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Abstract 

Background:  There are often many missing values in medical data, which directly affect the accuracy of clinical deci-
sion making. Discharge assessment is an important part of clinical decision making. Taking the discharge assessment 
of patients with spontaneous supratentorial intracerebral hemorrhage as an example, this study adopted the missing 
data processing evaluation criteria more suitable for clinical decision making, aiming at systematically exploring the 
performance and applicability of single machine learning algorithms and ensemble learning (EL) under different data 
missing scenarios, as well as whether they had more advantages than traditional methods, so as to provide basis and 
reference for the selection of suitable missing data processing method in practical clinical decision making.

Methods:  The whole process consisted of four main steps: (1) Based on the original complete data set, missing data 
was generated by simulation under different missing scenarios (missing mechanisms, missing proportions and ratios 
of missing proportions of each group). (2) Machine learning and traditional methods (eight methods in total) were 
applied to impute missing values. (3) The performances of imputation techniques were evaluated and compared 
by estimating the sensitivity, AUC and Kappa values of prediction models. (4) Statistical tests were used to evaluate 
whether the observed performance differences were statistically significant.

Results:  The performances of missing data processing methods were different to a certain extent in different missing 
scenarios. On the whole, machine learning had better imputation performance than traditional methods, especially 
in scenarios with high missing proportions. Compared with single machine learning algorithms, the performance of 
EL was more prominent, followed by neural networks. Meanwhile, EL was most suitable for missing imputation under 
MAR (the ratio of missing proportion 2:1) mechanism, and its average sensitivity, AUC and Kappa values reached 
0.908, 0.924 and 0.596 respectively.

Conclusions:  In clinical decision making, the characteristics of missing data should be actively explored before for-
mulating missing data processing strategies. The outstanding imputation performance of machine learning methods, 
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Background
Medical data mainly comes from electronic medical 
records, medical images, etc. Due to factors such as dif-
ficulty in measuring some indicators, untimely data col-
lection, improper data storage and difficulty in sharing 
medical information across platforms, there are often 
many missing values in medical data [1, 2], which directly 
affect clinical decision making such as disease diagnosis, 
treatment selection, discharge assessment and prognosis 
evaluation. Therefore, it is necessary to effectively pro-
cess the missing data to improve the quality of medical 
data and the accuracy of clinical decision making.

Discharge assessment is an important part of clinical 
decision making. Whether the scientific and accurate 
discharge assessment can be made is not only related 
to the health outcomes, medical expenses and quality 
of life after discharge [3], but also closely related to the 
utilization efficiency of medical resources and the social 
medical burden [4, 5], which also puts forward high 
requirements for the quality of medical data.

To this end, this study took the discharge assessment 
of patients with spontaneous supratentorial intracer-
ebral hemorrhage as an example to study the processing 
of missing data in clinical decision making. Spontane-
ous intracerebral hemorrhage is defined as intracerebral 
hemorrhage without trauma or surgery [6]. It is usually 
manifested as hematoma that expands in the brain paren-
chyma and may spread to the ventricular system and sub-
arachnoid space or dural space [7]. Worldwide, although 
spontaneous intracerebral hemorrhage accounts for 
15% of all stroke cases, it is associated with half of 
stroke-related deaths and 42% of stroke-related disabil-
ity adjusted life-years lost [8]. Spontaneous supratento-
rial intracerebral hemorrhage is a kind of spontaneous 
intracerebral hemorrhage. It affects 4 million patients 
worldwide each year and median case fatality at 30-day 
is 40% [9, 10].

The volume of supratentorial hemorrhage is not only an 
important index for setting inclusion and exclusion crite-
ria, comparing curative effects, predicting mortality and 
neurological prognosis [7, 11–14], but also widely used in 
clinical decision making. However, in practical work, the 
volume of hemorrhage is mostly calculated from the size 
of hematoma shown on CT [15], and the volume of hem-
orrhage in the ventricle is more difficult to be measured 
accurately. Clinically, more attention is paid to the size of 

hematoma, and the record of hemorrhage volume may 
be ignored. Moreover, the missing of the supratentorial 
hemorrhage volume is also the most obvious (11.65%) 
among all the variables in the data set used in this study.

A large number of important machine learning meth-
ods have emerged since the 1980s and 1990s, such as back 
propagation neural network and random forest (RF), 
which had a profound impact on the medical field includ-
ing clinical decision making in presence of missing data. 
Before that, the traditional methods used to process the 
missing data in clinical decision making mainly included 
complete case analysis, mean imputation, k-nearest 
neighbors (KNN), expectation maximization and so on. 
With the in-depth application of machine learning mod-
els in this field, researchers found that machine learning 
models can restore the true distribution of data from 
missing data sets more accurately than the traditional 
missing data processing models. For example, Sun YV 
et al. used neural networks (NN) to impute real genotype 
data and found that when the proportion of missing data 
was 1%-5%, the imputation accuracy of NN was higher 
than that of the expectation maximization method [16]. 
Furthermore, some important previous studies, using 
cutting-edge technologies such as statistical simulation, 
found that the ensemble learning (EL) model can more 
accurately restore the real distribution of data than single 
learners [17, 18].

However, the previous model evaluations criteria were 
mainly based on whether the missing data processing 
model can restore the true distribution of data, mostly 
adopting the errors between the actual values and the 
imputation values as the evaluation metrics. But for real-
world clinical decision making, those criteria may be too 
strict. Because the reasons for the data missing in the 
real world are very complicated, it is almost impossible 
to make the imputed data distribution completely con-
sistent with the underlying true distribution. In contrast, 
from the actual needs of clinical decision making, even if 
there are some differences between the two distributions, 
as long as the differences do not affect the accuracy of 
decision-making results, it also has clinical values. There-
fore, in order to meet the actual needs of clinical decision 
making for missing data processing, this study adjusted 
the evaluation criteria to transform the previous evalua-
tion of the consistency of data distribution into the evalu-
ation of the impact of clinical decision-making results.

especially EL, shed light on the development of missing data processing technology, and provided methodological 
support for clinical decision making in presence of incomplete data.

Keywords:  Clinical decision making, Missing data, Imputation, Machine learning, Ensemble learning, Discharge 
assessment, Spontaneous supratentorial intracerebral hemorrhage
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To this end, using the missing data processing evalua-
tion criteria more suitable for clinical decision making, 
this study aimed at systematically exploring the per-
formance and applicability of several machine learning 
algorithms commonly used in current researches under 
different data missing scenarios, and whether these 
machine learning algorithms were more advantageous 
than traditional methods, in order to provide basis and 
reference for the selection of suitable missing data pro-
cessing method in practical clinical decision making.

Methods
Data source and preprocessing
The data in this study came from the database of Com-
prehensive Data Collection and Decision Support System 
for health statistics in Sichuan Province. This database 
includes the medical records of patients with spontane-
ous intracerebral hemorrhage in all general hospitals and 
community hospitals in Sichuan Province since January 
1, 2017. In order to better explain the research problems 
and operability, the medical records of 2000 patients with 
spontaneous intracerebral hemorrhage who were admit-
ted to the hospital until June 30, 2019 were randomly 
selected, and the cases with missing value were excluded. 
At the same time, the patients with supratentorial hem-
orrhage were selected as the research objects, and finally 
1468 complete samples were included.

Experimental design
Figure 1 showed the experimental design. The whole pro-
cess consisted of four main steps: generating missing data 
by simulation, complete data set generation, performance 
evaluation and comparison, and statistical test.

Generating missing data by simulation
Missing mechanism, missing mode, missing propor-
tion, data type of missing and requirements of process-
ing method itself have impacts on the processing effect of 
missing data. It was comprehensively considered that this 
study created the corresponding missing scenario by set-
ting the data missing mechanism of target variables, the 
proportion of missing and the ratio of missing propor-
tion of each group. The target missing variable was set as 
the volume of supratentorial hemorrhage. The simulated 
missing data sets of different missing scenarios were arti-
ficially generated on the basis of the complete data.

According to the definition of Rubin DB [19], the data 
missing mechanism represents the relationship between 
missing of the target variable and other variables (includ-
ing observed variables and unobserved variables) in the 
data set, which explains the reason for data missing. Par-
ticularly, it includes the missing completely at random 
(MCAR, the target variable independent of the observed 

and unobserved variables), missing at random (MAR, 
the target variable related to the observed variables) 
and missing not at random (MNAR, the target variable 
related to the unobserved variables). Because it is still 
difficult to simulate the MNAR mechanism, we set the 
missing mechanism as MCAR and MAR.

In the setting of MCAR mechanism, missing values 
were randomly generated. In the setting of MAR mecha-
nism, we set the observed variable related to the target 
variable as the discharge situation. Specifically, the data 
set was split into two subsets according to the discharge 
situation, namely, the failure group and success group. We 
set the ratio of missing proportion of those two groups 
to 1:2 and 2:1, and controlled the total missing propor-
tion of the two groups to the set proportion. In this way, 
the MAR (the ratio of missing proportion 1:2) and MAR 
(the ratio of missing proportion 2:1) mechanisms were 
formed to compare the effects of the ratio of missing pro-
portion of each group on missing data processing meth-
ods under MAR mechanism.

Then, according to the possible missing situation in 
previous studies, the proportion of missing was set into 
six categories: 5%, 10%, 15%, 20%, 30% and 50% respec-
tively, Finally, a total of 18 incomplete data sets cor-
responding to missing scenarios were generated by 
simulation.

Complete data set generation
Missing data processing techniques were applied to gen-
erate complete data sets by imputing missing values of 
the incomplete data sets of the previous step.

Fig. 1  Experimental design. MAR (1:2): MAR (the ratio of missing 
proportion 1:2); MAR (2:1): MAR (the ratio of missing proportion 2:1)
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At present, there are three kinds of ideas in missing 
data processing, namely, deleting cases with missing val-
ues, weighting adjustment methods and missing values 
imputation. The imputation method is the mainstream 
of missing values processing. In view of the attention of 
missing data processing methods at present and compar-
ing machine learning with traditional imputation, this 
study chose mode imputation (Mode) and KNN as the 
representatives of the traditional single imputation meth-
ods, multiple imputation by chained equations (MICE) as 
the representative of the traditional multiple imputation 
methods, and logistic regression (LR), RF, NN, support 
vector machine (SVM) and EL as the representatives of 
the machine learning imputation techniques.

Machine learning imputation  The missing data imputa-
tion methods based on machine learning usually use mod-
eling to mine the effective information in the incomplete 
data, so as to reasonably infer the imputation values. The 
overall imputation idea of the following machine learn-
ing algorithms used in this study is to take the complete 
samples in the incomplete data set as the training set to 
establish the prediction model, and estimate the missing 
values according to the trained prediction model.

LR is one of the most commonly used and classic clas-
sification methods in machine learning [20]. It belongs to 
nonlinear regression, and is a multiple regression analysis 
method to study the relationship between the depend-
ent variable with two or more classifications and some 
influencing factors. Because of its simplicity, easy imple-
mentation and maturity, it is widely used in classification 
problems.

RF proposed by Breiman L in 2001 is a derivative of 
ensemble learning Bagging algorithm [21]. The algo-
rithm idea is as follows: ① the original data set is N, m 
samples are randomly sampled by Bootstrap method to 
form a training set which is repeated B times to obtain B 
training sets, and build B basic decision tree models. ② p 
features are randomly selected from all features, and then 
the best feature is selected from the p features according 
to the information gain for segmentation. ③ Each deci-
sion tree is split until the training samples of all nodes 
belong to the same class, and pruning is not needed in 
the whole process. ④ Generated B decision trees form 
a RF. This method not only pays attention to the perfor-
mance of single decision tree classifier, but also reduces 
the correlation between each decision tree, improves the 
performance of combined classifier and increases the 
robustness of the algorithm to noise.

NN is a complex network system, in which neurons are 
connected with each other, and information is processed 
in parallel and converted nonlinearly by simulating the 
way of human brain nerve processing information. This 

study adopted the widely used back propagation neural 
network proposed by Rumelhart DE et  al. in 1986 [22], 
which is a multilayer feedforward neural network trained 
by error back propagation algorithm. Back propaga-
tion neural network can learn and store a large number 
of input–output pattern mappings without revealing 
the mathematical equations describing the mappings in 
advance. Its learning rule is to use the steepest descent 
method to constantly adjust the weights and thresholds 
of NN through back propagation, to minimize the sum of 
squares of errors of NN. The most common three-layer 
back propagation neural network model was used in this 
study, including an input layer, a hidden layer and an out-
put layer.

SVM was proposed by Vapnik V et  al. [23]. It is 
designed for binary classification task, which can map 
linearly inseparable data to higher dimensional space 
and find a partition hyperplane with the largest interval 
in sample space based on training set to obtain decision 
function. By maximizing the margin between the two 
classes and minimizing the misclassification error, the 
samples of different classes are separated.

EL accomplishes the learning task by constructing and 
combining multiple learners, and often obtains better 
generalization performance than a single learner [24]. 
This study adopted the Stacking algorithm proposed 
by Wolpert DH in 1992, also known as Stacked Gener-
alization [25]. Stacking combines multiple classification 
methods into a single model, which takes advantages of 
different machine learning methods and thus improves 
the accuracy of prediction. For stacking, it has two-stage 
learning model. The original data set is used to train the 
first stage models, which include multiple different clas-
sification methods. The second stage model is trained to 
combine the prediction results from first stage models to 
obtain the final results. In this study, LR, RF, back propa-
gation NN and SVM with radial basis function were used 
as the first stage models. For the second stage model, 
SVM with radial basis function was chosen to learn the 
relationships from the first stage models automatically. 
The algorithm framework was shown in Fig. 2.

According to the classification performance (Area 
Under Curve (AUC)) of ten-fold cross validation, the 
hyperparameters for each model and each incomplete 
data set simulated were tuned and the optimal configu-
ration was selected using the Grid Search method. For 
example, Table  1 showed the optimal hyperparameter 
configuration of machine learning imputation techniques 
in the MAR (the ratio of missing proportion 1:2) mecha-
nism scenario with a missing proportion of 5%.

Traditional imputation  Mode is one of the simplest 
methods to impute missing value, which is to impute 
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missing value with the mode of not missing value of each 
variable [26]. It is generally used for non-numerical vari-
ables.

KNN was first proposed by Cover T and Hart P in 1967 
[27]. KNN realizes the imputation of missing values by 
mining the similarity between samples, which is to iden-
tify neighboring points by distance measurement, and 
then estimate missing value by using the complete val-
ues of neighboring points. Specifically, we can calculate 
the distance between a missing value and other complete 
values, find its k (k = 10) nearest distance data by using 
the defined function of distance between measured data 
(Euclidean distance), and then use the median of these k 
data to impute this missing value.

MICE is essentially a series of regression models, origi-
nally proposed by Boshuizen HC and Knook DL [28]. The 
missing values of each variable will be predicted accord-
ing to other variables in the data, and repeated before the 
estimated value fully converges. At the same time, the 
whole process will be repeated m times, that is, after m 
times modeling and analysis, m different estimated val-
ues are generated for each missing value to form m com-
plete data sets, and finally these m results are integrated 
according to certain rules to form the final missing value 
imputation result. This study adopted predictive mean 

matching with iterated 50 times to impute missing data 
20 times repeatedly, and the average results of 20 times 
were integrated as the final imputation values.

Performance evaluation and comparison
In order to evaluate the impact of clinical decision-
making results, the logistic regression models were con-
structed to evaluate the performance of missing data 
processing techniques. The discharge situation (failure 
(n = 261) = 1, success (n = 1207) = 0) as dependent vari-
able and the other variables as independent variables, 
using the medical records of patients to assess their dis-
charge. The imputation effects of missing data process-
ing methods were evaluated by calculating the sensitivity, 
AUC and Kappa values of the models, which all ranged 
between 0 (the worst) and 1 (the best). The evaluation 
metrics values of original complete data were used as 
references.

The sensitivity reflects the extent to which the model 
can cover the concerned categories, that is, the propor-
tion of patients correctly classified whose discharge situa-
tion are failure. It was calculated as shown in formula (1), 
where TP and FN denote true positives and false nega-
tives, respectively.

Because clinical decision making such as discharge 
assessment requires the prediction model to have high 
sensitivity, that is, to predict the failure of discharge as 
much as possible to avoid serious consequences in this 
study, specificity was not regarded as a separate metric 
for evaluation, and AUC was used to comprehensively 
reflect the accuracy combining sensitivity and specificity. 
The AUC can be acquired by calculating the area under 
the Receiver operating characteristic (ROC) curve plot-
ting the true positive rate (sensitivity) against the false 
positive rate (1-specificity) over a range of cut-off values, 

(1)Sensitivity =
TP

TP + FN
.

Fig. 2  Stacking ensemble learning algorithm framework

Table 1  The optimal hyperparameter configuration of machine learning imputation techniques (under the MAR (the ratio of missing 
proportion 1:2) mechanism scenario with a missing proportion of 5%)

–: the parameter tuning is not required; *: optimal configuration is automatically tuned

Methods Packages Hyperparameters to be tuned Hyperparameters ranges Optimal configuration

LR – – – –

RF randomForest mtry: number of randomly selected 
predictors

mtry = {1:8} mtry = 4

NN nnet size: numbers of hidden units, decay: 
weight decay

size = {1:24}, decay = {0, 0.1, 0.01, 5e-4} size = 4, decay = 0.1

SVM Kernlab sigma: Sigma*, C: cost Kernel = Radial Basis Function Kernel, 
C = {0.25, 0.50, 1, 2, 4, 8, 16, 32}

Kernel = Radial Basis Function Kernel, 
C = 0.25

EL kernlab, caret, 
caretEnsemble

sigma: Sigma*, C: cost Kernel = Radial Basis Function Kernel, 
C = {0.25, 0.50, 1, 2, 4, 8, 16, 32}

Kernel = Radial Basis Function Kernel, 
C = 0.25
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which represents a trade-off between sensitivity and 
specificity.

The AUC represents accuracy, while the Kappa repre-
sents reliability, which is used to assess the consistency 
between the model results and the actual results. The 
Kappa was calculated as shown in formula (2), where po 
and pe are the observed and expected by chance alone 
proportions of agreement, respectively.

This study compared the performance of imputation 
techniques from two aspects: processing effects of differ-
ent methods in each missing scenario and each method 
in different missing scenarios.

Statistical test
In order to evaluate whether the observed performance 
differences between different methods under different 
missing scenarios were statistically significant, the Wil-
coxon signed-rank test was adopted. Due to multiple 
comparisons between multiple methods, the false discov-
ery rate (FDR) method was used to adjust the P values. 
The statistical test level was 0.05.

In this study, R 4.0.1 software was used for data 
analysis. The packages used by traditional imputation 

(2)Kappa =
po − pe

1− pe
.

included DMwR2 and mice, while packages used by 
machine learning imputation were shown in Table 1.

Results
Data set description
Table 2 described the distribution of variables and cor-
responding categories of this study in the two groups of 
the discharge situation failure and success.

Analysis results of original complete data set fitting model
The sensitivity, AUC and Kappa values of the model fit-
ted by the original complete data set in this study were 
0.874, 0.914 and 0.558 as shown in Table 3, which can 
be used as reference for performance evaluation of 
missing data processing methods.

Table 2  Description of the data set

Variables Categories Discharge situation

Success (n = 1207) Failure (n = 261)

Age  < 55 249 (20.6%) 37 (14.2%)

55–64 265 (22.0%) 51 (19.5%)

65–74 391 (32.4%) 86 (33.0%)

75–84 246 (20.4%) 60 (23.0%)

 > 84 56 (4.6%) 27 (10.3%)

Gender Male 688 (57.0%) 163 (62.5%)

Female 519 (43.0%) 98 (37.5%)

More than two times of in-hospital No 1194 (98.9%) 251 (96.2%)

Yes 13 (1.1%) 10 (3.8%)

Deep coma No 1190 (98.6%) 130 (49.8%)

Yes 17 (1.4%) 131 (50.2%)

Diagnostic location Deep 1081 (89.6%) 220 (84.3%)

Superficial 126 (10.4%) 41 (15.7%)

Supratentorial hemorrhage volume  < 30 ml 1032 (85.5%) 128 (49.0%)

 ≥ 30 ml 175 (14.5%) 133 (51.0%)

Operation No 1045 (86.6%) 203 (77.8%)

Yes 162 (13.4%) 58 (22.2%)

Co-infection No 802 (66.4%) 138 (52.9%)

Yes 405 (33.6%) 123 (47.1%)

Table 3  Evaluation of logistic regression model fitting with 
original complete data set

Sensitivity AUC​ Kappa

Original complete data set 0.874 0.914 0.558
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The performance comparisons of different methods 
in each missing scenario
Results in MCAR mechanism scenario
As illustrated in Table  4 and Fig.  3, under the MCAR 
mechanism, in terms of sensitivity, the sensitivity val-
ues of Mode were the lowest among all methods under 
any missing proportion studied, and never reached that 
of the original complete data set. Meanwhile, with the 
gradual increase of missing proportion, it showed a 
downward trend as a whole. The sensitivity values and 
these overall change trends of KNN, MICE and SVM 
were similar under each missing proportion, and when 
the missing proportion was between 15 and 50%, they 
were lower than those of the original complete data set. 
The performance of RF was similar to that of the above 
three methods when missing proportion was lower than 
30%. However, with the increase of missing proportion 
to 40% and 50%, the sensitivity values of RF increased 
obviously and significantly exceeded that of the origi-
nal complete data set. The performance of NN was rela-
tively stable, and its sensitivity values under any missing 
proportion studied were higher than that of the original 
complete data set. In comparison, EL had the best perfor-
mance. Except that the sensitivity was slightly lower than 
that of RF when the missing proportion was around 50%, 

its performance was the best among the eight methods 
under the other missing proportions studied.

The AUC trend of traditional imputation methods and 
SVM was similar to their sensitivity performance. The 
AUC value of LR was slightly higher than that of origi-
nal complete data set when missing proportion was 10%, 
but lower under other missing proportions studied, 
and showed a downward trend as missing proportion 
increased gradually. Similarly, the performance of EL was 
the best on the whole.

In terms of the Kappa value, the performance of EL was 
relatively the best. However, Mode was obviously infe-
rior to other methods and showed an obvious downward 
trend with the increase of missing proportion from 20%.

Results in MAR (the ratio of missing proportion 1:2) 
mechanism scenario
From Table  5 and Fig.  4, in terms of sensitivity, under 
the low missing proportions (5%-20%), the performance 
of processing methods was similar, while the sensitivity 
of Mode was relatively low. Under the medium and high 
missing proportions (20%-50%), EL performed best, fol-
lowed by LR. When the missing proportion was greater 
than 40%, the sensitivity of RF gradually decreased 
to lower than that of the original complete data set. 

Table 4  Evaluation results of different processing methods in different scenarios of MCAR mechanism

Evaluation metrics Missing 
proportions

Machine learning methods Traditional methods

LR RF NN SVM EL Mode KNN MICE

Sensitivity 0.05 0.874 0.874 0.877 0.874 0.877 0.854 0.874 0.870

0.10 0.889 0.881 0.881 0.877 0.893 0.847 0.877 0.877

0.15 0.866 0.866 0.885 0.866 0.889 0.835 0.866 0.862

0.20 0.877 0.874 0.893 0.866 0.893 0.851 0.866 0.872

0.30 0.877 0.870 0.885 0.866 0.900 0.839 0.866 0.868

0.50 0.847 0.904 0.893 0.862 0.893 0.793 0.851 0.849

Average 0.872 0.878 0.886 0.869 0.891 0.837 0.867 0.866

AUC​ 0.05 0.912 0.913 0.914 0.913 0.915 0.911 0.913 0.912

0.10 0.921 0.917 0.918 0.915 0.922 0.908 0.916 0.915

0.15 0.908 0.914 0.918 0.914 0.915 0.895 0.915 0.907

0.20 0.908 0.916 0.918 0.913 0.918 0.901 0.913 0.915

0.30 0.909 0.915 0.916 0.913 0.926 0.893 0.914 0.913

0.50 0.892 0.923 0.922 0.910 0.923 0.877 0.901 0.894

Average 0.908 0.916 0.918 0.913 0.920 0.898 0.912 0.909

Kappa 0.05 0.553 0.553 0.555 0.553 0.555 0.555 0.553 0.551

0.10 0.566 0.561 0.561 0.559 0.568 0.557 0.559 0.558

0.15 0.552 0.552 0.564 0.552 0.566 0.497 0.553 0.545

0.20 0.568 0.566 0.578 0.561 0.578 0.532 0.563 0.566

0.30 0.562 0.557 0.566 0.555 0.576 0.512 0.560 0.574

0.50 0.533 0.569 0.562 0.543 0.596 0.493 0.540 0.524

Average 0.556 0.560 0.564 0.554 0.573 0.524 0.555 0.553
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Fig. 3  Simulation evaluation results of the sensitivity (a), AUC (b) and Kappa (c) values of each method under MCAR mechanism

Table 5  Evaluation results of different processing methods under different scenarios of MAR (the ratio of missing proportion 1:2) 
mechanism

Evaluation metrics Missing 
proportions

Machine learning methods Traditional methods

LR RF NN SVM EL Mode KNN MICE

sensitivity 0.05 0.870 0.874 0.874 0.870 0.874 0.866 0.870 0.871

0.10 0.877 0.877 0.877 0.877 0.877 0.866 0.877 0.873

0.15 0.885 0.881 0.889 0.881 0.889 0.866 0.877 0.882

0.20 0.874 0.874 0.874 0.874 0.877 0.870 0.870 0.875

0.30 0.897 0.885 0.877 0.874 0.900 0.805 0.870 0.878

0.50 0.885 0.866 0.866 0.866 0.893 0.766 0.866 0.852

Average 0.881 0.876 0.876 0.874 0.885 0.840 0.872 0.872

AUC​ 0.05 0.912 0.914 0.914 0.912 0.915 0.911 0.912 0.913

0.10 0.917 0.916 0.916 0.916 0.917 0.917 0.917 0.914

0.15 0.910 0.916 0.917 0.915 0.917 0.915 0.914 0.915

0.20 0.912 0.914 0.914 0.914 0.916 0.909 0.911 0.913

0.30 0.921 0.919 0.913 0.913 0.922 0.911 0.908 0.914

0.50 0.924 0.914 0.913 0.915 0.925 0.912 0.916 0.909

Average 0.916 0.916 0.915 0.914 0.919 0.913 0.913 0.913

Kappa 0.05 0.556 0.558 0.558 0.556 0.558 0.564 0.556 0.556

0.10 0.564 0.564 0.564 0.564 0.564 0.580 0.566 0.562

0.15 0.560 0.557 0.562 0.557 0.562 0.580 0.564 0.557

0.20 0.554 0.554 0.555 0.554 0.556 0.539 0.552 0.548

0.30 0.572 0.565 0.571 0.559 0.574 0.629 0.564 0.560

0.50 0.560 0.548 0.549 0.548 0.564 0.632 0.552 0.540

Average 0.561 0.558 0.560 0.556 0.563 0.587 0.559 0.554
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Similarly, the sensitivity of Mode was obviously lower 
than other methods, and showed a cliff-like downward 
trend with the increase of missing proportion.

As far as AUC was concerned, on the whole, the per-
formance of EL was relatively the best, and always higher 
than that of the original complete data set under any 
missing proportion studied. Under the low missing pro-
portions, the AUC values of NN were close to that of EL. 
Under the medium and high missing proportions, LR 
was closer to EL and showed an obvious upward trend.

As for Kappa, on the whole, Mode was particularly out-
standing except that the missing proportion was about 
20%. Under the medium and high missing proportions, 
EL had a slight advantage.

Results in MAR (the ratio of missing proportion 2:1) 
mechanism scenario
As shown in Table 6 and Fig. 5, in terms of sensitivity, 
under the low missing proportions, the performance of 
processing methods was relatively close, while Mode 
was slightly inferior. Under the medium and high miss-
ing proportions, firstly, EL and NN were comparable 
and obviously superior to other methods. Secondly, the 
sensitivity values of RF and SVM were higher than that 
of the original complete data set and showed an upward 
trend with the increase of missing proportion. KNN 
and MICE showed an obvious downward trend under 

high missing proportions. However, Mode showed a 
cliff-like decline trend in the medium and high missing 
proportions, and its sensitivity values were at the low-
est position.

As for AUC, the performance of Mode has never 
reached that of the original complete data set. Under 
the low missing proportions, NN had a slight advan-
tage. Under the medium missing proportions, EL and 
NN were comparable. Under the high missing pro-
portions, EL was slightly better than NN. In addition, 
under the medium and high missing proportions, RF 
and SVM showed an upward trend with the increase of 
missing proportion, while LR and the other two tradi-
tional imputation methods had a downward trend and 
gradually deviated from the reference values.

As far as Kappa value was concerned, the perfor-
mance of EL was the best, and always better than that 
of original complete data set under any missing propor-
tion studied. However, the performance of Mode was 
just the opposite. In addition, under the low and mid-
dle missing proportions, the Kappa values of the other 
six methods were relatively close and fluctuated around 
the level of original complete data set. When the miss-
ing proportion increased, NN, RF and SVM showed 
an upward trend, while LR and other two traditional 
imputation methods had an obvious downward trend.

Fig. 4  Simulation evaluation results of sensitivity (a), AUC (b) and Kappa (c) values of each method under MAR (the ratio of missing proportion 1:2) 
mechanism
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Table 6  Evaluation results of different processing methods under different scenarios of MAR (the ratio of missing proportion 2:1) 
mechanism

Evaluation metrics Missing 
proportions

Machine learning methods Traditional methods

LR RF NN SVM EL Mode KNN MICE

Sensitivity 0.05 0.877 0.866 0.866 0.866 0.889 0.851 0.866 0.869

0.10 0.858 0.874 0.874 0.874 0.881 0.862 0.874 0.868

0.15 0.889 0.877 0.904 0.874 0.897 0.858 0.866 0.870

0.20 0.885 0.874 0.877 0.866 0.889 0.843 0.866 0.877

0.30 0.866 0.897 0.920 0.881 0.923 0.739 0.866 0.876

0.50 0.862 0.943 0.973 0.900 0.969 0.693 0.739 0.789

Average 0.873 0.889 0.902 0.877 0.908 0.808 0.846 0.858

AUC​ 0.05 0.913 0.912 0.913 0.912 0.913 0.901 0.912 0.911

0.10 0.909 0.914 0.915 0.914 0.911 0.904 0.915 0.912

0.15 0.919 0.917 0.924 0.916 0.919 0.893 0.911 0.913

0.20 0.913 0.918 0.916 0.914 0.916 0.891 0.915 0.912

0.30 0.902 0.921 0.933 0.921 0.934 0.860 0.910 0.907

0.50 0.887 0.952 0.947 0.942 0.950 0.855 0.860 0.875

Average 0.907 0.922 0.925 0.920 0.924 0.884 0.904 0.905

Kappa 0.05 0.562 0.555 0.555 0.555 0.569 0.519 0.555 0.555

0.10 0.547 0.557 0.557 0.557 0.561 0.526 0.557 0.554

0.15 0.565 0.558 0.574 0.555 0.591 0.507 0.551 0.561

0.20 0.568 0.561 0.563 0.556 0.592 0.506 0.557 0.564

0.30 0.547 0.566 0.579 0.556 0.619 0.491 0.547 0.569

0.50 0.507 0.627 0.630 0.622 0.645 0.556 0.491 0.514

Average 0.549 0.571 0.576 0.567 0.596 0.518 0.543 0.553

Fig. 5  Simulation evaluation results of sensitivity (a), AUC (b) and Kappa (c) values of each method under MAR (the ratio of missing proportion 2:1) 
mechanism
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The performance comparisons of each method in different 
missing scenarios
Figure  6 revealed the imputation performance differ-
ence of the same processing method under different 
missing mechanisms, which was more obvious when 
there was a high proportion of missing. Under the high 
missing proportions, EL, RF, NN and SVM had the 
best performance under the MAR (the ratio of missing 
proportion 2:1) mechanism. LR, KNN and MICE were 
more suitable for MAR (the ratio of missing proportion 
1:2) mechanism. The sensitivity of Mode was higher 
under the MCAR mechanism, while the AUC and 
Kappa values were more prominent under the MAR 
(the ratio of missing proportion 1:2) mechanism.

Results of the statistical test between EL and other 
methods
From the above descriptive and visual results, EL showed 
good performance compared with other methods. In 
order to evaluate whether the observed superior differ-
ences for EL with other methods were statistically signifi-
cant, this study conducted the one-sided test on EL and 
other seven methods separately.

Table  7 confirmed the excellent performance of EL. 
Compared with Mode, KNN, MICE, LR and SVM, EL 
had relatively better performance under other missing 
mechanisms except that the differences between Kappa 
values under MAR (the ratio of missing proportion 1:2) 
mechanism and AUC values under MAR (the ratio of 
missing proportion 2:1) mechanism showed no statistical 
significance. In most cases of this study, the performance 

Fig. 6  Comparison of processing effects of each method in different missing scenarios. a to h: the sensitivity comparison of different missing 
scenarios of EL, LR, RF, NN, SVM, Mode, KNN and MICE; i to p: AUC comparison; q to x: Kappa comparison; MAR (1:2): the MAR (the ratio of missing 
proportion 1:2) mechanism; MAR (2:1): the MAR (the ratio of missing proportion 2:1) mechanism
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differences observed by descriptive analysis of EL better 
than NN were not statistically significant.

Discussion
This study applied machine learning imputation tech-
niques to deal with the missing of data in clinical deci-
sion making. The results showed that the accuracy of EL 
was imporved by combining the advantages of multiple 
single learners when dealing with missing data problem. 
Because EL was composed of multiple learners to solve 
the same problem, it can effectively alleviate the over-
fitting problem of a single learner and improve the gen-
eralization ability to a certain extent. In addition, it can 
be seen that the performance of EL imputation results 
in different missing scenarios was generally higher, and 
there was no phenomenon of ups and downs. Thus, the 
stability of its imputation results was higher than that of 
a single learner.

Other single machine learning algorithms had differ-
ent performances in different missing scenarios. Under 
the mechanism of MCAR and MAR (the ratio of missing 
proportion 2:1), the performance of NN was only inferior 
to EL. Firstly, NN needs large sample data to train and 
learn for building models. The sample size of this study 
can meet the requirement of NN to a large extent, which 
can ensure that NN can give full play to its advantages 
under the condition of large sample. Secondly, because of 

its strong adaptability, NN can adapt to the new environ-
ment in time by retraining when the conditions change 
slightly, so that its prediction performance is not sensi-
tive to the missing data itself and the amount of missing 
data. At the same time, the NN also has certain fault tol-
erance, and the local errors of the network will not have 
a severe impact on the whole. Therefore, these character-
istics of NN combined with the data conditions in this 
study make its imputation performance stand out. Under 
these two missing mechanisms, when the missing pro-
portion was high, the imputation effect of RF was second 
only to the NN. Because of the characteristics of random 
selection of samples, random selection of features and 
the construction of multiple decision trees, RF is not easy 
to produce over fitting.

In addition, under MAR (the ratio of missing propor-
tion 2:1) mechanism, when missing proportion was high, 
the performance of SVM was only inferior to that of EL, 
NN and RF. From the theoretical basis and characteris-
tics of SVM itself, it is a machine learning method based 
on statistical theory, which is mainly suitable for lim-
ited samples and has excellent learning ability based on 
limited information in small samples. However, when 
the sample size is large, the separability of data and the 
accuracy of classification may decrease. Therefore, only 
under the missing scenario of MAR (the ratio of missing 
proportion 2:1) mechanism and high missing proportion 

Table 7  The P values of statistical test between EL and other methods

p.raw: the p value of Wilcoxon signed rank test;

p.adj: the p value adjusted by the FDR method based on p.raw

Missing mechanisms Evaluation metrics P values Machine learning methods Traditional methods

LR RF NN SVM Mode KNN MICE

MCAR​ Sensitivity p.raw 0.018 0.047 0.091 0.016 0.016 0.016 0.016

p.adj 0.025 0.055 0.091 0.025 0.025 0.025 0.025

AUC​ p.raw 0.016 0.029 0.139 0.018 0.016 0.030 0.018

p.adj 0.031 0.034 0.139 0.031 0.031 0.034 0.031

Kappa p.raw 0.018 0.016 0.050 0.016 0.030 0.016 0.016

p.adj 0.025 0.025 0.050 0.025 0.034 0.025 0.025

MAR (the ratio of missing proportion 1:2) Sensitivity p.raw 0.028 0.050 0.091 0.030 0.016 0.030 0.016

p.adj 0.041 0.059 0.091 0.041 0.041 0.041 0.041

AUC​ p.raw 0.029 0.017 0.029 0.018 0.030 0.029 0.018

p.adj 0.030 0.030 0.030 0.030 0.030 0.030 0.030

Kappa p.raw 0.024 0.050 0.091 0.029 0.953 0.086 0.016

p.adj 0.068 0.088 0.106 0.068 0.953 0.106 0.068

MAR (the ratio of missing proportion 2:1) Sensitivity p.raw 0.016 0.018 0.172 0.017 0.016 0.018 0.016

p.adj 0.021 0.021 0.172 0.021 0.021 0.021 0.021

AUC​ p.raw 0.050 0.584 0.819 0.086 0.016 0.071 0.031

p.adj 0.117 0.681 0.819 0.120 0.109 0.120 0.109

Kappa p.raw 0.016 0.016 0.016 0.018 0.016 0.016 0.016

p.adj 0.018 0.018 0.018 0.018 0.018 0.018 0.018
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set in this study, the advantages of SVM were slightly 
prominent. On the one hand, because of the high miss-
ing proportion, the available sample information was 
more limited. On the other hand, under the MAR (the 
ratio of missing proportion 2:1) mechanism, the missing 
proportion of the target variable in the failure group was 
twice as high as that in the success group, and the original 
sample size of the failure group was small, which made 
the missing degree of the target variable in failure group 
more serious and the available sample information less. 
So compared with other missing scenarios, SVM in this 
scenario was more prominent.

Under MAR (the ratio of missing proportion 1:2) 
mechanism, and the medium and high missing propor-
tions, LR was second only to EL. It can be seen that the 
different ratios of missing proportions of groups will 
affect the imputation effect of missing data processing 
method. Compared with the ratio of missing proportion 
2:1, the imputation method based on LR was more effi-
cient when the ratio of missing proportion was 1:2.

On the whole, the performance of machine learning 
imputation was better than that of traditional imputa-
tion methods, especially in the case of a large proportion 
of missing. The performance of traditional imputation 
methods, KNN and MICE, had no obvious advantages 
and continued to weaken at high missing proportions, 
which was difficult to meet the requirement. As far as 
Mode was concerned, its implementation was very sim-
ple. However, it ignored the relationship between the 
value of missing and other variables, which made its 
imputation performance was not ideal in most missing 
scenarios compared with other methods. This finding 
was consistent with the conclusion of previous research 
[26]. However, this study also found that under MAR 
(the ratio of missing proportion 1:2) mechanism, when 
the missing proportion was greater than about 25%, 
the Kappa of Mode was much higher than that of other 
methods. This result was also reasonable. It was mainly 
affected by missing mechanism and the ratio of missing 
proportion of groups. With the gradual increase of the 
missing proportion, the missing of target variable in the 
success group would become more and more serious. At 
this time, for the imputation of missing values in the suc-
cess group, it may be more reasonable to use the mode 
of non-missing values. The specificity would be higher, 
which led to the excellent relatively Kappa value perfor-
mance of Mode in this missing scenario.

The main contribution of this study was to provide the 
methodological application mechanism and enhance the 
reliability of evidence for machine learning, especially 
EL, to better solve the problem of missing data clinically, 
providing methodological support for clinical decision 
making in presence of missing data. However, it still had 

several limitations in the setting of missing scenario. For 
example, considering the convenience of implementation 
and interpretation, only the monotonous missing mode 
was set. But the actual situation is often more compli-
cated, so the practical value of machine learning imputa-
tion methods needs to be further explored and improved 
in the richer missing scenarios.

Conclusions
The performances of missing data processing methods 
were different to a certain extent in different missing 
scenarios. On the whole, machine learning had better 
imputation performance than traditional methods, espe-
cially in scenarios with high missing proportions. Com-
pared with single machine learning algorithms, the 
performance of EL was more prominent, followed by NN. 
Meanwhile, EL was most suitable for missing imputation 
under MAR (the ratio of missing proportion 2:1) mecha-
nism, and its average sensitivity, AUC and kappa values 
reached 0.908, 0.924 and 0.596 respectively. At the same 
time, this study also revealed that the data missing mech-
anism, missing proportion and ratio of missing propor-
tion of each group were essential factors to be considered 
when formulating missing data processing strategies. The 
findings of this study shed light on the development of 
missing data processing technology, and provided meth-
odological support for clinical decision making in pres-
ence of incomplete data.
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