Skip to main content
. 2021 Jun 23;41(11):3085–3096. doi: 10.1177/0271678X211024371

Table 4.

Comparison with current literature.

Authors Methoda AUC AUC0 Dice Score Mean volume absolute error (mL)

Number of patients

(training/test set)

Scalzo et al. 42 Kernel spectral regression 0.91 25b
Nielsen et al. 18 Deep learning (SegNet) 0.88 187 (158/29)
McKinley et al. 15 Random forests (FASTER) 0.34 (±0.22) 30 (±26) 100 (45/55)
Pinto et al. 47 Deep learning (U-Net + Gated recurrent unit) 0.35 75 (43/32)
Winder et al. 43 Random forests 0.45 90b
Grosser et al. 17 Gradient boosting 0.89 0.39 99c
Yu et al. 31 Deep learning (U–net) 0.92 0.53 182d
Our study Deep learning (U-Net) 0.98 0.94 0.48 28 (±38) 394c
Gradient boosting 0.98 0.94 0.53 27 (±40) 394c

aBest performing model for each study is presented.

bLeave-one-out cross validation.

c10-fold cross-validation.

d5-fold cross-validation.