc., North Branford, CT, USA) has been recently 

installed, as the hardware platform to implement a few new technologies for preclinical 

radiation research. One of the goals is to enable multi-energy CBCT imaging capability 

to support material decomposition required by accurate radiation dose calculation for the 

low-energy kV photon beam, as well as other advanced applications, such as imaging 

injected agents. For radiation dose calculation under the kV x-ray beam in the preclinical 

radiation experiment context, it is well known that the radiation dose distribution in this 

beam energy range is sensitive to the material and density distribution, mainly due to the 

sensitivity of x-ray attenuation properties of the photoelectric interaction channel. Monte 

Carlo (MC) simulation is a reliable method for dose calculation because of the faithful 

modeling of the underlying radiation transport physics and simulation geometry (Alaei et 

al., 2000). This method requires density and material composition information as input data. 

Deriving these quantities using a single energy CBCT image encounters the challenge of 

degeneracy of different materials in CT numbers. Misassignment of tissue type, such as 

incorrectly assigning material of a tissue voxel to bone at the bone-tissue interface, can lead 

to up to 3 times dose calculation error (Montanari et al., 2014; Ding and Coffey, 2009; Ding 

et al., 2010). Employing the energy dimension of CBCT (Kachelrß et al., 2006; Granton et 

al., 2008; Bazalova et al., 2008) and an innovative material decomposition algorithm (Shen 

et al., 2018a,b), it is possible to accurately determine tissue type to support MC-based dose 

calculations. Such a modality is also expected to enhance visualization of high-Z materials, 

potentially beneficial for novel research topics, such as nano-particle based tumor targeting 

and sensitization (Hainfeld et al., 2008; Ashton et al., 2015; Berbeco et al., 2012, 2011; 

Ngwa et al., 2014).

Depending on the hardware setup, dual- or multi-energy CBCT data acquisition can be 

realized in different ways (McCollough et al., 2015). To realize this function on the existing 

CBCT platform of the SmART system without hardware modifications, it is straightforward 

to employ the multiple-scan approach that scans the object a number of times with different 

kVp levels. In this paper, we report our recent progress achieving the multi-energy element-

resolved CBCT (MEER-CBCT) function via this approach and demonstrate the improved 

dose calculation accuracy under this new CBCT function.
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The MEER-CBCT method enables the derivation of images of electron density and 

elemental compositions by decomposing the CBCT images at different kVp levels. Because 

this method employed an empirical model relating density and elemental compositions to 

x-ray attenuation coefficients (Rutherford et al., 1976), accuracy of CBCT images in terms 

of representing x-ray attenuation properties is essential to achieve satisfactory results. In a 

previous study, image quality for the CBCT on a previous version of the SmART platform 

was characterized and evaluated (Clarkson et al., 2011). However, the study mainly focused 

on the evaluation for the purpose of image guidance, such as regarding image resolution 

and low-contrast object visualization. When it comes to quantitative applications of CBCT 

images, such as the one in this study, we found that a proper calibration of the CBCT system 

is needed. Hence, a major focus of this study was on a comprehensive calibration process 

of the CBCT imaging system. We extended the previously published analytical method for 

geometry calibration (Noo et al., 2000) by including an optimization approach to derive 

gantry-angle specific geometry parameters. As for intensity calibration and correction, 

it included the steps to mitigate problems due to detector lag, detector glair, and beam 

hardening effect. We investigated the importance of these calibrations steps and showed that 

these together meet the requirement to deliver accurate CT image intensity, which serves the 

basis for the subsequent material decomposition step in MEER-CBCT to support accurate 

MC-based dose calculations.

2. Methods

2.1. Cone-beam CT platform and overview of the workflow

The SmART preclinical radiation platform consists of a rotating C-arm gantry and a 

removable animal bed, as shown in Figure 1(a). The C-arm gantry can perform 360° CBCT 

scanning and radiation delivery with an x-ray tube (Comet iVario 225 kV, JME Ltd, Suffolk, 

UK) mounted opposite to an amorphous silicon flat-panel detector (FPD) (XRD 0820 

AN3-ES, Perkin-Elmer, Wiesbaden, Germany). The rotational speed of the gantry is 0 to 3 

revolutions/minute with 6 arc minute repeatability. The x-ray tube is capable of emitting an 

x-ray beam with energy ranging from 5 to 225 kVp. The FPD has 1024 × 1024 active pixels 

with a pixel size of 0.2 × 0.2 mm2. The removable carbon fiber animal bed is mounted on an 

x-y-z stage made from three independent positioning stages with ±2 μm repeatability. Both 

the gantry and the stage are housed in a self-shielded cabinet. Vendor-provided software is 

used to control the synchronization of motion, x-ray exposure, and detector readout.

In our studies, CBCT data were acquired at three kVp levels of 30, 40, and 60 kVp with 

a fiter of 2.0 mm Al and 0.3 mm Cu and 0.27 mAs per projection. The kVp levels were 

empirically determined to generate satisfactory image and dose calculation results. We 

decided to use three kVp levels, as it was found that further increasing the number of kVp 

levels does not significantly improve result accuracy (Shen et al., 2018a,b). 600 projections 

were acquired in each scan with the angular range of 360° and scan time of 60 sec. Dark 

images and flood-field images were acquired to correct each projection image. Nominal 

source-to-axis distance dSAD and source-to-imager distance dSID were 30.5 cm and 62.5 cm, 

respectively. Two phantoms (SmART Scientific Solutions B.V., Maastricht, Netherlands) 

were used to evaluate the image quality of the CBCT system. One was a preclinical CT 
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calibration insert phantom, as shown in Figure 1 (b) and (c), and the second one was a 

plastinated mouse specimen, as shown in Figure 1 (d) and (e).

For each projection, we corrected the geometry errors of the projection. Then, the projection 

image was processed to reduce the errors induced by detector time lag, veiling glare, and 

beam hardening effect. The corrected projection images at three kVp levels were then used 

to reconstruct three CBCT images via the Feldkamp-Davis-Kress (FDK) reconstruction 

model (Feldkamp et al., 1984). Finally, the CBCT images were employed to derive density 

and material composition images using our MEER decomposition algorithm.

2.2. Calibration and correction framework

The calibration and correction steps mainly followed standard approaches that have 

published previously in literature. In this section, we will briefly describe major steps in 

this process with references. Steps additional to published work will be explained. For 

completeness purpose, more details of the calibration and correction steps will be included 

in the Appendixes.

2.2.1. Geometry calibration and correction—Geometry correction in CBCT has 

been extensively studied over the years (Noo et al., 2000; Cho et al., 2005; Yang et al., 

2006; Daly et al., 2008; Xu et al., 2017), including optimization-based calibration method 

(Li et al., 2019). In this study, we generally followed an analytic approach based on deriving 

parameters of ellipses formed by x-ray projections of BBs (Noo et al., 2000). Improvement 

over this method was made to derive parameters for each individual projection via an 

optimization approach.

Figure 2(a) and (b) show parameterization of the CBCT projection geometry with seven 

parameters dSAD, dSID, u0, v0, θ, φ and η. A right-handed Cartesian coordinate system was 

introduced with the z-axis along the rotation axis and the x-axis from the x-ray source to 

the rotation axis. dSAD is the distance from the x-ray source to the rotation axis. dSID is the 

shortest distance from the x-ray source to the FPD, whose direction is specified by a unit 

vector eW = (cosθcosϕ, cosθsinϕ, sinθ). The two angles θ and φ represent the relative angular 

position of eW  in the (x, y, z) coordinate system. (u0, v0) is the position of the x-ray source 

on the detector coordinate system (u, v), whose unit vectors are eu, ev . η represents the 

rotation of the unit vectors eu, ev  about the eW  direction.

We attached one metal ball bearing (BB) with 0.5 mm diameter on the animal bed and 

precisely advanced it along the z axis to nine different positions by using the high-precision 

positioning stage. Four of the nine positions were on one side of the x-ray tube rotation 

plane, and the rest five positions on the other side. For each position, 600 projections were 

collected in a full rotation scan. On the acquired x-ray projections, we first identified all the 

BB’s center position ui
(k), vi

(k)  using circular Hough transform, where the superscript k = 1, 

… , 600 is projection index, and subscript i = 1, … , 9 is the BB index. The centers of BBs 

traced nine ellipses on the acquired projection images (Figure 2(c)).
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We assumed θ = 0, following the same assumption in (Noo et al., 2000) that the FPD is 

parallel to the rotation axis. Hence there are six parameters to determine, namely dSAD, 
dSID, u0, v0, φ and η. Different from the table-top system that the object rotates (Noo 

et al., 2000; Li et al., 2019), our system rotates gantry, and hence these parameters are 

generally speaking gantry angle dependent. As shown in Figure 2(d), the BBs’ trajectories 

did not follow exactly the ellipses due to deviation of the projection geometry from the ideal 

circular geometry, indicating the need for geometry calibration with gantry angle dependent 

parameters. To derive these parameters for each gantry angle, we first assumed gantry angle 

independent dSID, u0, v0, φ and η, and computed dSAD for each gantry angle. We then solved 

an optimization problem to derive dSID, u0, v0, φ and η for each angle based on the already 

known gantry angle specific dSAD. The validity of this approach was ensured by relatively 

small variations of dSID, u0, v0, φ and η among gantry angles, which will be demonstrated in 

the result section.

As such, following the approach in (Noo et al., 2000), we first assumed gantry angle 

independent dSID, u0, v0, φ and η and computed these values. This allowed the computation 

of dSAD for each gantry angle k:

dSAD
(k) = dij/

ζi
ui

(k) − u0
vi

(k) − v0
−ζj

uj
(k) − u0

vj
(k) − v0

2
+ ζidSID

vi
(k) − v0

− ζjdSID
vj

(k) − v0

2
+ ζi − ζj

2
−1/2

,

(1)

where dij is the 3D distance between the ith and the jth BBs, known precisely based on how 

we moved the BB using the motion stage platform. Expressions of other parameters in this 

equation are presented in Appendix A.1.

With the dSAD
(k)  and the kth gantry angle, we computed the expected projection position for 

the ith BB, denoted as ui, c
(k), vi, c

(k) . To derive the projection specific parameter dSID
(k) , u0

(k), v0
(k), 

ϕ(k), η(k), we solved the optimization problem

dSID
(k) , u0

(k), v0
(k), ϕ(k), η(k) = arg min

dSID, u0, v0, ϕ, η i
ui, c

(k) − ui
(k) 2 + vi, c

(k) − vi
(k) 2

(2)

where ui
(k), vi

(k)  is the coordinate of the ith BB’s projected position computed based 

on dSID, u0, v0, ϕ, η, as well as the already derived dSAD
(k) . We solved this problem 

with MATLAB using the linear least-square fitting method. As the problem is highly non-

convex, initial condition plays an important role. We used the previously derived projection-

independent values of these variables as the initial condition.

Finally, as it is expected that the variations of these parameters dSID, dSAD, u0, v0, φ, η are 

smooth, as gantry rotates, we fit each of the six parameters in a truncated Fourier series form 

as
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y = y0 + α1sin(x) + β1cos(x) + α2sin(2x) + β2cos(2x), (3)

where y is the variable of interest, x represents the gantry angle in radians, and y0, α1, β1 

α2, β2, are fitting coefficients. This fitting is expected to reduce uncertainty generated when 

deriving the variables of interest by processing each projection individually.

With the six gantry-angle dependent parameters dSID, dSAD, u0, v0, φ,η determined, for 

each projection, we resampled the measured projection image to an image defined the ideal 

circular projection geometry using bi-linear interpolation. The projection images were then 

used for subsequent corrections. Note that this resampling step may introduce some errors 

due to interpolation. In fact, it is possible use some reconstruction packages to accommodate 

misaligned data, including projection angle dependent geometry (Van Aarle et al., 2016; 

Karolczak et al., 2001). We used the resampling approach because of this requirement in our 

in-house developed GPU-based FDK reconstruction package (Jia et al., 2010).

2.2.2. Intensity calibration and correction—FPDs are known to suffer from the 

image lag effect caused by the trapping of electrons in the a-Si:H semiconductor pixel 

components and the subsequent release of the trapped charge (Siewerdsen and Jaffray, 

1999). The effect of lag can be estimated from the measured rising step response (RSRF) 

(Mail et al., 2008). In this study, the RSRF was measured under an expose to the flood-

field x-ray for each kVp at 0.8 mAs per frame for 600 frames during 60 sec, and the 

lag-response function L(m) was obtained by a double-exponential fitting. Then, the measured 

projections of a CBCT scan were corrected adopting the determined lag-response function 

(see Appendix A.2.1).

Long-range veiling glare effect is another important source of artifacts in CBCT with 

FPD (Poludniowski et al., 2011). The glare effect can be characterized by a point-spread 

function (PSF) of the detector. In this study, we collected projection images for a steel 

ruler positioned on the FPD at four different incline angles, each averaged over 5 frames, 

at 0 degree gantry angle and the same x-ray setup as in CBCT scans. Glare correction was 

performed based on deconvolution of the point-spread function (PSF) estimated from the 

line-spread function (LSF) measured in the projection image of the steel ruler (see Appendix 

A.2.2).

CBCT is affected by artifacts arising from beam-hardening (BH) effect caused by the 

energy-dependent x-ray attenuation coefficients of photons and the use of a polychromatic 

x-ray beam. In this study, a dual-material BH correction using water- and bone-materials 

(Van Gompel et al., 2011) was performed (see Appendix A.2.3).

2.3. MEER CBCT

The previous calibration workflow permitted high-quality CBCT images of multiple kVp 

levels, which can be used to derive relative electron density (rED) to water, and elemental 

compositions (EC). In our method, each voxel in a CBCT image is assumed to be sparsely 

represented over a dictionary consisting of EC of commonly encountered tissues (Shen et 

al., 2018a,b). The decomposition problem can be formulated mathematically as
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{ρ, v} = arg min
ρ ≥ 0, v ≥ 0

1
2‖F − ρ vΛK + 1MKC ‖F

2 + α ∥ v ∥0 , (4)

where F = f1, f2, …, fV ∈ ℝM × V  indicate CBCT images at V different kVp channels, 

with M being the number of voxels. Note that in this particular application, we focused on 

the three kVp levels of 30, 40, and 60 kVp as discussed before, while the the developed 

algorithm is generally applicable to any V ≥ 2 (Shen et al., 2018a). Λ ∈ ℝE × D is a 

dictionary constructed in a similar way as (Shen et al., 2018a,b). It consists of compositions 

of D elements of E materials. For this study, we considered three elements (D = 3), i.e. 

Hydrogen (H), Oxygen (O), and Calcium (Ca), which are the major elements constructing 

common tissues. Let 1{·} denote a vector of size specified by its subscription with all 

elements equal to 1. We have Λ1D = 1E to ensure the unity summation on elemental 

fractions for each material. K and KC are scanner dependent coefficients, which can be 

determined via a calibration step (Rutherford et al., 1976; Shen et al., 2018a,b). ρ ∈ ℝM × M

is a diagonal matrix with each diagonal element corresponding to rED of each voxel, while 

EC is given by λ = vΛ where v ∈ ℝM × E gives the dictionary coefficients with each row 

being a vector specifying the contribution of each dictionary material. ‖·‖F is the Frobenius 

norm for a matrix and ‖·‖0 is the l0 norm giving the number of non-zero elements in a data 

array. The first term in Eq. (4) characterizes the empirical relationship among F, rED, and 

EC (Rutherford et al., 1976), while the second term enforce v to be sparse. α is a parameter 

set to control the balance between the two terms.

One obvious limitation of this model Eq. (4) is its non-convex form due to product of ρ 
and v and the existence of l0 norm. As λ = vΛ is EC, vΛ1D = 1M naturally holds. As a 

consequence, v1E = vΛ1D = 1M. Hence, if we combine ρ and v as s = ρ · v and approximate 

l0 norm with the convex l1 norm, the optimization problem can be reformulated into a 

relaxed form as

s = arg min
s ≥ 0

1
2‖F − sΛK + diag s1E 1MKC‖F

2 + α‖s‖1 . (5)

diag(·) indicates the two-way conversion between a diagonal matrix and a column vector. 

This model regularizes the resulting EC to be a sparse representation of the dictionary, while 

no constraint is enforced to rED. Note that the standard conversion between CT number and 

electron density used in clinic can be obtained via two linear mappings for CT numbers 

higher and lower than that of water, respectively (Knöös et al., 1986), through which we 

can easily derive an accurate initial estimation of rED. Motivated by this, we established the 

linear mappings using image of the CT calibration insert phantom of the highest energy level 

used in our experiments (60 kVp) to derive the initial estimation on rED ρ0 for any input CT 

image. We then constrained the solution of our model to be close to the initial estimation:

s = arg min1
2‖F − sΛK + diag s1E 1MKC‖F

2 + α‖s‖1 .

s.t. s ≥ 0, ‖diag s1E − ρ0‖F
2 ≤ ϵ

(6)
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In contrast to Eq. (4), Eq. (6) is a convex model which can be solved more effectively 

and efficiently. In this study, we incorporated alternating direction method of multipliers 

(ADMM) (Boyd et al., 2011) to solve this optimization problem. With s solved, one can 

easily compute ρ and v as

ρ = diag s1E , and v = ρ−1s, (7)

2.4. Evaluation studies

We performed a series of evaluation studies using the CT calibration phantom and the 

plastinated mouse phantom (Figure 1). Apart from visually inspecting reconstructed CBCT 

images to assess image quality improvement and artifact reduction, we quantitatively 

measured several metrics. The glare correction is expected to improve image resolution. 

Hence, we calculated Modular-transfer function (MTF) of reconstructed CBCT images, 

which was achieved by deconvolving a measured image intensity profile for a sharp edge in 

the phantom. Correcting BH effect can improve CT number accuracy. We demonstrated this 

using the CT calibration phantom. The phantom contains 10 inserts that represent different 

materials, including the solid water. For the ith insert, We calculated the ground truth x-ray 

attenuation μi = μi(E)ψ(E)dE, using the x-ray spectrum ψ(E) and known insert rED and 

EC, as well as the ground truth CT numbers. We compared the measured CT numbers with 

the ground truth CT numbers.

After decomposing the reconstructed images into rED and EC, we compared the calculated 

quantities with ground truth values in the CT calibration phantom case. For the plastinated 

mouse phantom, as the ground truth values are not available, we visually inspected the 

resulting images.

To evaluate the impact and necessity of three intensity correction steps, we generated three 

sets of CBCT data of the CT calibration phantom, each with one of the three intensity 

correction steps removed from the correction chain. After that, we performed MEER-CBCT 

decomposition on these three set of CBCTs, and then compared the results with that under 

the full correction.

As the ultimate goal of improving CT number accuracy and achieving MEER-CBCT is to 

improve dose calculation accuracy in pre-clinical radiation studies, we performed a proof-of-

concept MC simulation study to evaluate the improvement of dose calculation accuracy. 

Specifically, we used our in-house developed GPU-based MC tool for kV photon transport 

(Jia et al., 2012) to compute dose distribution of a 2×2 cm2 225 kVp beam impinged 

horizontally to the CT calibration phantom. Three MC dose calculations were performed. 

The first one used the phantom definition with material and density provided by the vendor, 

and the result served as the ground truth of evaluation. The second one used the phantom 

defined by deriving material type and density based on CT number in the 40 kVp CBCT 

image. This is the current standard approach to define a phantom from a CT image for MC 

simulation. For each voxel, the material type was one of four possible types (air, tissue, lung, 

and bone) by comparing the CT number with thresholds, and the density was determined 

by a mapping consisting of two piece-wise linear functions between CT number and density 
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(Schneider et al., 2000). Third, we defined the phantom material and density based on the 

results of MEER-CBCT. We compared the dose calculation results in the second and the 

third settings with the ground truth one in the first setting.

3. Results

3.1. Calibrations and corrections

3.1.1. Geometry calibration and correction—Figure 3 shows the geometric 

parameters dSAD, dSID, u0, v0, η and φ as a function of gantry angle. Scattered points are 

values obtained by processing each individual projection, and solid curves are fitting results. 

The values of fitting parameters are presented in Table 1.

Among the six variables, the distance between source and axis dSAD was strongly dependent 

on the gantry angle. The distance was small at 0°, when x-ray tube is at the top, due to 

gravity. The standard deviation of dSAD was 1.56 mm. The much larger variation of this 

variable, compared to the other five variables, also justified the validity of our approach 

to first ignore the variations of the remaining five variables, when deriving gantry-angle 

specific dSAD.

For dSID, it varied much less over gantry angles. The x-ray tube and the FPD are pulled by 

gravity to the same direction, and hence the distance between them, dSID, did not change 

largely. For u0 and v0, the coordinate of the x-ray tube projected to the detector, their 

variations were also ascribed to gravity. At gantry angle 90° or 270°, the gravity pulled 

the detector to different directions, generating the pattern shown in the figure. Finally, the 

variations of η and φ were found to be small.

We have verified mechanical stability of the scanner geometry by performing the geometry 

calibration multiple times over a time period of four months. We found that the relative 

change of geometry correction parameters was on average smaller than 2%.

Figure 4 shows CBCT images of a BB and the CT calibration phantom with and without 

geometry correction. For the BB case, the correction step successfully restored the correct 

spherical shape. As for the insert phantom, geometry correction improved geometry 

accuracy of insert positions and recovered their circular shapes.

3.1.2. Intensity calibration and correction—Figure 5 shows the measurements and 

fitting results of the RSRF and LSF. The glare correction is expected to improve CBCT 

image resolution. As shown in Figure 6, the MTFs of the CBCT images along radial and 

axial direction after the glare correction were slightly improved.

Figure 7 compared CBCT images reconstructed using projection data with different steps 

of intensity corrections, with a 40 kVp polychromatic x-ray beam. We can see that the 

‘comet’ and ‘streak’ artifacts were visually reduced after the detector lag correction, the 

edges became sharper after the glare correction, and the artifacts of ‘cupping’ and ‘streak’ 

visually were reduced after BH correction.

Huang et al. Page 9

Phys Med Biol. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8 shows CT numbers of different inserts in different settings compared to the 

guideline of the ground truth value. Without any correction steps, the mean relative errors in 

CT numbers was 19%. Collectively all the three correction steps were able to reduce the CT 

number error to 5%.

3.2. MEER-CBCT

We first evaluated the performance of MEER-CBCT on the calibration insert phantom. The 

rED and EC of the inserts in the phantom are known, allowing us to perform quantitative 

analysis on the results. Figure 9(a) shows the CT images of three energy levels, while 

Figure 9(b) gives the images of eED and EC (H, O, and Ca fractions), respectively. Visually 

speaking, the decomposition results generally match with our expectation. For instance, we 

observed the relatively large fractions of Ca and rED for bony tissues. The BH effects are 

more significant at lower kVp levels. Some residual BH artifacts still existed in the 30 and 

40 kVp images. The quantitative errors in EC and rED for each insert are given in Figure 

9(c). To compute the errors, we manually picked a region of interest inside each insert and 

compared the MEER-CBCT results against the ground truth. The results show excellent 

agreement between the decomposition and ground truth. The median errors in H, O, and Ca, 

fractions for all the inserts were below 1%, 2%, and 4% respectively, while the median error 

in rED was less than 5%. These results demonstrated the effectiveness of the MEER-CBCT 

method.

MEER-CBCT decomposition were also performed on three sets of CBCTs, each with one 

intensity correction step removed. Figure 10 presents errors in rED and EC averaged over 

all inserts in different settings. These results indicated that all the three intensity correction 

steps are important to collectively improve accuracy of material decomposition.

With the success achieved in the CT calibration phantom, we moved on to the plastinated 

mouse phantom, as shown in Figure 11. It is not possible to perform quantitative 

investigation for this phantom due to absence of ground truth. The results were found to 

be visually reasonable. For instance, rED in the bony tissues was generally higher compared 

to that in soft tissues. Ca element mainly existed in bone regions.

Compared to Eq. (4), The convex model in Eq. (6) is numerically more attractive and can be 

solved more efficiently. The computation time was 2.5 min, in contrast to the time 30 min 

it took to solve the non-convex model in Eq. (4), using MATLAB with a desktop computer 

equipped with 8 CPU and 24G memory.

3.3. Improvement in dose calculation accuracy

Figure 12 presents the MC dose calculation results on the CT calibration phantom. In tissue 

regions, dose calculation results based on phantoms generated using MEER-CBCT or CT 

number conversion were both close to the ground truth. The advantages of MEER-CBCT in 

terms of dose calculation accuracy appeared in bone regions. Due to increased photo-electric 

interactions in the kV energy range, doses in those bone inserts are substantially higher than 

dose to nearby tissues and are sensitive to the material composition. Because of improved 

accuracy in material composition, MEER-CBCT can reduce dose calculation errors in these 

areas. Quantitatively, the mean relative errors of dose in the tissue region for the CT number 
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conversion method and for MEER-CBCT were 5.2% and 4.6%, respectively. In the bone 

region, the error was reduced from 47.5% to 10.9%.

4. Discussions

CBCT intensity calibration and correction have been extensively studied over the years. 

In this study, the calibration process followed standard approaches previously reported 

in literature. While the individual approach may not be new, to our knowledge, this is 

the first time that these techniques are collectively applied to the CBCT system of a 

small animal irradiator platform. We demonstrated that the applications of these methods 

together improved quantitative accuracy of CBCT images, which subsequently enabled 

accurate material decomposition based on multi-energy CBCT images acquired at different 

kVp levels, and eventually dose calculation accuracy. Over the years, there have been 

numerous algorithms and methods developed for these calibration tasks. Lately, with the 

rapid advances of deep learning (Sahiner et al., 2019; Shen et al., 2020), data-driven 

correction approaches have also been proposed (Park et al., 2018; Nomura et al., 2019). 

In future studies, if there is a need to use these algorithms to further improve performance, 

we will implement them in our CBCT system.

As for geometry calibration and correction, we extended the seminal work from Noo et al. 

(2000) by including an optimization step to derive geometry parameters for each individual 

projection angle. Previous studies, including an optimization based approach (Li et al., 

2019), have mostly focused on deriving projection-independent calibration parameters, 

which is applicable to the table top CBCT setting. For gantry mounted CBCT system, 

geometry calibration parameters usually vary among projection angles due to gravity. 

Deriving projection-specific geometric parameters usually requires the use of specifically 

designed phantoms (Cho et al., 2005; Alaei et al., 2000; Daly et al., 2008; Xu et al., 2017). 

In this study, we solved this problem by using the simple setup with one BB moving to 

different positions and solving an optimization problem. The effectiveness of the method 

was demonstrated by the derived variations of geometry parameters (Figure 3) that can be 

explained by gravity, as well as the improved image quality (Figure 4).

The three kVp levels in this study were empirically chosen. The three kVp levels could 

be further optimized for the goal of accurate material decomposition and MC-based 

dose calculation. However, it would be difficult to formulate this as an optimization 

problem. A comprehensive study enumerating combinations of kVp levels and evaluating 

the corresponding dose calculation accuracy is probably necessary.

One typical concern in CBCT is the impact of x-ray scatter. In CBCT for human imaging, 

the strong scatter signal leads to errors in CT number, as well as cupping and other artifacts. 

In the small animal CBCT context, this is a smaller concern due to several factors. First, 

the object size is much smaller, which reduces the chance of photon scatter. Second, the 

low x-ray beam energy increases the chance of photoelectric effect that makes the photon 

vanish. Hence, the scattered x-ray photon component is reduced. Third, at low energy range, 

the angular distribution of Compton scattered photons is less forward peaked, reducing the 

chance of scattered photons reaching the detector. We have performed MC simulation to 
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estimate the primary to scatter ratio in the case of the CT calibration phantom. The average 

primary to scatter ratio was found to be ~ 1%. Hence, we did not correct for scatter in this 

study.

Although we have realized multi-energy CBCT function on the small animal irradiator 

platform and derived rED and EC information using these images, the method has the 

major limitation of using multiple scans. The motivation for this choice was to realize 

multi-energy CBCT on existing hardware platform without modifications. Nonetheless, 

the three sequential CBCT scans with different kVps inevitably increased the scan time. 

For preclinical small animal radiation experiments, this prolonged scan time increases 

anesthesia use and hence the risks to the animal subjects. From imaging perspective, the 

long scan time also increases chances of animal motion, which would cause mismatches 

of the imaging contents among different scans and hence impede the performance of the 

material decomposition algorithms. To overcome this limitation, simultaneous multi-energy 

data acquisition is possible with energy-resolved photon counting detectors (He et al., 2012). 

We are in the process of installing a photon-counting detector to our small animal irradiation 

system. Reporting the development with the new detector will be in our future studies.

5. Conclusion

In this study, aiming at improving MC-dose calculation accuracy in pre-clinical small animal 

irradiation, we implemented MEER CBCT using three scans with 30, 40, and 60 kVps on 

the CBCT platform of a SmART system, and derived images of rED and EC using a material 

decomposition algorithm. We performed comprehensive calibrations of the CBCT system to 

achieve sufficient accuracy for this quantitative imaging purpose. The geometry calibration 

was performed by scanning a BB phantom and using an analytical method together with 

an optimization approach to derive gantry-angle specific geometry parameters. We corrected 

detector lag, glair, and BH effect using standard methods. After these corrections, quality 

of CBCT images were significantly improved in terms of geometry accuracy, CT number 

accuracy, and reduction of image artifacts. Using the material decomposition algorithm, in 

the CT calibration phantom case, median errors in H, O, and Ca fractions for all the inserts 

were below 1%, 2%, and 4% respectively, while median error in rED was less than 5%. 

We demonstrated that the intensity correction steps are important to collectively achieve the 

decomposition accuracy. Compared to standard approach deriving material type and rED via 

CT number conversion, our approach improved MC-based dose calculation accuracy in bone 

regions. Mean dose error was reduced from 47.5% to 10.9%.
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Appendix A.: Calibration Methods

Appendix A.1. Geometry correction

The rotation angle η of the detector can be estimated using the centers of the circles traced 

by the ith and the jth BB’s trajectories projected onto the detector, ui, vi  and uj, vj , as 

(Noo et al., 2000):

η = arctan ui − uj
vi − vj

, (A.1)

The expression within the angle brackets 〈·〉 depends on the selected BB indices i and j, 
and hence. Selecting one BB on each side of the x-ray tube rotation plane, there were 20 

combinations of BB pairs i, j. The angle brackets 〈·〉 denotes the operation of taking the 

average value over those η estimated using all BB pairs.

After that, we corrected BB positions for this detection rotation as

ui
(k) ∗ = ui

(k)cosη − vi
(k)sinη,

vi
(k) ∗ = ui

(k)sinη + vi
(k)cosη .

(A.2)

In the follows, we will remove the superscript * from the corrected BB coordinates to 

simplify notation.

For the ellipse traced by the ith BB parameterized as 

ai u − ui
2 + bi v − vi

2 + 2ci u − ui v − vi = 1, we determined ai, bi, ci, ui, and vi by fitting 

to BB coordinates ui
(k), vi

(k) . Finally, using a pair of the ith and jth BBs, we have

dSID
2 = 1

2nij2
ai − 2nijnij − ai2 + 4nij2 − 4nijnijai ,

v0 = vi − sign zi ai + ai2dSID
2 / aibi − ci2 ,

u0 = 1
2ui + 1

2vi + ci
2ai

vi − v0 + cj
2aj

vj − v0 ,

ϕ = sin−1 − ci
2ai

ζi − cj
2aj

ζj ,

(A.3)

where nij = 1 − mij2 − mi2 / 2mijmij , nij = aj − aimij / 2mijmij , mij = vj − vi bj − cj2/aj, 

mij = bj − cj2/aj/ bi − ci2/ai and ζi = sign zi dSIDai/ bi + aibidSID − ci2/ai. zi is the coordinate 

of the ith BB along the z-axis, i.e. gantry rotation axis, and hence sign(zi) denotes which side 

the BB is.
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Appendix A.2. Intensity corrections

Appendix A.2.1. Detector lag correction

After turning on the x-ray beam, the average intensity of a region of interest (ROI) of the kth 

frame I(k) can be written as I(k) = Ilc
(k) + j = 1

k − 1L(j)I(k − j), with Ilc
(k) being the lag-corrected 

projection image. The subscript l indicates the lag correction. L(m) is the lag-response 

function, denoting the lag effect caused by a projection on the mth frame prior to a given 

projection. Since the first frame is not affected by any other frames, Ilc
(1) = I(1). Thus, we can 

get

L(k) = 1
I(k) I(k + 1) − I(1) −

j = 1

k − 1
L(j)I(k − j) . (A.4)

With this scheme, the detector lag-response L(1), L(2), …, L(k) can be obtained sequentially 

from the measured projections I(1), I(2), …, I(k). The response function obtained as such may 

be affected by measurement noise. We hence fit L(k) in a double-exponential form:

L(k) = L0 + A1exp − k
t1

+ A2exp − k
t2

, (A.5)

where L0, A1, A2, t1 and t2 are fitting coefficients. Once the lag function was determined, it 

can be used to correct measured projections of a CBCT scan as

Ilc
(k) = I(k) −

j = 1

k − 1
I(k − j) L0 + A1exp − j

t1
+ A2exp − j

t2
. (A.6)

Appendix A.2.2. Veiling glare correction

We first computed the LSF by using a finite difference scheme to compute derivative of the 

edge spread function expressed as the correspondence between image intensity of each pixel 

and the distance from the pixel center to the edge line (Poludniowski et al., 2011). To reduce 

noise in the result, we fit LSF as a sum of a Gaussian and a Lorentzian form, representing 

the short-range blur and long-range veiling glare, respectively:

LSF (x) = 1 − p
2πq1

2exp − x2

2q1
2 + p

πq2
1

1 + x2/q2
2 , (A.7)

where p, q1 and q2 are fitting parameters. Note that the LSF in the form of Eq. (A.7) meets 

the normalization condition. Under the assumption of a stationary and circularly symmetric 

system, the PSF can be obtained from the above LSF fitting function according to the 

relation LSF (x) = −∞
∞ PSF (r(x, y))dy, with r(x, y) = x2 + y2, which leads to
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PSF (x) = 1 − p
2πq1

2 exp − r2

2q1
2 + p

2πq2
2

1
1 + r2/q2

2 3/2 . (A.8)

Once the PSF was determined, we corrected the projection via a deconvolution operation

Igc(x, y) = FFT −1 FFT [I(x, y)]
FFT [PSF (r(x, y))] + ϵ , (A.9)

where Igc(x, y) is the glare-corrected image, with g indicating the glare correction. I(x, y) 

is the uncorrected image. FFT and FFT−1 are 2D fast Fourier transform and its inverse, 

respectively. ϵ is a small positive number introduced to avoid noise amplification.

Appendix A.2.3. Beam hardening correction

For a given x-ray line corresponding to a pixel on the detector, we computed measured 

x-ray attenuation under the polychromatic beam Aploy = − log
Ipoly

I0
, where Ipoly and I0 are 

the pixel intensities of the CBCT scan and air scan after the aforementioned correction 

steps, respectively. The BH corrected attenuation can be written as ABHc = Apoly+ΔA(Lwater, 
Lbone), with ΔA denoting the correction term. It is a function of Lwater and Lbone, geometric 

lengths of this x-ray line intersecting with the two materials. Using the CT calibration 

phantom, we segmented the phantom into the two materials using a threshold based method 

and performed GPU-based ray tracing to compute ΔA as a function of (Lwater, Lbone)

ΔA Lwater, Lbone =
n = 1

2
μn E0

i
lisn, i

+log
e

ψ Ee exp −
n = 1

N
μn Ee

i
lisn, i .

(A.10)

n = 1 or 2 indicates water or bone, li is the intersection length of the voxel i and the x-ray 

line, and sn,i = 1 or 0 implies whether the voxel i contains the material n or not. μn(E) is the 

total linear attenuation coefficient of material n under energy E, which were obtained from 

the NIST database (Hubbell and Seltzer, 1995). The energy spectrum ψ(Ee) was computed 

by using SpekCalc (Poludniowski and Evans, 2007; Poludniowski, 2007).

To correct an acquired x-ray projection image, we firstly reconstructed the CBCT image 

using the uncorrected projection data and segmented the image into water and bone 

using a threshold method with empirically defined threshold values. Then we calculated 

geometric length of each x-ray line intersecting with the two materials using the ray-tracing 

calculation. Finally, the BH correction term ΔA was obtained by looking up the constructed 

table, which was then applied to the measured polyenergetic x-ray attenuation to correct the 

effect.
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Figure 1. 
(a) Setup of the SmART preclinical radiation platform. (b) Micro-CT image and (c) picture 

of the CT calibration phantom. (d) CBCT image and (e) picture of the plastinated mouse 

phantom.
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Figure 2. 
(a) Parameterization of the CBCT geometry. (b) Angles specifying the detector rotation. (c) 

Positions of BB centers in 600 projections shown on the detector. (d) Zoom-in view of the 

blue rectangular region in (c).
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Figure 3. 
Geometry parameters and fitting results as a function of gantry angle.
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Figure 4. 
Reconstructed images of a BB (a) and the CT calibration phantom (b) with and without 

geometry correction. Circles in the two panels of (b) indicate expected insert shapes and 

positions.
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Figure 5. 
Fitting results of lag response function and line spread function.
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Figure 6. 
(a) Radial and (b) axial MTFs of reconstructed CBCT image using projections with and 

without glare correction. Solid lines are the spline fitting results.
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Figure 7. 
Top row from left to right: uncorrected CBCT image, that after the lag correction, that after 

lag and glare corrections, and that after lag, glare and BH corrections. Bottom row from 

left to right: difference between lag-corrected and uncorrected images, difference between 

images corrected for lag and glare and for lag only, and difference between the image with 

all the three corrections and the uncorrected image.
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Figure 8. 
(a) CT numbers with different correction steps in the calibration chain. Solid line is the 

ground truth. (b) is the zoom-in view of the region of (a). (c) Mean relative error of CT 

numbers in different settings.
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Figure 9. 
MEER-CBCT results for the calibration insert phantom. (a) CT images of three kVp levels. 

(b) Images of rED and EC fractions. (c) Errors in EC and rED of different inserts. For each 

box plot, the top and bottom bars indicate the maximal and minimal values respectively. The 

red line denotes the median error and the blue box gives the standard deviation.

Huang et al. Page 27

Phys Med Biol. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Material decomposition errors in different settings.
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Figure 11. 
MEER-CBCT results for the plastinated mouse phantom. (a) CT images of three kVp levels. 

(b) Images of rED and EC fractions.
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Figure 12. 
(a) MC dose calculation results overlaied on the CT image of the CT calibration phantom. 

(b) and (c) are dose profiles along the horizontal and vertical dash lines in (a), respectively.
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Table 1.

Fitting coefficients of geometric parameters.

dSAD(mm) dSID(mm) η(°) φ(°) u0* (mm) v0* (mm)

y 0 304.8 625.4 −1.023 −2.611 100.8 101.1

α 1 −0.016 −0.091 1.5 × 10−4 1.0 × 10−4 0.23 0.20

β 1 −1.94 −0.49 3.5 × 10−4 −5.2 × 10−4 −0.021 −0.016

α 2 −0.0032 0.022 2.5 × 10−4 −4.3 × 10−4 −0.020 −0.0014

β 2 0.032 −0.013 −1.0 × 10−4 −2.2 × 10−4 3.7 × 10−4 −0.021
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