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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The global response to Coronavirus Disease 2019 (COVID-19) is now facing new chal-

lenges such as vaccine inequity and the emergence of SARS-CoV-2 variants of concern

(VOCs). Preclinical models of disease, in particular animal models, are essential to investi-

gate VOC pathogenesis, vaccine correlates of protection and postexposure therapies.

Here, we provide an update from the World Health Organization (WHO) COVID-19 model-

ing expert group (WHO-COM) assembled by WHO, regarding advances in preclinical mod-

els. In particular, we discuss how animal model research is playing a key role to evaluate

VOC virulence, transmission and immune escape, and how animal models are being refined

to recapitulate COVID-19 demographic variables such as comorbidities and age.
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In February of 2020, the World Health Organization (WHO) R&D Blueprint convened a

group of experts to develop preclinical models of Severe Acute Respiratory Syndrome Corona-

virus 2 (SARS-CoV-2) infection. Since its inception, the goal of this WHO COVID Modeling

group (WHO-COM) has been to accelerate the development of Coronavirus Disease 2019

(COVID-19) vaccines and therapeutics by rapidly sharing data among member scientists

worldwide. In addition, concerns were raised at that time about the possibility of vaccine-asso-

ciated enhanced respiratory disease (VAERD) or antibody-dependent enhancement (ADE)

after vaccination or infection. In September of 2020, the WHO-COM published a review on

COVID-19 animal models [1], which reflected the state-of-the art at that time, with the vast

majority of publications authored by members of the group.

Preclinical studies in nonhuman primates (NHPs) of COVID-19 vaccines that are currently

being deployed [2–5] proved remarkably predictive of the outcome of clinical efficacy studies.

In particular, NHP studies not only predicted high clinical efficacy of these vaccines but also

suggested immune correlates of protection. Moreover, preclinical studies accurately predicted

that protection against severe pneumonia would be easier to achieve than protection against

viral replication in nasal mucosa. These observations confirm the value and importance of the

use of animal models for COVID-19.

In 2021, with several vaccines rolling out worldwide and the detection of variants of con-

cern (VOCs), the development of preclinical models of SARS-CoV-2 infection and their role

in COVID-19 research has entered into a new phase. This paper provides an update from the

WHO-COM regarding advances in preclinical models. In particular, we discuss how animal

model research has provided insight into VOC pathogenesis and correlates of protection and

has helped therapeutic development. Finally, we discuss the current status of VAERD research

and the race to develop models that recapitulate COVID-19 demographic variables such as

comorbidities and age.

Animal models to study VOCs

As the current pandemic evolves, several virus variants carrying multiple mutations have

emerged in different regions of the world. Some variants have been classified by WHO as vari-

ants of interest (VOIs) or VOCs, based on epidemiological evidence of enhanced transmission

and possible evasion from natural and vaccine-induced immunity [6]. Animal models have a

key role in the evaluation of VOC transmission, immune escape, and pathogenicity.

Vaccine cross-protection and transmission

Recent studies in mice, hamsters, and NHPs show that animals previously infected or vacci-

nated against lineage A SARS-CoV-2 (for example, the original Wuhan strain) [7] are pro-

tected against challenge with homologous as well as heterologous virus strains including the

alpha (B.1.1.7), beta (B.1.351), gamma (B.1.1.28.1), and delta (B.1.617.2) VOCs [8–14]. In the

NHP model, however, more viral breakthroughs were observed following beta VOC challenge

as compared with homologous WA1/2020 challenge [12,15]. In addition to protection against

disease, another concern was to determine whether reinfection with VOCs resulted in SARS-

CoV-2 shedding, which would raise the possibility that asymptomatic reinfected individuals

might transmit VOCs. In this regard, hamsters reinfected with VOCs were indeed shown to

shed SARS-CoV-2 for a number of days [8,14,16]. However, transmission studies performed

in cats indicated that infected animals did not shed enough virus for transmission to cohoused

naïve sentinel cats [17]. These results are in agreement with the finding that, although vacci-

nated individuals can be reinfected, transmission of delta VOC from these individuals may be
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substantially reduced in comparison with nonvaccinated subjects [18]. Importantly, virus

shedding in hamsters, ferrets, and NHPs was reduced by intranasal vaccination [19,20], show-

ing perhaps an added value of mucosal vaccines to control VOC expansion.

It is now clear, however, that, in competition studies, at least the alpha and beta VOCs show

enhanced transmission in comparison with lineage A SARS-CoV-2 in a number of models,

including hamsters, ferrets, and white-tailed deer [21–24]. This attribute could be dependent,

at least partially, on the presence of VOC-specific spike substitutions such as N501Y, D614G,

and V367F, which improve the affinity of the SARS-CoV-2 spike protein for the human and

hamster angiotensin-converting enzyme 2 (ACE2AU : PleasenotethatACE2hasbeendefinedasangiotensin � convertingenzyme2atitsfirstmentioninthesentenceThisattributecouldbedependent; atleastpartially; onthe:::Pleasecorrectifnecessary:) receptors. The aromatic N501Y substitu-

tion that is present in the alpha, beta, and gamma VOC is associated with increased transmis-

sion in humans but also allows for infection in the wild-type mouse using the mouse ACE2

receptor [25]. Thus, 2 recent studies have shown that wild-type mice are susceptible to certain

SARS-CoV-2 VOCs, specifically to the beta (B.1.351) and gamma (P1) VOCs [26,27], most

likely due to the N501Y substitution. Although mild lesions and viral replication were

observed in nasal turbinates and lung of these wild-type mice inoculated with these VOCs, no

significant clinical signs were observed. These results open the avenue to use wild-type mice as

a potential animal model of asymptomatic infection with SARS-CoV-2, mainly to study

immune responses, for which laboratory reagents are widely available. More threatening, these

observations also raise concerns on the possibility of interspecies transmission, with new vari-

ants expanding their tropism toward other animal species resistant to the ancestral viral strains

and, eventually, becoming novel secondary viral reservoirs [28]. However, the highly relevant

delta variant has a different mutation pattern that does not include an N501Y substitution, but

a P to R substitution in the spike protein cleavage site and therefore may react differently in

the animal models than other VOCs. This raises the possibility that SARS-CoV-2 could also

evolve into a human-specific virus with reduced cross-infective properties in other mammals.

In this regard, human tissue culture microfluidic systems have been developed to supplement

the infection modeling landscape [29,30] and may offer a scalable solution to such a scenario if

it were to emerge. Characterization in the full spectrum of available models and systems and

with different delta VOC isolates is therefore suggested. However, it must always be kept in

mind that the emergence of additional new VOCs will lead to a time delay in testing in animal

models, since the selected viruses must first be isolated and characterized in vitro and subse-

quently distributed to the different laboratories worldwide.

VOC pathogenesis in animal models

Importantly, even though VOCs readily infected the lower respiratory tract of hamsters and

NHPs, none of these variants seemed to show enhanced virulence in these animal models,

although increased production of proinflammatory cytokines was observed in hamsters

infected with the alpha VOC [9]. In a comparative study carried out in rhesus macaques, infec-

tion with the beta VOC resulted in lower clinical scores and lower levels of virus replication in

comparison with ancestral B.1 virus and alpha VOC [31]. These findings were confirmed in a

direct comparison between B.1 and alpha VOC infection in African green monkeys [32]. Con-

versely, studies in other models such as transgenic mice expressing the human ACE2

(huACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-huACE2) have

yielded different outcomes. In these mice, infection with the beta VOC resulted in enhanced

infectivity and a quicker disease progression in comparison to one of ancestral variants (B.1)

[26]. Such enhanced infectivity could be due, at least to some extent, to the expression of

higher levels of interferon antagonist proteins by some VOCs [33]. Other studies have, how-

ever, shown reduced fitness of the beta VOC in mice in competition trials [22] (Fig 1). One
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possible explanation for differences in VOC virulence when comparing results in different

animal models is the rise of mutations leading to increased processing and fusion by the S pro-

tein of SARS-CoV-2 [34,35]. As VOC phenotypic features appear dependent on interactions

with host factors, experimental demonstration of enhanced virulence or transmission with

emerging VOC may depend on the animal model and the specific VOC strain used. One strat-

egy to minimize the variables during experiments has been the use of syngeneic viral back-

bones generated by reverse genetics [36]. This approach demonstrated the fitness advantage of

S-614G versus S-614D in a syngeneic direct competition assay [21] and recently also demon-

strated the role of the spike protein of the alpha VOC for enhanced transmission properties in

a transgenic mouse model [22]. It is important to consider that various experimental setups

and the use of different VOCs could affect the experimental outcome. A series of experiments

in different animal models and with different VOCs are necessary for particularly robust

conclusions.

Vaccine-associated enhanced respiratory disease

Vaccine-associated enhanced disease (VAED) defines adverse events that affect individuals

infected with a pathogen after receiving a prior vaccine against that same pathogen. More spe-

cifically, VAERD was observed in individuals immunized with formalin-inactivated vaccines

against measles or respiratory syncytial virus (RSV) decades ago [37,38]. ADE, on the other

hand, is a phenomenon where preexisting vaccine or infection-induced antibodies enhance

infection of FcγR expressing target cells, which results in increased disease. ADE is well docu-

mented to occur after secondary infections with dengue viruses belonging to different sero-

types [39].

There were initial concerns that SARS-CoV-2 vaccines, in particular whole-inactivated vac-

cines, might lead to VAERD or ADE. These concerns were heightened by in vitro evidence of

ADE for SARS-CoV and Middle East Respiratory Syndrome (MERS)-CoV [40], experimental

data indicating eosinophilic VAERD in studies of SARS-CoV and MERS-CoV vaccines in

Fig 1. SARS-CoV-2 VOC in animal models. The schematic summarizes findings related with virulence, transmission,

and cross-protection gathered in the indicated animal models so far. Figure created with Biorender (Biorender.com).

huACE2AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1and2:Pleaseverifythatallentriesarecorrect:, human angiotensin I-converting enzyme 2; K18, cytokeratin-18; SARS-CoV-2, Severe Acute Respiratory

Syndrome Coronavirus 2; VOC, variant of concern.

https://doi.org/10.1371/journal.ppat.1010161.g001
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mice [41,42], and hepatitis observed in a SARS-CoV ferret model [43]. These concerns led to

the assessment for possible VAERD and ADE by the WHO-COM group in different animal

models of SARS-CoV-2 pathogenesis.

These initial concerns have been now alleviated by several findings in animal models. First,

all vaccines that either are emergency use authorized or in late clinical development phases

induce strong T-helper 1 (Th1) CD4-mediated responses, which are associated with high ratios

of neutralizing versus nonneutralizing antibodies and reduced risk of VAERD [44]. Moreover,

several experiments performed by WHO-COM scientists have utilized experimental alum-

adjuvanted and formaldehyde-inactivated whole virus vaccines and subsequent SARS-CoV-2

challenge to address any evidence of VAERD. In rhesus macaques, histopathological analysis

revealed no evidence of enhanced lung pathology, and a rapid rise in neutralizing antibodies

was seen after challenge [45]. In hamsters and ferrets, on the other hand, a mild increase of

lung pathology was observed at 5 days and 7 days postinoculation (dpi), respectively, in com-

parison to unvaccinated controls. Nonetheless, in both models, pathology was reduced at 13

dpi to comparable levels for vaccinated and unvaccinated animals. The enhanced pathology

was characterized by increased perivascular cuffing (ferrets and hamsters) and greater influx

of mononuclear cells and granulocytes in alveoli with thickening of alveolar wall, proliferation

of type II pneumocytes, and hemorrhages (hamsters). No clear influx of eosinophils was

observed in either species. Noteworthy, hamsters showed no neutralizing antibodies

post-immunization and no protection against challenge, but lung cytokines were markedly

skewed toward Th2 [45]. In addition, a recent study in K18-hACE2 mice immunized with a

very impure formalin-inactivated SARS-CoV-2 preparation and an aluminum hydroxide-

based adjuvant demonstrated earlier onset of SARS-CoV-2 replication and disease in compari-

son to the naïve control groups or mRNA-vaccinated animals [46].

As VAERD typically develops after vaccine-induced antibody responses wane, it may be

too soon to conclude about the presence of VAERD in SARS-CoV-2 vaccination. However,

the data currently available from animal experiments, showing the absence of VAERD in

NHPs and a transient increase of lung pathology in ferrets and hamsters, are reassuring. More-

over, VAERD has not been reported in humans immunized with inactivated SARS-CoV-2 vac-

cine preparations.

Animal models and VOC prophylaxis and therapy

Despite the rapid and successful development of COVID-19 vaccines, unequal global vaccine

distribution has contributed to the rise of VOCs with potential to escape natural as well as vac-

cine-induced immunity. This, together with the lack of medical countermeasures against

severe COVID-19, has resulted in increased efforts to develop prophylactic and therapeutic

strategies against SARS-CoV-2 infection, for which animal models are playing a key role.

Although revising all therapeutic strategies against COVID-19 is out of the scope of this study,

we would like to point out recent preclinical studies with potential to treat infections caused by

VOCs. Of these, the use of polyclonal antibodies or antibody cocktails against the SARS-CoV-

2 spike receptor binding domain (RBD) provide an advantage by binding to multiple epitopes,

thereby reducing the chance of VOC immune escape. Such strategies have shown potent pro-

phylactic and therapeutic activity in mouse models of infection as well as hamsters [47,48].

Alternatively, monoclonal antibodies such as COVA1-18 and P5C3 with broad neutralizing

activities have also shown prophylactic effect in hamsters, hACE2 mice, and cynomolgus

macaques and potent reduction of virus replication postexposure [49,50]. P5C3 has also

shown neutralization of all known VOCs to date at picomolar concentrations [50]. Neutraliz-

ing single domain antibodies (nanobodies) can be administered intranasally and have also
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shown to greatly reduce SARS-CoV-2 replication in hamsters [51,52]. A complementary strat-

egy against VOC could be the development of antibody cocktails with enhanced Fc-mediated

functions, which have been shown to greatly contribute to SARS-CoV-2 humoral immunity

[53]. Consequently, anti-SARS-CoV-2 monoclonal antibodies with optimized Fc domains

have shown potent prophylactic and therapeutic activity in several mouse models and ham-

sters [54].

In the early days of the pandemic, animal models were also key for testing nucleoside ana-

log drugs such as remdesivir [55] and favipiravir [56]. More recently, molnupiravir (MK-

4482) has shown great potential as an orally available drug, which significantly reduced SARS-

CoV-2 replication in hamsters [57] and prevented transmission in ferrets [58]. Nucleoside

analogs such as favipiravir have also shown synergistic activity in combination with other

drugs such as 3CL protease inhibitors in huACE2 mice [59]. Thus, animal models may be

needed to test combination drugs against COVID-19. For this, as we will discuss below, the

development of more severe models of disease may be needed.

The search for an animal model of severe SARS-CoV-2 disease

One of the main gaps still remaining in the development of SARS-CoV-2 infection models is

the identification of a preclinical animal model that recapitulates the severe and lethal form of

human COVID-19. Such a model would be of great advantage for several aspects of research.

First, it would provide a tool to study the transition from mild to severe disease, which would

possibly lead to the identification of disease mechanisms and biomarkers. Second, it would

expand the presently available animal models to evaluate vaccines and therapeutics, which

could result in urgently needed rescue medical countermeasures. Since the first review pub-

lished by the WHO-COM [1], the hamster model has emerged as the one that more closely

recapitulates moderate disease in humans. Hamsters not only develop respiratory disease after

SARS-CoV-2 infection, but also display some other important clinical hallmarks in patients

such as anosmia, neurotropism, and vascular inflammation [60–62]. With some exceptions,

most laboratories have observed that hamsters tend to lose weight rapidly after experimental

infection with SARS-CoV-2 reaching 5% to 20% or more of body weight loss at the peak of

infection. However, in some parts of the world, ethical approvals establish euthanasia end-

points at 20% to 25% of weight loss, while in other laboratories, animals are sometimes allowed

to lose 30% of body weight. These regulatory differences complicate the definition of severe

disease in animal models of infection. Nevertheless, pathological examination of infected ham-

ster lungs shows evidence of severe interstitial pneumonia with high levels of bronchoalveolar

damage and inflammation. Unfortunately, the hamster model presents a few unresolved chal-

lenges; for example, there is a need to better understand the relationship between the severity

of pulmonary pathology and the mild to moderate clinical signs. In order to address this, it

seems imperative to develop more tools to study hamster immunology, for example, antibody

panels for multiparametric flow cytometry. Moreover, male hamsters show more severe lung

lesions than females and less efficient antibody responses [63,64]. In the absence of comorbidi-

ties or coinfections, an explanation for these findings is likely dependent on sex-associated dif-

ferences in immune responses. Indeed, male COVID-19 patients have shown higher levels of

proinflammatory cytokines and reduced T cell–mediated immunity in comparison with

female patients [65]. Whether this is the case also in the hamster model again depends on the

development of more advanced tools to study hamster immunology.

Furthermore, the disease development may also be related to age of the used hamsters with

older hamsters showing more severe disease progression [66], although others found no sub-

stantial age-related difference [67,68]. Despite the gaps of knowledge, hamsters have become
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the model of choice for preclinical testing of vaccines and therapeutics together with different

species of NHPs [69–72].

In addition to the hamster model, several murine models of severe disease are now avail-

able, including infection of common laboratory strains with mouse-adapted SARS-CoV-2 and

certain SARS-CoV-2 VOCs and infection of mice expressing huACE2 transgenically or of

mice with “knock-in” of huACE2 [73–76]. Mice develop pathological signs of pneumonia that

range from mild to severe. In some instances, mice also develop anosmia, a common manifes-

tation of the human COVID-19 [76]. Mice have the advantage of well-characterized genetics

and the availability of mice that are completely or conditionally deleted in genes of interest. In

addition, the vast existence of reagents to study immune responses in mice also allows a much

better characterization of the immunology related to SARS-CoV-2 compared to hamsters or

ferrets.

Finally, as discussed above, several monoclonal antibodies and small molecule antivirals

against SARS-CoV2 [9] are in development, some of which are approved in the United States

or may receive market authorization elsewhere in 2021. An important open question is

whether escape or resistant virus variants may emerge against either of these therapies. The

current SARS-CoV2 animal infection models typically show a limited duration of virus repli-

cation and are therefore not well suited to explore whether, in particular with suboptimal

doses of either a monoclonal antibody or a small molecule antiviral, drug-resistant variants

may emerge. It will therefore be important to develop SARS-CoV2 infection models in which

the virus replicates to sufficiently high titers for extended periods of time without causing

severe pathology that would require early euthanasia of these animals. To this end, either

strains of animals with immunodeficiencies or the experimental induction of immunodefi-

ciencies by pharmacological interventions would be worth exploring.

Age and comorbidities

In human COVID-19 disease, there is a strong association of severe disease with age and/or

preexisting comorbidities including cardiac disease, diabetes/obesity, hypertension, and

chronic respiratory diseases. For COVID-19, age is the best correlate of poor outcome, with

those over the age of 85 having a 630-fold increase in death compared to those 18 to 29 years

old (https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/

hospitalization-death-by-age.html). Refinement of preclinical models to recapitulate the effect

of age and comorbidities in SARS-CoV-2 infection has been an important effort during the

last year.

Age

Mouse models were one of the first options to explore the effect of age in SARS-CoV-2 infec-

tion. There are numerous mouse models of aging that could be applied to COVID-19 studies.

The main strategy has been to cross these mouse models with huACE2 transgenic mice or to

use mouse-adapted virus. Overall, these studies indicated that the severity of SARS-CoV-2

infection in C57BL/6 and Balb/c mice is age dependent [73]. Indeed, young mice were resistant

to SARS-CoV infection even if they lacked IFN-I expression or the capacity to mount adaptive

immune responses [77], while aged mice infected with SARS-CoV-2 showed greater weight

loss, clinical signs, and pathology than their young counterparts despite comparable viral loads

[73]. Mechanistically, the positive correlation between age and severity in SARS-CoV–infected

mice was associated with increased age-dependent inflammation in the lung [78], which is

consistent with findings in humans [79].
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The effect of age in SARS-CoV-2 infection has been also evaluated in ferrets. These studies

showed that 1- to 2-year-old ferrets had prolonged fever compared to young ferrets, which

developed little-to-no fever. Three-year-old ferrets had fevers that lasted out past 10 dpi. In

addition, older ferrets lost more weight upon infection and regained it more slowly than youn-

ger ferrets [80]. More severe lung pathology also was noted in the older ferrets at 5 dpi. Of

note, older ferrets also had higher viral titers in nasal washes and fecal specimens for a longer

period and were more likely to transmit the virus to younger ferrets. This is also consistent

with findings in older patients, in which immune senescence, loss of type I IFN responses,

decline in antigen presentation, and reduced T cell responses have shown to delay viral clear-

ance [81,82].

This correlation between SARS-CoV-2 infection severity and age has been also confirmed

in the NHP model. A study comparing rhesus macaques and baboons suggested that viral

pneumonia may persist longer in older animals of either species, and a reduction in antibody

responses in aged rhesus macaques [83]. Aged rhesus macaques also have been shown to have

increased rectal shedding, slower viral clearance, higher viral loads, more severe lung pathol-

ogy, higher levels of proinflammatory cytokines, and greater body weight loss [84]. Increased

shedding of viral RNA from the upper respiratory tract was observed in older cynomolgus

macaques in one study, but this was not associated with increased disease severity [84]. A mul-

tiomics study comparing subadult and aged rhesus macaques showed that age did not substan-

tially affect acute disease; however, an age-specific divergence of immune responses emerged

during the postacute phase of infection (7 to 21 dpi). As in humans, advanced age resulted in a

delayed or impaired induction of antiviral cellular immune responses and a delay in the effi-

cient return to immune homeostasis [85].

Comorbidities

Less is known about the effect of comorbidities during SARS-CoV-2 infection in animal mod-

els. The reason is that, with the exception of mice, comorbidities are difficult to model in ani-

mal experiments. In mice, however, the huACE2 model can be crossed with other specific

models of disease such as diabetes, chronic inflammation, or cardiovascular disease (CDs)

models. Alternatively, mouse-adapted SARS-CoV-2 or any of the VOCs containing the N501Y

spike protein mutation can be directly used to infect mice. Finally, huACE2 can be also

expressed to mouse models of disease via adenovirus delivery. The latter approach has been

used to study the effects of CDs and diabetes mellitus in SARS-CoV-2 infection and has shown

that preexisting CDs resulted in enhanced inflammation and risk of myocardial injury upon

infection [86], which is consistent with observations in humans [87]. Another strategy is the

induction of comorbidities, in particular diabetes and obesity, through changes in rodent diet.

Thus, diet-induced obesity in mice resulted in more severe disease upon infection with

N501Y-containing SARS-CoV-2 [25]. Similarly, hamsters fed a western diet for 16 weeks

showed greater weight loss and higher viral loads, as well as prolonged viral shedding com-

pared to controls fed a regular rodent diet [88]. Despite these differences, there were no signifi-

cant effects of obesity in respiratory function or SARS-CoV-2–induced pathology between the

2 groups. Other comorbidities associated with severe disease in COVID-19 have not yet been

studied in rodents.

Correlates of protection

Establishing the immunological correlates of protection remains a key question for vaccine

deployment and evaluation. While high levels of neutralizing antibodies in sera likely are asso-

ciated with protection against disease, the contribution of cellular immunity to protection,
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including T cells and Fc-dependent effector antibody functions, remains uncertain. In fact, in

Phase III SARS-CoV-2 mRNA and Ad26 vaccine clinical trials, protection against clinical

infection could be seen even before the appearance of protective antibody titers in sera [89].

Moreover, correlates of protection against clinical disease and against asymptomatic infection

and transmission likely differ. The establishment of robust correlates of protection is necessary

to allow immunobridging, which extrapolates vaccine immunogenicity in humans to a protec-

tive effect, based on the immunogenicity and protection observed in animal models. Immuno-

bridging will benefit from standardized immunological assays to quantify correlates of

protection across animal experiments and clinical studies (Fig 2). It has been used for the

expansion of mRNA vaccine approval to younger age groups [90] and will likely expedite the

approval of second-generation vaccines without costly and lengthy efficacy studies. It will also

help in determining whether and when boosting is needed, and whether vaccine strain updates

are needed. One caveat might be that different vaccines might have different correlates of pro-

tection, making a universal correlate of protection difficult to achieve. For example, from NHP

studies, it has been suggested that T cells can contribute to protection when antibody levels are

suboptimal, or start to wane [91]. This indicates that correlates for long-term protection for an

individual may change over time or may include multiple immune parameters. Therefore, it

will be important to define immune thresholds for protection. These thresholds can be differ-

ent for different target groups (the very young, the elderly, pregnant, immune-compromised,

or people with comorbidities), which is currently being investigated in the available animal

models that reflect the physiological and immunological status of these target groups. Meta-

analyses of data generated in clinical trials and postapproval are crucial to validate the corre-

lates of protection identified in preclinical studies.

Animal models also might be valuable to validate correlates of protection from infection,

disease, and transmission. Passive antibody studies in multiple animal models have demon-

strated that high titers of polyclonal or monoclonal neutralizing antibodies can protect from

disease. Similarly, T cell depletion experiments and adoptive transfer experiments analogously

can address the contribution of T cell immunity in protection from disease in mice and NHPs.

Fig 2. Animal models and immunobridging. Comparative and standardized studies in animal models such as those

performed by WHO-COM scientists can help to extrapolate vaccine immunogenicity data across preclinical and

clinical studies. Figure created with Biorender (Biorender.com). VAERD, vaccine-associated enhanced respiratory

disease; VOC, variant of concern; WHO-COM, WHO COVID-19 Modeling group.

https://doi.org/10.1371/journal.ppat.1010161.g002
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Conclusions and future course

Animal models for SARS-CoV-2 infection have fostered the development of COVID-19 vac-

cines and therapeutics during the first year of the pandemic, several of which have been

deployed on a global scale. Going forward, animal models can still fill important knowledge

gaps. For example, preclinical animal studies will be important to understand disease progres-

sion and identify biomarkers that can aid us better predict the course of human disease. Ani-

mal model studies likely will allow the experimental validation of predicted correlates of

protective or dysregulated immunity in humans. Similarly, animal models will be essential to

evaluate VOC pathogenicity and transmissibility and to further assess the potential risk of

VAERD, especially in the context of heterologous vaccination regimens. It will also be essential

to develop SARS-CoV-2 animal infection models in which the virus replicates for extended

periods of time, thus allowing for assessment of emergence of resistant variants against vac-

cines or therapies. Finally, as there is still much to learn about the role of comorbidities in

human COVID-19, animal models with comorbidities will be needed to dissect the role of

infection versus comorbidity in disease severity. These efforts may also lead to the design and

evaluation of specific therapies against severe COVID-19 that function best in the background

of particular medical conditions.

References
1. Munoz-Fontela C, Dowling WE, Funnell SGP, Gsell P-S, Riveros-Balta AX, Albrecht RA, et al. Animal

models for COVID-19. Nature. Nature Publishing Group; 2020; 586:509–15. https://doi.org/10.1038/

s41586-020-2787-6 PMID: 32967005

2. Mercado NB, Zahn R, Wegmann F, Loos C, Chandrashekar A, Yu J, et al. Single-shot Ad26 vaccine

protects against SARS-CoV-2 in rhesus macaques. Nature. Nature Publishing Group; 2020:1–11.

https://doi.org/10.1038/s41586-020-2607-z PMID: 32731257

3. van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, et al. ChA-

dOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv. Cold

Spring Harbor Laboratory Preprints. 2020. https://doi.org/10.1101/2020.05.13.093195 PMID:

32511340

4. Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, et al. Evaluation of the

mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med. 2020:NEJ-

Moa2024671. https://doi.org/10.1056/NEJMoa2024671 PMID: 32722908

5. Vogel AB, Kanevsky I, Che Y, Swanson KA, Muik A, Vormehr M, et al. BNT162b vaccines protect rhe-

sus macaques from SARS-CoV-2. Nature. Nature Publishing Group; 2021; 592:283–89. https://doi.org/

10.1038/s41586-021-03275-y PMID: 33524990

6. Krause PR, Fleming TR, Longini IM, Peto R, Briand S, Heymann DL, et al. SARS-CoV-2 Variants and

Vaccines. N Engl J Med. Massachusetts Medical Society; 2021; 385:179–86. https://doi.org/10.1056/

NEJMsr2105280 PMID: 34161052
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