Table 4.
Authors | Methoda | AUC | AUC0 | Dice Score | Mean volume absolute error (mL) |
Number of patients (training/test set) |
---|---|---|---|---|---|---|
Scalzo et al. 42 | Kernel spectral regression | 0.91 | – | – | 25b | |
Nielsen et al. 18 | Deep learning (SegNet) | – | 0.88 | – | – | 187 (158/29) |
McKinley et al. 15 | Random forests (FASTER) | – | – | 0.34 (±0.22) | 30 (±26) | 100 (45/55) |
Pinto et al. 47 | Deep learning (U-Net + Gated recurrent unit) | – | – | 0.35 | – | 75 (43/32) |
Winder et al. 43 | Random forests | – | – | 0.45 | – | 90b |
Grosser et al. 17 | Gradient boosting | 0.89 | 0.39 | – | 99c | |
Yu et al. 31 | Deep learning (U–net) | 0.92 | – | 0.53 | – | 182d |
Our study | Deep learning (U-Net) | 0.98 | 0.94 | 0.48 | 28 (±38) | 394c |
Gradient boosting | 0.98 | 0.94 | 0.53 | 27 (±40) | 394c |
aBest performing model for each study is presented.
bLeave-one-out cross validation.
c10-fold cross-validation.
d5-fold cross-validation.