Skip to main content
. 2021 Dec 9;18(1):526–537. doi: 10.1021/acs.jctc.1c00791

Table 4. Properties of Water Exchange from Simulations and Experimentsa.

  N k [s–1] ΔF* [kBT]
microMg(TIP3P)26 376 ± 56 (8.04 ± 1) × 105 15.9
nanoMg(TIP3P)26 52 086 ± 120 (1.11 ± 0.003) × 108 11.5
microMg(SPC/E) 452 ± 52 (9.62 ± 1) × 105 15.5
nanoMg(SPC/E) 47 472 ± 3620 (1.01 ± 0.08) × 108 11.2
microMg(TIP3P-fb) 184 ± 4 (3.94 ± 0.09) × 105 16.1
nanoMg(TIP3P-fb) 1344 ± 20 (2.88 ± 0.05) × 106 14.1
microMg(TIP4P/2005) 308 ± 16 (6.56 ± 0.4) × 105 15.5
nanoMg(TIP4P/2005) 1554 ± 90 (3.32 ± 0.2) × 106 14.1
microMg(TIP4P-Ew) 660 ± 16 (1.41 ± 0.03) × 106 15.0
nanoMg(TIP4P-Ew) 8618 ± 262 (1.84 ± 0.06) × 107 12.6
microMg(TIP4P-D) 312 ± 8 (6.65 ± 0.2) × 105 15.4
nanoMg(TIP4P-D) 1780 ± 20 (3.80 ± 0.05) × 106 13.7
exp. 248,74 31473 5.3 × 105 from ref (73), 6.7 × 105 from ref (74) n.a.
a

Number of transitions N in 1 μs for different Mg2+ parameters in 1 M MgCl2 solutions. The experimental value73,74 is obtained from eq S3. The rate constant k is calculated from the number of transitions N for microMg and nanoMg and eq S3. The errors for N and k are obtained from block averaging. ΔF* is the free energy difference between the top and the first minimum (Figure 4B). Values for parameters in TIP3P are taken from ref (26).