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Abstract

Background

Multiple factors are associated with the risk of diabetes and hypertension. In India, they vary

widely even from one district to another. Therefore, strategies for controlling diabetes and

hypertension should appropriately address local risk factors and take into account the spe-

cific causes of the prevalence of diabetes and hypertension at sub-population levels and in

specific settings. This paper examines the demographic and socioeconomic risk factors as

well as the spatial disparity of diabetes and hypertension among adults aged 15–49 years in

Northeast India.

Methods

The study used data from the Indian Demographic Health Survey, which was conducted

across the country between 2015 and 2016. All men and women between the ages of 15

and 49 years were tested for diabetes and hypertension as part of the survey. A Bayesian

geo-additive model was used to determine the risk factors of diabetes and hypertension.

Results

The prevalence rates of diabetes and hypertension in Northeast India were, respectively,

6.38% and 16.21%. The prevalence was higher among males, urban residents, and those

who were widowed/divorced/separated. The functional relationship between household

wealth index and diabetes and hypertension was found to be an inverted U-shape. As the

household wealth status increased, its effect on diabetes also increased. However, interest-

ingly, the inverse was observed in the case of hypertension, that is, as the household wealth

status increased, its effect on hypertension decreased. The unstructured spatial variation in

diabetes was mainly due to the unobserved risk factors present within a district that were not

related to the nearby districts, while for hypertension, the structured spatial variation was

due to the unobserved factors that were related to the nearby districts.
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Conclusion

Diabetes and hypertension control measures should consider both local and non-local fac-

tors that contribute to the spatial heterogeneity. More importance should be given to efforts

aimed at evaluating district-specific factors in the prevalence of diabetes within a region.

Introduction

Diabetes and hypertension are major global health concerns. They impose a heavy burden on

the public healthcare sector and affect socioeconomic development [1,2]. Statistics from the

International Diabetes Federation (IDF) and the World Health Organization (WHO) show

that about 463 million adults were living with diabetes in 2019 [3] and 1.13 billion with hyper-

tension in 2015 [4]. According to estimates from 2019, India had the second-highest number

(77 million) of diabetic people in the world, and the number is expected to increase to 134 mil-

lion by 2045 [3]. Evidence from a study based on the Demographic Health Survey shows that

11.3% of Indians aged 15–54 years have diabetes, with the prevalence being higher among men

(13.8%) than women (8.8%) [5].

Northeast India, which is located in the Northeastern part of India, is composed of eight

small states, namely Assam, Arunachal Pradesh, Manipur, Meghalaya, Mizoram, Nagaland,

Sikkim, and Tripura. The region is mostly inhabited by tribal communities belonging to differ-

ent ethnic groups [6]. Geographically, the region is mostly hilly, which acts as a major hurdle

to transportation and communication, affecting the access to and the proper functioning of

healthcare facilities in the rainy season [7]. Despite low per capita income, the prevalence of

hypertension in the region is much higher than in states that are more socioeconomically

developed and have much higher per capita incomes [8]. According to the Indian Demo-

graphic Health Survey (2019–20) report, the prevalence of diabetes and hypertension in

Northeast India is higher among men than women. As per the survey report, 15.6 percent of

men have diabetes as compared to 12.7 percent of women, and 27.6 percent of men have

hypertension as compared to 22.3 percent of women [9].

The epidemiology of diabetes and hypertension reveals multiple risk factors. Previous stud-

ies have shown that socioeconomic factors–such as low levels of education, high household

economic status, and demographic factors like age and sex–increase the risk of diabetes and

hypertension [10,11]. Lifestyle behaviours like smoking, alcohol consumption [11–13], low

physical activity [14], and dietary habits [15,16] also significantly influence the risk of diabetes

and hypertension. Individuals in the same geographical area usually have common beliefs and

culture, which may lead to similar levels of exposure to diseases, including diabetes and hyper-

tension [17–19]. Hence, countries with a diverse culture and wide differences in dietary habits

are likely to have large variations in the prevalence of diabetes and hypertension based on their

geographical location [20,21].

Despite the diversity in dietary habits and cultural practices, studies on diabetes and hyper-

tension in Northeast India have not, to our knowledge, investigated the geographical heteroge-

neity in the causes of diabetes and hypertension [22,23]. According to Koissi et al.,

overlooking the effects of heterogeneity in the statistical model may lead to biased parameter

estimates [24]. It is important to note here that geographical heterogeneity can be an effect of

unobserved factors that may be mostly contextual. Geographical differences in the causes of

diabetes and hypertension can be explained by large-scale variability in environmental factors

like availability of green spaces in a catchment area of 1 km radius around the residential
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location [25], level of urbanization and westernization [26], differences in dietary patterns

[20,21], level of poverty, and access to medical facilities [27]. Studies have shown that obesity,

which leads to diabetes and hypertension, is associated with the availability of green spaces or

parks [25,28]. A study by Haynes-Maslow et al. showed that an increase in the number of fast-

food restaurants in a county is associated with increasing prevalence of diabetes in that partic-

ular county [29]. Several studies from India and abroad [18,20,21] have considered geographi-

cal heterogeneity while modeling diabetes and hypertension; however they have overlooked

the non-linear effects of continuous variables (that is, using the bivariate spline approach)

while modeling the geographical heterogeneity.

This paper contributes to the understanding of spatial variations in diabetes and hyperten-

sion in Northeast India by using the Bayesian spatial mixed model approach, which is based

on the Markov Chain Monte Carlo (MCMC) simulation technique. To the best of the authors’

knowledge, this study is the first to map diabetes and hypertension in Northeast India in terms

of the spatial effect. The map is likely to have significant implications for our understanding of

how diabetes and hypertension are spatially distributed and will help health promotion pro-

grammes allocate the resources equitably and efficiently.

Material and methods

Study area and data

The focus of the study was Northeast India. Data used in the analysis was drawn from the

nationally representative Indian Demographic Health Survey (IDHS), also known as the

National Family Health Survey (NFHS-4) which was conducted across the country between

2015 and 2016. The Indian Demographic Health Survey (IDHS) was conducted by the Inter-

national Institute for Population Sciences (IIPS), Mumbai, a nodal agency appointed by the

Ministry of Health and Family Welfare, Government of India [30]. After completing the regis-

tration for getting the approval to download the dataset, the data can be downloaded from the

DHS website [31]. Since this study used publicly available secondary data and de-identified the

respondents, the institutional review board (IRB) exempted it from seeking approval.

The survey employed a two-stage stratified sampling design. In the first stage, primary sam-

pling units (PSUs) were selected based on probability proportional to population size. In rural

areas, villages were the PSUs, while in urban areas, census enumeration blocks formed the

PSUs. In every selected rural and urban PSU, a complete household mapping and listing was

conducted prior to the main survey. Among the selected PSUs, those having at least 300 house-

holds were divided into segments of 100–150 households. In NFHS-4, a cluster is either a PSU

or a segment of a PSU. In the second stage, 22 households were selected from every selected

urban and rural cluster using the systematic random sampling method. From each selected

household, information was sought from women aged 15–49 years and men aged 15–54 years

[30]. The study excluded Sikkim because its boundary is not connected to the map of North-

east India and including it would have made estimating the spatial effects difficult (Fig 1). The

shapefile map used in this study was downloaded from the website of GADM and can be used

under the Creative Commons Attribution License (CCAL), CC BY 4.0 [32].

Sampling

The sample for this study comprised 112,062 respondents (98,702 females and 13,360 males)

aged 15–49 years. Males comprised only 12 percent of the total sample size because the survey

had collected information from males from only 15 percent of the sampled households. A total

of 6,878 respondents had diabetes, while 17,677 respondents had hypertension. The study cov-

ered 82 districts, whose breakup by states is given in the supporting file S1 Table.
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Operational definitions

Diabetes. A FreeStyle Optium H Glucometer device was used to measure the blood glu-

cose. The device uses a small drop of blood drawn from the fingertips to measure the blood

glucose level. The blood sample was drawn only once at a random time during the day irre-

spective of when the respondent last ate. Usually, the presence or absence of diabetes in an

individual is determined on the basis of fasting blood glucose level. However, NFHS-4 mea-

sured the random blood glucose level. A respondent is considered to have diabetes if the ran-

dom blood glucose level is >140mg/dl.

Hypertension. Blood pressure was measured with an Omron Hem 7203 blood pressure

monitor. Three blood pressure readings were taken in all, with an interval of 5 minutes

between the readings. The first reading was discarded and the average of the last two readings

was calculated. A respondent was classified as hypertensive if the average systolic blood pres-

sure was� 140 mmHg, or if the average diastolic blood pressure� 90 mmHg, or if the person

was taking antihypertensive medication to lower blood pressure at the time of the survey [30].

Dependent variables

The outcome variables were diabetes and hypertension status of a respondent. The values were

binary, with 1 implying “Yes” (meaning presence of diabetes or hypertension) and 0 implying

“No” (meaning absence).

Fig 1. Map showing the location of the study area.

https://doi.org/10.1371/journal.pone.0262560.g001
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Explanatory variables

The choice of the explanatory variables was guided by the existing literature. The demographic

variables considered in the study were age and sex of the respondents. The socioeconomic var-

iables included the respondents’ caste, marital status, level of education, place of residence,

and household wealth. The variables for lifestyle behaviors included cigarette smoking and

tobacco and alcohol consumption. To capture the effects of dietary habits on chronic diseases,

we included foods consumed by the respondents and categorized them as milk, pulses, vegeta-

bles, fish, fruits, eggs, chicken, aerated drinks, and fried food. The fixed effects are compared

according to the effect-coding given in Table 1.

The continuous explanatory variables for the study were age of the respondents (in years),

body mass index (kg/m2), and wealth index score.

Statistical analysis

A multiple logistic regression was applied to select the potential covariates of diabetes and

hypertension prior to the spatial analysis. To allow for more potential covariates for the spatial

analysis, a significance level of 20% was set for the selection of the potential covariates. They

are listed in Table 1.

The traditional linear regression model has the limitation of not being able to incorporate

spatial and non-linear effects more flexibly in the model. For a study like ours, where the pri-

mary objective was to explore unobserved heterogeneity in the structured and unstructured

spatial effects, geo-additive models were better suited than the linear regression models. There-

fore, the data were fitted using geo-additive logistic regression models to understand the fixed

as well as the spatial effects for diabetes and hypertension (the term chronic disease was used

in place of diabetes and hypertension). The respondents’ status of chronic disease was a binary

outcome; it was distributed as Bernoulli (pij) where pij was the probability that respondent j in

district i had a chronic disease. The district of the respondent was labelled as si� (1, 2, 3. . ..,82),

where the label matched the labels on the map. The spatial effect of district si, in which the

respondent resided, was given by fspatial(si). The spatial effect comprised two parts: a spatially

correlated (or structured) effect and an uncorrelated (or unstructured) effect. Thus,

fspatialðsiÞ ¼ fstructuredðsiÞ þ funstructuredðsiÞ

The following models were fitted to estimate the fixed and spatial effects.

M0: logit ðpijÞ ¼ zT
i b

M1: logit ðpijÞ ¼ zT
i bþ f1ðui1Þ þ f2ðui2Þ þ f3ðui3Þ þ . . . . . .þ fpðuipÞ

M2: logit ðpijÞ ¼ zT
i bþ fstructuredðsiÞ þ funstructuredðsiÞ

M3: logit ðpijÞ ¼ zT
i bþ f1ðui1Þ þ f2ðui2Þ þ f3ðui3Þ þ . . . . . .þ fpðuipÞ þ fstructuredðsiÞ

M4: logit ðpijÞ ¼ zT
i bþ f1ðui1Þ þ f2ðui2Þ þ f3ðui3Þ þ . . . . . .þ fpðuipÞ þ funstructuredðsiÞ

M5: logit ðpijÞ ¼ zT
i bþ f1ðui1Þ þ f2ðui2Þ þ f3ðui3Þ þ . . . . . .þ fpðuipÞ þ fstructuredðsiÞ þ funstructuredðsiÞ

In model M0, all the categorical and continuous variables were considered as fixed effects,

and β was the parameter in the vector form. In model M1, categorical variables were treated as

fixed effects, while continuous variables were modelled as a non-parametric smooth function

fjs. In model M2, all the covariates were modelled as fixed covariates, and the district of the

respondent was modelled as a spatial effect. Model M3 was a combination of M1 and M2 in

which the smooth function fjs was assigned with Bayesian P-spline priors and the spatial effect
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Table 1. Prevalence of diabetes and hypertension among adults aged 15–49 years by fixed covariates with effect

coding used in the model).

Variables Diabetes Hypertension Effect Coding

(%) P� (%) P�

Sex

Female 6.16 0.000 15.59 0.000 -1@

Male 8.03 20.84 1

Residence

Rural 5.88 0.000 15.98 0.000 -1@

Urban 7.73 16.85 1

Current marital status

Never married 4.00 0.000 8.43 0.000 -1@

Married 7.18 19.15 1

Widowed/Divorced/Separated 9.41 22.24 2

Caste

Scheduled tribe 6.40 0.639 15.74 0.000 -1@

Scheduled caste 6.16 16.89 1

Others 6.45 16.63 2

Level of education

Illiterate 7.06 0.000 22.27 0.000 -1@

Primary 7.21 17.55 1

Secondary 5.84 14.20 2

Higher secondary 7.13 15.50 3

Consume milk

No 7.01 0.000 16.38 0.529 -1@

Yes 6.27 16.18 1

Consume pulses

No 5.71 0.400 20.87 0.000 -1@

Yes 6.38 16.17 1

Consume vegetables

No 4.21 0.152 18.42 0.328 -1@

Yes 6.38 16.21 1

Eat fruits

No 7.15 0.189 20.52 0.000 -1@

Yes 6.36 16.14 1

Consume egg

No 8.16 0.000 20.13 0.000 -1@

Yes 6.32 16.10 1

Eat fish

No 7.26 0.069 15.74 0.518 -1@

Yes 6.36 16.22 1

Eat chicken

No 8.26 0.000 19.35 0.000 -1@

Yes 6.33 16.13 1

Eat fried food

No 6.73 0.349 21.23 0.000 -1@

Yes 6.36 16.01 1

Take aerated drinks

No 6.88 0.000 17.31 0.000 -1@

(Continued)
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fstructured(si) with Markov random field priors [33,34]. We considered a fourth model, M4,

which was again a combination of M1 and M2, where the smooth function fjs was assigned with

Bayesian P-spline priors and the spatial effect as funstructured(si). We considered a fifth and the

final model, M5, which was a combination of M3 and M4, where both structured and unstruc-

tured spatial effects were included. The spatial effects represented the effects of the unobserved

covariates that were not incorporated in the model and accounted for spatial autocorrelation.

The structured spatial effect fstructured(si) accounted for the spatial variation due to the unob-

served influences that arose due to the assumption that the nearby districts were likely to be

correlated with respect to their outcomes. However, in the case of the unstructured spatial

effect, funstructured(si), the spatial variation was due to the unobserved influences that were pres-

ent locally, that is, within a district. Markov random field (MRF) priors were specified for the

structured spatial effect. Two districts were defined as neighbors if they shared a common

boundary. The conditional mean of fstructured(si) was an average of the evaluations of fstructure-

d(si) of other neighboring districts. In the same way, i.i.d Gaussian priors were assigned for the

unstructured spatial effects funstructured(si).

A fully Bayesian integrated approach, based on the Markov Chain Monte Carlo (MCMC) sim-

ulation, was used to estimate the model parameters. The estimated prior odds ratio (OR) could be

interpreted as the odds ratio from the logistic regression. The model was fitted in R using the

freely available package bamlss [35]. For the analysis, we used a total of 40,000 MCMC iterations

and 10,000 burns in the sample. Convergence checks of the models were based on autocorrelation

and the sampling paths. Finally, all the models used in the analysis were compared using the Devi-

ance Information Criterion (DIC) values [36]; the model with the smallest DIC values was pre-

ferred for estimating the parameters. DIC is defined as DIC ¼ �D þ pD, where �D is the posterior

mean of the model deviance, which is a measure of goodness of fit, and pD is the effective number

of parameters, which indicates the complexity of the model and penalizes over-fitting.

Results

Descriptive statistics

Table 1 shows the prevalence of diabetes and hypertension across the categorical covariates. It

is evident from the results that males, urban residents, and widowed, divorced or separated

Table 1. (Continued)

Variables Diabetes Hypertension Effect Coding

(%) P� (%) P�

Yes 6.23 15.90 1

Consume alcohol

No 6.20 0.000 15.16 0.000 -1@

Yes 7.42 22.51 1

Currently smoke cigarettes

No 6.24 0.000 16.11 0.000 -1@

Yes 8.56 17.91 1

Consume tobacco

No 6.28 0.000 16.24 0.194 -1@

Yes 9.27 15.43 1

@: Reference category

�: p-value of chi-square test of independence.

https://doi.org/10.1371/journal.pone.0262560.t001
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individuals had a higher prevalence of diabetes and hypertension. There was a significant gen-

der difference in the prevalence of diabetes and hypertension. This difference was also seen for

place of residence, marital status, and educational level of the respondents.

The prevalence of diabetes and hypertension was the highest among respondents who were

widowed, divorced or separated. The results also show that the prevalence of diabetes was

lower among respondents who consumed milk than those who did not. However, this associa-

tion was not significant for the prevalence of hypertension. Consuming fruits and fried foods

showed a positive impact in reducing the prevalence of hypertension. Unhealthy lifestyle

behaviors, such as cigarette smoking and drinking alcohol, were significantly associated with a

high prevalence of diabetes and hypertension. Since all the categorical variables listed in

Table 1 showed a significant association with diabetes and hypertension at 20% level of signifi-

cance in the preliminary analysis, they were all included in the spatial logistic regression model

(Tables 3 and 4).

Empirical bayesian results

Model selection. The selection of a better model is based on DIC and deviance values. A

model with the smallest DIC and deviance values is considered the best model. It can be seen

from Table 2 that model M5 had the smallest DIC and deviance values for both diabetes and

hypertension. Models with differences in DIC values less than 3 cannot be differentiated, while

those with values between 3 and 7 can be weakly differentiated [37]. Taking all of these criteria

into account, this study based the interpretation of the results of the analysis on model M5, the

geo-additive model with both structured and unstructured spatial effects.

Fixed effects. In model M5, the effects of the categorical covariates were assumed to be

fixed and were estimated jointly with the continuous and spatial covariates. The posterior

means and the corresponding 97.5% credible intervals of the fixed effects parameters are

shown in Table 3. The fixed effects covariates which were significant to diabetes were sex, cur-

rent marital status, level of education, and consumption of tobacco. The fixed effect coefficient

for males was positive, which indicates that being male increased the risk of diabetes as

Table 2. Comparison of models based on deviance information criterion (DIC).

Diabetes Model Fit Deviance ( �D�) pD DIC Δ§DIC

M0 42763.22 9.9387 42773.17 2941.24

M1 46648.94 73.9609 46722.91 6890.98

M2 40199.76 101.2486 40301.01 469.08

M3 39725.00 111.2923 39836.30 4.37

M4 39722.80 112.4136 39835.28 3.35

M5 3971844 113.4988 39831.93 Reference
Hypertension Model Fit Deviance ( �D�) pD DIC Δ§DIC

M0 79703.78 9.8346 79713.62 7402.04

M1 88477.04 77.5036 88554.55 16242.97

M2 73197.80 105.1395 73302.95 991.37

M3 72204.20 112.3875 72316.50 4.92

M4 72200.80 113.9219 72314.78 3.20

M5 72327.87 115.5265 72311.58 Reference

M0:Categorical and continuous covariates were treated as fixed effect; M1:Categorical were treated as fixed and continuous as non-linear effect; M2: All covariates were
treated as fixed effect, and districts as spatial effect; M3: Combination of M1 and M2 with only structured spatial effect; M4: Combination of M1 and M2 with only
unstructured spatial effect; M5: Combination of M3 and M4; §: Difference of M5 against M0, M1, M2, M3 and M4.

https://doi.org/10.1371/journal.pone.0262560.t002
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Table 3. Posterior estimates of the fixed effects parameters for diabetes in Northeast India.

Variables Mean SD 2.5% Quantile Median 97.5% Quantile

Sex

Female@

Male 0.138� 0.025 0.088 0.137 0.187

Residence

Rural@

Urban 0.028 0.017 -0.006 0.028 0.064

Current marital status

Never married@

Married -0.104� 0.025 -0.151 -0.105 -0.056

Widowed/Divorced/Separated -0.030 0.040 -0.110 -0.030 0.044

Caste

Scheduled tribe@

Scheduled caste -0.030 0.034 -0.095 -0.028 0.033

Others -0.028 0.036 -0.099 -0.028 0.044

Level of education

Illiterate@

Primary 0.032 0.031 -0.029 0.031 0.096

Secondary -0.031 0.024 -0.077 -0.030 0.015

Higher secondary -0.062� 0.032 -0.121 -0.062 -0.001

Consume milk

No@

Yes -0.025 0.020 -0.062 -0.026 0.016

Consume pulses

No@

Yes 0.075 0.080 -0.069 0.076 0.235

Consume vegetables

No@

Yes 0.054 0.171 -0.269 0.050 0.392

Eat fruits

No@

Yes -0.076 0.050 -0.175 -0.075 0.025

Consume egg

No@

Yes -0.043 0.045 -0.137 -0.044 0.044

Eat fish

No@

Yes -0.078 0.054 -0.181 -0.077 0.024

Eat chicken

No@

Yes -0.007 0.050 -0.108 -0.008 0.088

Eat fried food

No@

Yes 0.005 0.038 -0.069 0.005 0.082

Take aerated drinks

No@

Yes -0.012 0.018 -0.047 -0.012 0.023

Consume alcohol

(Continued)
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compared to being female. The coefficient for marital status ‘married’ was negative, which

means that married individuals were at a reduced risk of diabetes as compared to never mar-

ried individuals. Individuals who consumed tobacco were also seen as being at a reduced risk

of diabetes.

For hypertension, the posterior means and the corresponding 97.5% credible intervals of

the fixed effects parameters are given in Table 4. Urban residence had a positive effect on

hypertension, meaning that individuals who lived in urban areas were at an increased risk of

hypertension. Individuals who were educated up to the higher secondary (high school) level

were found to be less likely to suffer from hypertension than individuals without an education.

Consumption of milk showed a negative coefficient, meaning that having milk reduced the

risk of hypertension. An interesting finding of our analysis was that individuals who consumed

alcohol were at a lower risk of hypertension as compared to those who did not.

Non-linear effects. Another important advantage of using the geo-additive model is its

ability to incorporate non-linear effects due to continuous covariates. In this study, we incor-

porated the non-linear effects of body mass index (BMI), wealth index score, and age of the

respondents.

Body mass index of individuals had a non-linear effect on diabetes and hypertension (Fig

2). It is evident from Fig 1 that as the BMI increased, its effect on diabetes and hypertension

also increased. The risk of diabetes and hypertension was lower at BMI values of 20 to 25; how-

ever, the risk increased for BMI values of 50 and more.

Household wealth index scores had a non-linear effect on diabetes and hypertension (Fig

3). The functional relationship between household wealth index and diabetes and hypertension

was almost inverted U-shaped. With increasing household wealth status, the effect on diabetes

also increased. Interestingly, the reverse was observed in the case of hypertension, that is, as

the household wealth status increased, its effect on hypertension decreased.

Age of respondents showed an almost linear relationship with diabetes and hypertension

(Fig 4). The effect of age on diabetes and hypertension was the lowest at age 15 years and the

maximum at age 49 years.

Spatial effects. Figs 5 and 6 present the estimated spatial effects of diabetes and hyperten-

sion, with color ranges from blue to maroon indicating low to high risk of diabetes and hyper-

tension. Districts marked in blue had a negative spatial effect and were, therefore, associated

with lower odds of diabetes and hypertension. Districts shown in maroon had a positive spatial

effect and were, therefore, associated with higher odds of diabetes and hypertension. Spatial

Table 3. (Continued)

Variables Mean SD 2.5% Quantile Median 97.5% Quantile

No@

Yes -0.023 0.023 -0.066 -0.023 0.019

Smoke cigarettes

No@

Yes 0.003 0.027 -0.049 0.002 0.059

Consume tobacco

No@

Yes -0.038� 0.016 -0.069 -0.038 -0.006

@: Reference category

�: Statistical significance at 5%.

https://doi.org/10.1371/journal.pone.0262560.t003
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Table 4. Posterior estimates of the fixed effects parameters for hypertension in Northeast India.

Variables Mean SD 2.5% Quantile Median 97.5% Quantile

Sex

Female@

Male 0.159� 0.017 0.125 0.160 0.192

Residence

Rural@

Urban 0.05� 0.013 0.026 0.050 0.074

Current marital status

Never married@

Married -0.053� 0.021 -0.085 -0.053 -0.019

Widowed/Divorced/Separated 0.006 0.024 -0.051 0.007 0.063

Caste

Scheduled tribe@

Scheduled caste -0.034 0.021 -0.076 -0.034 0.008

Others 0.034 0.024 -0.013 0.035 0.079

Level of education

Illiterate@

Primary 0.009 0.021 -0.032 0.008 0.051

Secondary 0.004 0.015 -0.025 0.004 0.034

Higher secondary -0.096� 0.021 -0.136 -0.096 -0.054

Consume milk

No@

Yes -0.036� 0.015 -0.065 -0.036 -0.007

Consume pulses

No@

Yes -0.074 0.048 -0.065 -0.076 0.023

Consume vegetables

No@

Yes -0.139 0.091 -0.307 -0.141 0.044

Eat fruits

No@

Yes -0.025 0.034 -0.091 -0.025 0.043

Consume egg

No@

Yes -0.071� 0.032 -0.132 -0.072 -0.010

Eat fish

No@

Yes 0.081� 0.041 0.001 0.083 0.162

Eat chicken

No@

Yes -0.018 0.035 -0.086 -0.018 0.052

Eat fried food

No@

Yes -0.035 0.023 -0.081 -0.036 0.011

Take aerated drinks

No@

Yes -0.002 0.012 -0.026 -0.003 0.021

Consume alcohol

(Continued)
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effects are surrogates for unknown influences like environmental factors, climate, availability

of proper transport, and access to good healthcare facilities.

Fig 5A clearly shows a significant clustering of diabetes in Northeast India, with the risk of

diabetes being higher in the districts of Nagaland, Manipur, Mizoram, and Tripura. Districts

with low risk of diabetes are in the states of Assam, Arunachal Pradesh, and Meghalaya. How-

ever, overall, the whole of Northeast India appears to be less affected by the unstructured spa-

tial effects of diabetes (Fig 5B). The structured spatial effects of diabetes, which ranged from

-0.27 to 0.47, were weak in comparison to the unstructured spatial effects, which ranged from

-1.51 to 1.71

Fig 6 shows spatial clustering of hypertension. It can be seen that the risk of hypertension

was higher in the districts of Assam, Arunachal Pradesh, Nagaland, and Meghalaya and lower

in the districts of Manipur, Mizoram, Tripura, and Hills and Barak valley of Assam. In Fig 6B,

the unstructured spatial effects of hypertension can be observed in some districts of Arunachal

Pradesh (Anjaw, Dibang valley, and West Siang), suggesting that the spatial variation was due

to the effect of unmeasured local influences. For hypertension, the structured spatial effects

ranged from -0.48 to 0.68, which dominated the unstructured spatial effects (-0.4 to 0.6).

Table 4. (Continued)

Variables Mean SD 2.5% Quantile Median 97.5% Quantile

No@

Yes -0.12� 0.015 -0.147 -0.120 -0.091

Smoke cigarettes

No@

Yes 0.086� 0.021 0.042 0.086 0.126

Consume tobacco

No@

Yes 0.012 0.011 -0.010 0.013 0.033

@: Reference category

�: Statistical significance at 5%.

https://doi.org/10.1371/journal.pone.0262560.t004

Fig 2. Non-linear effects of body mass index on the log-odds of diabetes and hypertension (the figure shows

posterior means along with the 97.5% credible intervals).

https://doi.org/10.1371/journal.pone.0262560.g002
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Fig 3. Non-linear effects of wealth index score on the log-odds of diabetes and hypertension (posterior means

with the 97.5% credible interval are shown).

https://doi.org/10.1371/journal.pone.0262560.g003

Fig 4. Non-linear effects of age on the log-odds of diabetes and hypertension (posterior means along with the

97.5% credible interval are shown).

https://doi.org/10.1371/journal.pone.0262560.g004

Fig 5. Estimated posterior means of the structured spatial effects (left) and the unstructured spatial effects (right) for

the log-odds of diabetes.

https://doi.org/10.1371/journal.pone.0262560.g005
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Discussion

This study attempted to explore the linear, non-linear, and spatial determinants of diabetes

and hypertension among adults 15–49 years of age in Northeast India. The findings of this

study reveal that the linear or fixed effect variables, namely sex of respondents, place of resi-

dence, marital status, and level of education, were significantly associated with the risk of dia-

betes and hypertension. Furthermore, the study noticed that the continuous variables, namely

age of the respondents, body mass index, and household wealth index score, had a non-linear

effect on the risk of diabetes and hypertension. This study adopted the geo-additive logistic

approach to examine the relationship between diabetes and hypertension and their risk factors.

The geo-additive model had the advantage of allowing mapping of the residual spatial effects

to diabetes and hypertension while considering the effect of the non-linear covariates on the

assumption of additivity.

In a geo-additive model, the spatial effect is the sum of the structured and unstructured spa-

tial effects. This method has the advantage that it allows to account for possible unmeasurable

factors and heterogeneity. In addition, the model allows for the exploration of the subtle influ-

ence of the non-linear relationship of the continuous covariates that is not possible in a linear

model.

Spatial effects for diabetes

The findings of the study reveal that the structured spatial effects for diabetes were relatively

weaker in comparison with the unstructured spatial effects (Fig 5), meaning that the role of a

district on the risk of diabetes was not similar to that of the neighbouring districts. This is an

indication that geographical and environmental factors which surpass the boundaries of dis-

tricts likely do not play any significant role in diabetes. With unstructured spatial effects for

diabetes being dominant in this study, it can be concluded that there are unobserved district-

specific influences that are not structured spatial effects (that is, not interrelated with those of

neighboring districts) contributing to diabetes [38]. Such district-specific factors contributing

to diabetes may include availability of healthcare facilities, cost and quality of healthcare, and

cost of living. These factors may vary significantly between and within the states.

A study in Northeast India by Ngangbam & Roy found that people living in districts with

many medical institutions and better road connectivity were more likely to seek formal health-

care services because of the easy accessibility [39]. Their study also revealed that high treatment

Fig 6. Estimated posterior means of the structured spatial effects (left) and the unstructured spatial effects (right) on

the log-odds of hypertension.

https://doi.org/10.1371/journal.pone.0262560.g006
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cost and poor quality of healthcare services reduced the probability of utilizing the healthcare

services in a given place [39].

Spatial effects for hypertension

The results indicate the clustering of hypertension in the districts of Arunachal Pradesh,

Assam, and Nagaland (Fig 6). A high prevalence of hypertension in these three states has been

reported in a previous study as well [40]. The present study revealed that structured spatial

effects for hypertension dominated the unstructured spatial effects, meaning that the risk of

hypertension in a particular district was similar to that in districts that were in close proximity.

This is an indication that geographical and environmental factors surpassing district bound-

aries may have a significant role in hypertension. This clear structured spatial pattern for

hypertension begs an explanation. The geographical or environmental factors contributing to

hypertension may include lifestyle differences and urbanization [27]. One possible reason for

the high prevalence of hypertension in Arunachal Pradesh may be that the region is located at

a high altitude. A study in Tibet showed a strong correlation between the prevalence of hyper-

tension and altitude, with every 100 m increase in altitude corresponding to a 2% increase in

the prevalence of hypertension [41]. However, the relationship between hypertension and alti-

tude is not clear and needs further investigation. Another possible explanation may lie in the

intake of large amounts of sodium by way of salt that is added to yak butter tea. The consump-

tion of yak butter tea helps to keep the body warm in the cold environment of the Himalayan

mountains [42,43].

Studies suggest that consuming five cups or more of yak butter tea daily exposes an individ-

ual to a higher risk of hypertension as compared to those whose consumption is less [44]. Fre-

quent consumption of salty butter tea may elevate the daily salt intake by four to five times,

which is above the limits recommended by the World Health Organization [41]. But it is also

well-known that even though people living at high altitudes are used to consuming large

amounts of salt, they are less obese and fitter than those living at lower altitudes [45].

The high prevalence of hypertension in Arunachal Pradesh may also be attributed to the high

alcohol consumption [46]. In Assam, it may be attributed to the high salt intake, higher body

mass index, consumption of locally prepared alcohol, and central obesity [47]. In Nagaland, the

high prevalence of hypertension may be attributed to lifestyle changes and changes in diet, which

are direct outcomes of socioeconomic development and food consumption pattern [48].

Fixed and non-linear effects

The fixed effect factors for diabetes and hypertension, which were significant in this study,

were sex of the respondent, place of residence, marital status, and highest level of education

(Tables 3 and 4). The influence of these factors on the risk of diabetes and hypertension is in

agreement with the findings of previous studies [8,16]. The finding that men are more likely to

suffer from diabetes and hypertension has also been reported in previous studies [49,50]. Men

are associated with more smoking and a higher consumption of alcohol, both of which are

common risk factors of diabetes and hypertension [5]. The results also demonstrate that the

consumption of milk and eggs significantly reduces the risk of hypertension. An interesting

finding was that the consumption of alcohol was associated with a lower risk of hypertension.

One possible reason for this finding is that the current drinkers may have cut down on their

alcohol intake to moderate levels, resulting in their blood pressure coming back to normal lev-

els [51].

Body mass index (BMI) was found to have a non-linear relationship with diabetes and

hypertension. The results of the non-linear effect of BMI reveal that the risk of diabetes and
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hypertension was low among individuals having a normal BMI. It increased among those hav-

ing BMI ranging from 30 to 40, then decreased among those with BMI ranging from 40 to 60,

and then again increased among those having BMI above 60 (Fig 2). The non-linear effect of

BMI on the risk of cardiovascular diseases and mortality has been reported in many studies

[52,53]. Individuals with a higher BMI may not necessarily have high fat mass composition,

but a high muscle or lean mass composition [54]. A higher amount of lean mass in an individ-

ual may act as a protective factor against cardiovascular disease and the individual may be con-

sidered healthy or having a good health [54,55]. By contrast, an individual may have a low

BMI but a high body fat mass composition, increasing their likelihood of having cardiovascu-

lar disease [53].

Household wealth index score was found to have a non-linear relationship with diabetes

and hypertension (Fig 3). The risk of diabetes was the highest among individuals with the rich-

est wealth index score as compared to their counterparts having a poorer wealth index score.

However, the risk of hypertension was the highest among individuals having the poorest

wealth index score as compared to their counterparts having the richest wealth index score.

Consistent with the previous studies, this study revealed that economic status is inversely

related with the risk of hypertension [56–59]. Individuals with a higher income can afford to

pay for a healthier lifestyle, including regular physical exercise and a healthier diet and benefit

from accessibility to advanced and quality healthcare services. All such efforts likely reduce the

risk of hypertension.

Our study is not without limitations. Firstly, it was cross-sectional in nature and, therefore,

no causal inferences could be made from the results and findings. Secondly, since the study

was based on secondary data sets, we were constrained to use only the variables found in the

IDHS. Thirdly, the unavailability of district-level information on such factors as cost of living,

cost of treatment for diabetes and hypertension, medical institutions, level of urbanization,

availability of green space, and altitude meant that we were unable to ascertain the influence of

these factors on the spatial variability of diabetes and hypertension. Despite the limitations, the

strength of the study lies in the application of the Bayesian geo-additive model, which allowed

for a joint estimation of fixed effect covariates, non-linear covariates, spatially structured varia-

tion, and spatially unstructured heterogeneity.

Conclusion

In conclusion, it is evident that there are spatial effects for diabetes and hypertension in North-

east India. The results suggest that district-specific factors (that is, factors not related to neigh-

boring districts) are most likely to increase the prevalence of diabetes. However, in the case of

hypertension, factors found in districts in proximity to one another are most likely to increase

its prevalence. Gender, place of residence, level of education, household wealth status, BMI,

and consumption of egg and milk are significant to the risk of diabetes and hypertension.

Besides considering the factors that are already known, diabetes and hypertension control

measures for Northeast India should take into account the risk factors present within the dis-

tricts and those related to the proximate districts as they possibly play a role in driving the spa-

tial variability of diabetes and hypertension in the region. Evaluation of district-specific factors

of diabetes within the region should be give importance.
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