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Abstract

Organisms acquire and use information from their environment to guide their behaviour. However, 

it is unclear whether this information quantitatively limits their behavioural performance. Here, 

we relate information to the ability of Escherichia coli to navigate up chemical gradients, the 

behaviour known as chemotaxis. First, we derive a theoretical limit on the speed with which 

cells climb gradients, given the rate at which they acquire information. Next, we measure cells’ 

gradient-climbing speeds and the rate of information acquisition by their chemotaxis signaling 

pathway. We find that E. coli make behavioural decisions with much less than the one bit required 

to determine whether they are swimming up-gradient. Some of this information is irrelevant to 

gradient climbing, and some is lost in communication to behaviour. Despite these limitations, E. 

coli climb gradients at speeds within a factor of two of the theoretical bound. Thus, information 

can limit the performance of an organism, and sensory-motor pathways may have evolved to 

efficiently use information acquired from the environment.

Organisms’ survival depends on their ability to perform behavioral tasks. These tasks require 

that the organism measure signals in its environment and respond appropriately. Information 

theory is a natural language for quantifying the fidelity of measurements and responses, 

but it is unclear how an abstract quantity like information might limit an organism’s 

performance at real-world tasks. Past studies have used information theory to understand 

the maximum amount of information biological systems can acquire and transmit about 

environmental signals1–6 and have shown that they can approach biophysical limits6–9. 

But high information transfer is not sufficient for high performance because not all of the 

information contained in the signal is relevant (i.e. contributes to performing the task), and 
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not all of it is appropriately acted on10. What limits does information place on performance, 

and how efficiently do organisms use the information they acquire relative to these limits?

We address these questions using one of the best-understood behaviors in biology: bacterial 

chemotaxis. The bacterium Escherichia coli alternates between “runs,” which propel the 

cell forward, and “tumbles,” which randomly reorient its swimming direction11 (Fig. 1). 

E. coli continuously sense the concentration c(t) of chemoattractant they encounter using 

transmembrane receptors. Relative changes in concentration12 s(t) = d
dt log(c), which we 

define to be the “signal”, induce changes in activity a(t) of receptor-associated CheA 

kinases. Thus, CheA kinase activity encodes E. coli’s estimate of the signal. CheA activity 

then modulates transitions in the cell’s swimming behavior m(t) between run and tumble 

states via a signal transduction pathway13,14. If the attractant concentration is increasing 

(s(t) > 0), the cell runs for longer on average, thereby biasing its random motion up the 

gradient11. However, noise in sensing and signal transduction corrupt the signal15–18. Since 

the goal of chemotaxis is to climb chemical gradients, we quantify performance as the cell’s 

drift velocity vd up a static gradient. E. coli chemotaxis has been studied extensively, but 

how much information a cell acquires about chemical signals19–22 and its relationship to 

chemotactic performance are unknown.

To use information efficiently, a cell must only encode information in CheA that is relevant 

to gradient-climbing and act on that information appropriately at the motors to guide 

behavior. An inefficient cell may acquire abundant information about the signal, but it 

is either irrelevant to chemotaxis or goes unused. To determine how efficiently E. coli 
use information to navigate, we first must derive the maximum gradient-climbing speed a 

cell can achieve given the amount of information available in CheA. Second, we need to 

quantify how close to this theoretical bound E. coli cells operate by measuring both the 

amount of information available in CheA and cells’ performance with that information (Fig. 

1C). In doing so, we will quantify information transfer on two different length scales: the 

information about signals available in kinase activity, and the information used to perform 

behaviors.

To do this, we must define a measure of information acquisition. Bacteria continuously 

encode chemical signals they experience. Thus, unlike most studies in biological 

systems1–3,5,6, we cannot use the one-shot mutual information23 between signal s(t) and 

kinase activity a(t) as a measure of information transfer because it is blind to past signals 

the cell has experienced. Instead, we need to quantify information transfer between signal 

and kinase trajectories, in this case using a steady state information rate24. Furthermore, 

signals are generated by the cell’s own motion in the gradient25. This makes a natural 

extension, the mutual information rate ṀI(s; a) between s(t) and a(t), also unsuitable because 

kinase activity and signal are correlated even for cells that don’t respond to the signal (Fig. 

1AB). We address these challenges by decomposing the mutual information rate into the 

sum of two directed information terms (SI Section 1; see also26,27): the transfer entropy21,28 

rates from kinase activity to signal İa s and from signal to kinase activity İs a, or 

ṀI(s; a) = İa s + İs a. The first term İa s quantifies the feedback of kinase activity 
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onto signal via the behavior. The second term İs a measures the influence of the signal on 

kinase activity, in bits/s, and must be nonzero for the cell to climb the gradient.

Next, we need to derive the theoretical limit on gradient-climbing performance vd imposed 

by information İs a. The drift speed depends on how the cell’s motors use information 

about past signals that is provided by CheA. While information at the motors İs m cannot 

exceed the information in kinase activity İs a29, at best, all information in kinase activity 

is preserved at the motors, in which case İs m = İs a. Therefore, to derive the bound, we 

sought to determine how İs m, and thus İs a, bounds performance vd.

To do this, we constructed a mathematical model of run-and-tumble navigation (Fig. 1A; 

SI Section 2). During runs, cells swim with a constant speed v0 and lose direction with 

rotational diffusion coefficient Dr. During tumbles, they randomly reorient with directional 

persistence α. In the absence of a gradient, cells switch from run to tumble and vice versa 

with rates λR0 and λT. The fraction of time the cell spends running is Prun =
λT

λR0 + λT
. 

In shallow gradients, like those we consider here, the tumble rate λR({s}) depends 

approximately linearly on the history of signals experienced {s}30–33.

Using the model above, we derived how vd and İs m depend on the behavioral response 

λR({s}). While any response to signal implies information transfer, it does not imply high 

drift speed. To find the limit, we derived the maximum drift speed vd possible given an 

information rate İs m by optimizing over responses λR({s}). This revealed that the optimal 

behavioral response only depends on the current rate of change of log-concentration, s(t) 
(SI Section 4). Thus, information about the current signal is relevant to gradient-climbing 

(SI Section 5). Bacteria can’t implement the optimal behavioral response because they must 

make comparisons of concentrations over a finite time to infer s(t)15. Nevertheless, the 

performance achieved by any behavioral response is bounded by (Fig. 1C):

vd/v0 ≤ f(θ) log(2)İs a
12Dr

1
2
,  where 0 ≤ f(θ) ≤ 1, θ = λR0, Prun, α , (1)

where we have used that İs m = İs a, and f(θ) =
(1 − α)λR0

(1 − α)λR0 + 2Dr
8

Dr
λR0

Prun

1
2 . This 

expression makes rigorous the intuition that information transfer sets a limit on chemotaxis 

performance15,20,22,24,34,35. Of the information contained in İs a, the amount that is 

both relevant and transferred to behavior, İs m* , ultimately determines performance: 

vd/v0 = f(θ)
log(2)İs m*

12Dr

1/2
 (SI Section 5). Thus, the green line in Fig. 1C directly maps 

a cell’s performance to İs m* . Furthermore, the length of the blue line in Fig. 1C 

measures the amount of irrelevant information encoded in CheA plus the amount of 

relevant information lost in communication to the motors. These factors lower the cell’s 

performance relative to the theoretical limit by an amount quantified by the length of 
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the red line. With this, we define the efficiency of information usage as the cell’s actual 

drift speed relative to the maximum possible with the information available in CheA, 

η =
vd
v0

/ f(θ)
log(2)İs a

12Dr

1
2 = İs m* /İs a

1/2.

We next set out to measure how efficiently E. coli use information to navigate, η. First, 

we quantified the bound by measuring the rotational diffusion coefficient Dr and behavioral 

parameters θ from trajectories of swimming E. coli (Supplementary Figs. S1, S2). Individual 

cells in a clonal population exhibit nongenetic differences in behavioral parameters36–39, 

which in E. coli are highly correlated with Prun
36,38. From this data, we find f(θ) = 0.531 ± 

0.005 for the median Prun (± one standard error throughout; Supplementary Table S1). This 

quantifies the minimum amount of information needed to climb a gradient. Surprisingly, 

the bound predicts that run-and-tumble navigation is theoretically possible with very small 

information rates: a hundredth of a bit per second is sufficient to climb gradients at ~6% of 

the run speed. This is far less than the 1 bit per run (~1 bit/s) required to distinguish whether 

concentration is currently increasing or decreasing before every tumble decision24.

To compare E. coli to the theoretical limit, we measured the rate at which cells encode 

information about signals in their CheA kinase activity, İs a, during chemotaxis. Directly 

measuring kinase activity in individual swimming cells is infeasible. Instead, we quantified 

the mutual information rate24,40 between signal and kinase activity, ṀI(s; a), in immobilized 

cells by measuring their kinase response and noise properties and by separately measuring 

the signal statistics they would experience during navigation (Fig. 2A). In these immobilized 

cells, ṀI(s; a) = İs a since there is no feedback of kinase activity onto the signal. İs a
quantified this way in immobilized cells differs from İs a in a swimming cell because 

it does not take into account higher-order correlations between s and a. However, these 

correlations contribute terms that are multiplied by higher powers of the gradient steepness g 
= d log(c)/dx, and thus can be neglected in shallow gradients (SI Section 8).

The signal statistics are characterized by their power spectrum S(ω). It is often difficult 

to know the natural signal statistics an organism experiences7,41. But during bacterial 

chemotaxis in static gradients, the signal is generated from the cell’s own motion. Thus, 

the signal power spectrum is S(ω) = g2 V(ω), where V(ω) is the power spectrum of the 

cell’s up-gradient velocity vx(t). Furthermore, in shallow gradients, the statistics of vx(t) 
are nearly identical to those in the absence of a gradient (SI Sections 8,9). To quantify 

the autocorrelation function of vx, V(t), and thus V(ω), we tracked individual swimming 

cells in a 100 μM background of the attractant α-methyl-aspartate (MeAsp) (Fig. 2BC; 

Supplementary Fig. S2; Methods; SI Sections 18–21). For each value of Prun, we fit the 

measured V(t) with a decaying exponential, V (t)=ave−λtot | t|, giving av = 157.1 ± 0.5 (μm/s)2 

and λtot = 0.862 ± 0.005 s−1 for the median phenotype (~104 s total trajectory time, 7s 

average duration; Supplementary Table S1).

Next, we measured the response and noise properties of CheA kinase activity using Förster 

resonance energy transfer (FRET) between the kinase’s substrate CheY and the phosphatase 
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CheZ inside single cells17,18,42 (Fig. 2A). In the linear regime, the kinase response is 

characterized by its frequency-response function, K(ω), or its response K(t) to an impulse 

of signal s(t) = d
dt log(c) . To measure K(t), we used a microfluidic device that can rapidly 

switch (in ~100 ms) the concentration of attractant delivered to hundreds of immobilized 

cells42 (Supplementary Figs. S3–S4). To ensure cells were in the log-sensing regime12,43, we 

first adapted them to a background of 100 μM MeAsp. We then delivered 10 positive and 

10 negative 10% step changes of MeAsp concentration (impulses of s) (Fig. 2D; Methods), 

which were small enough to be in the linear-response regime44,45 (Supplementary Fig. S5). 

Cell responses exhibited a stereotypical shape (Fig. 2E) described by a phenomenological 

model K t = Ge−t/τ2 1 − e−t/τ1 H(t), with gain G, rise time τ1, and adaptation time τ2, and 

H(t) is the Heaviside step function. We fit this model to each cell’s responses to the positive 

and negative stimuli simultaneously (SI Section 16) and then determined the population-

median parameter values (n = 442 cells) (Supplementary Table S1; Supplementary Fig. S5): 

G = 1.73 ± 0.03, τ1 = 0.22 ± 0.01 s, and τ2 = 9.9 ± 0.3 s. This value of τ1 includes the 

stimulus switching time and CheY/CheZ binding kinetics, making it longer than the kinase 

response time, which was previously measured to be τ1 ~ 1/60 s46,47. After verifying that 

our results are insensitive to the value of τ1 (SI Section 9; Supplementary Fig. S8), we used 

the literature value in our estimate of İs a.

We quantified the statistics of noise in kinase activity by measuring FRET in single cells 

in a constant background of 100 μM MeAsp (Fig. 2F; Supplementary Fig. S6). These 

fluctuations were well-approximated by an Ornstein-Uhlenbeck process, consistent with 

previous measurements16,18. Using Bayesian filtering (SI Section 17), we inferred the 

single-cell parameters of the noise model directly from the time series. These parameters 

determined the noise autocorrelation function N(t) = σn2e− |t | /τn (Fig. 2G; SI Section 9) and 

power spectrum N(ω) (Supplementary Fig. S7). The population-median parameter values (n 
= 262 cells) were σn = 0.092 ± 0.002 AU (standard deviation of the noise) and τn = 11.75 

± 0.04 s (noise correlation time) (Supplementary Table S1). These measurements include 

the effects of all noise sources upstream of CheA, including stochastic ligand arrivals at the 

cells’ receptors15.

With the signal statistics, response function, and noise, we then computed the information 

rate from the signal to kinase activity İs a (Fig. 3A). Since the signal power is proportional 

to g2, the information rate is, as well: İs a = β g2. Using our measurements above, we 

estimated that the E. coli chemotaxis system transfers information to the kinases at a rate β 
= 0.22 ± 0.03 bits/s/mm−2 (SI Sections 8,9). Thus, in shallow gradients, where concentration 

varies on millimeter to centimeter length scales, cells only get ~10−2 bits/s. The bound in 

Eqn. 1 predicts that this is sufficient for a run-and-tumble navigator to climb gradients at a 

few percent of its swimming speed. However, it is unclear how much of this information is 

relevant to chemotaxis, communicated to the motors, and used to navigate.

To answer this, we measured E. coli’s average drift speeds by tracking individual cells’ 

motion in gradients of varying steepness. Static, linear MeAsp gradients were constructed 

(Methods) in a 100 μM background, with length scales ranging from 10 mm (g = 0.1 
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mm−1) to 2.5 mm (g = 0.4 mm−1). From >105 seconds of trajectories in each condition, 

we estimated the drift speed vd as the time-averaged up-gradient velocity over all cells 

in each experiment (SI Section 22). As expected from theory in shallow gradients, drift 

speed increased linearly with gradient steepness vd = χ g, with “chemotactic coefficient” 

χ ~ 4.30 ± 0.15 μm/s/mm−1 (Fig. 3B; Supplementary Fig. S9), consistent with previous 

measurements48.

With measurements of both their information acquisition rate and performance, we were 

in a position to quantify how efficiently E. coli use information, η. For each gradient g, 

we plotted the drift speed vd(g) against the information rate İs a(g) (blue in Fig. 3C). On 

the same plot, we show the maximum drift speeds, given by the bound in Eqn. 1 (green 

in Fig. 3C). The ratio of these two curves is the efficiency η = χ/ v0f(θ) log(2)β
12Dr

1
2 , which 

is independent of g in shallow gradients. We find that E. coli achieve an efficiency of η = 

0.65 ± 0.05—that is, they climb gradients at ~65% of the maximum possible speed given 

the rate at which their kinases encode information about environmental signals. Equivalently, 

comparing information rates (blue and green lines) at the same drift speed in Fig. 3C 

indicates that η2 = İs m* /İs a ~ 42% of the total information available in kinase activity is 

relevant, preserved in communication with the motors, and used to navigate.

Many studies of information theory in biology have focused on the maximum amount 

of information signaling pathways can transmit1–6,49–51. Here, we instead asked how the 

information an organism transmits limits its performance at functional tasks, using E. coli 
chemotaxis as a model system. Whereas previous works measured one-shot information 

transfer by biochemical networks1–6,49–51, in bits, we measured the rate at which E. coli 
transfer information, in bits/s, between time-varying inputs and outputs, with natural input 

statistics. Combining this with measurements of E. coli’s chemotactic performance and the 

theoretical limit (Eqn. 1), we found that about half of the information about concentration 

changes that flows through CheA is both relevant to and used for navigation.

Achieving high efficiency requires that cells acquire, transmit, and act on information that 

is relevant to their task10, but which bits are relevant is often not clear. Using rate-distortion 

theory6,52,53, we found that the relevant bits for bacterial chemotaxis are those that indicate 

how fast the attractant concentration is currently changing (SI Section 5). Responding to 

signals experienced multiple signal correlation times, τv−1 = (1 − α)λR0 + 2Dr, in the past 

transmits a significant amount of irrelevant information (SI Section 5). But in typical 

gradients, which are much longer than their body lengths, E. coli must swim and time 

integrate to infer signals from stochastic ligand arrivals15,54. This forces E. coli to respond 

to past signals to learn about the current signal, thus transmitting irrelevant information and 

preventing them from reaching the bound in Eqn. 1. Between the green and blue lines in 

Fig. 3C, there is a tighter bound on performance that accounts for the need to time integrate, 

relative to which E. coli are even more efficient.

The information-performance bound in Eqn. 1 depends on the cell’s swimming behavior. We 

quantified this bound for a typical cell from a laboratory strain, but behavioral parameters 
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θ vary across individual cells16,36–38,55,39, strains, and growth conditions56. This raises 

the question of what behavioral phenotype can achieve the highest performance with a 

given information rate. Maximizing f(θ) with respect to θ (SI Section 6), we find that the 

optimal agent changes direction by tumbling at the same rate as rotational diffusion33,57,58, 

(1 − α) λR0 = 2 Dr. Our median phenotype tumbles more frequently than this and misses 

out two-fold. First, the bound on its performance (green in Fig. 3C) is about half as 

high as it could be (red in Fig. 3C). Second, a lower average tumble rate λR0 would 

lengthen the signal correlation time τv, increasing the fraction of relevant information the 

cell would transfer, and thus increasing η relative to the higher bound. Laboratory strains 

of E. coli were historically selected for motility in semisolid agar59–61, and our strain’s 

frequent reorientations may be optimized to navigate that environment62–64. Alternatively, 

their behavioral parameters may optimize other objectives31,33. While E. coli’s behavioral 

strategy thus appears sub-optimal for gradient-climbing in liquid, they nevertheless use 

biochemical information in CheA efficiently to carry it out.

A hallmark of E. coli’s chemotactic response to many ligands—including MeAsp used 

here—is precise adaptation65: following a stimulus, the kinase activity responds transiently 

before relaxing back to the pre-stimulus activity (Fig. 2E). However, for some attractants, 

such as serine, adaptation is imperfect, causing the average tumble rate to decrease with 

increasing concentration of attractant in the background30,37,57,66–68. By lowering λR0 

closer to the optimal value, a background of serine both increases the bound and causes cells 

to climb gradients of MeAsp faster67 (SI Section 7). However, from an information-usage 

perspective, if the cell could choose λR0 and its response function independently, our theory 

shows that it should match its average tumble rate to rotational diffusion, (1 − a) λR0 = 2 Dr, 

and its response function should adapt perfectly. Imperfect adaptation implies that the cell is 

responding to concentration changes that occurred far in the past, which transfers irrelevant 

information.

Because we measured signal statistics and kinase activity in different cells, our estimate 

of the information rate does not account for the long tail in the run-length distribution 

that can arise from fluctuations in kinase activity16,69–71. In theory, these fluctuations can 

improve performance in shallow gradients72,73. However, they only contribute corrections to 

the information rate that are higher order in g and can be neglected in shallow gradients (SI 

Section 8).

This work relied on linear theory, which is only valid in shallow gradients. In steep 

gradients, behavioral feedback can drive large deviations in the tumble rate, leading to 

ratchet-like gradient climbing25. In this regime, the signal statistics gain multiple time scales 

due to the very different run durations up and down the gradient. In future studies, it will 

be interesting to examine how these factors, combined with nonlinearities in the signaling 

pathway, alter cells’ information-acquisition rates and efficiencies.

Here, we measured information transfer at two very different length scales. The first is 

the relevant information contained in behavior, which is quantified by the drift speed and 

behavioral parameters. The second is the total information available in CheA kinase activity. 

Considering how different these measurements are, there is no reason to expect that they 
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must be similar in magnitude. But their agreement to about a factor of two is a strong 

indication that information is a limitation on chemotaxis performance. Information transfer 

is not necessarily the end-goal of biological tasks, but it is needed to perform many of them. 

Our results suggest organisms may be under selective pressure to efficiently use information 

from environmental cues to perform tasks necessary for their survival.

Methods

Strains and plasmids

The strain used for the FRET experiments is a derivative of E. coli K-12 strain RP437 

(HCB33), a gift of T. Shimizu, and described in detail elsewhere18,42. In brief, the FRET 

acceptor-donor pair (CheY-mRFP and CheZ-mYFP) is expressed in tandem from plasmid 

pSJAB10618 under an isopropyl β-D-thiogalactopyranoside (IPTG)-inducible promoter. The 

glass-adhesive mutant of FliC (FliC*) was expressed from a sodium salicylate (NaSal)-

inducible pZR1 plasmid18. The plasmids are transformed in VS115, a cheY cheZ fliC 
mutant of RP43718 (gift of V. Sourjik). The crosstalk coefficient for spectral bleedthrough 

was measured using a strain expressing CheZ-YFP from a plasmid, and that for cross-

excitation was measured using a strain expressing CheY-mRFP from a plasmid, both of 

which are gifts from T. Shimizu. RP437, the direct parent of the FRET strain and also a gift 

from T. Shimizu, was used to measure behavioral parameters and chemotactic drift speeds. 

A mutant that can’t tumble due to an in-frame deletion of the cheY gene, VS100 (gift of V. 

Sourjik), was used to measure the rotational diffusion coefficient Dr. All strains are available 

from the authors upon request.

Cell preparation

Single-cell FRET microscopy and cell culture was carried out essentially as described 

previously18,42. In brief, cells were picked from a frozen stock at −80°C and inoculated 

in 2 mL of Tryptone Broth (TB; 1% bacto tryptone, 0.5 % NaCl) and grown overnight to 

saturation at 30°C and shaken at 250 RPM. Cells from a saturated overnight culture were 

diluted 100X in 10 mL TB and grown to OD600 0.45–0.47 in the presence of 100 μg/ml 

ampicillin, 34 μg/ml chloramphenicol, 50 μM IPTG and 3 μM NaSal, at 33.5°C and 250 

RPM shaking. Cells were collected by centrifugation (5 min at 5000 rpm, or 4080 RCF) 

and washed twice with motility buffer (10 mM KPO4, 0.1 mM EDTA, 1 μM methionine, 10 

mM lactic acid, pH 7), and then were resuspended in 2 mL motility buffer. Cells were left at 

22°C for 90 minutes before loading into the microfluidic device. All experiments, FRET and 

swimming, were performed at 22–23°C.

For swimming and chemotaxis experiments, cells were prepared identically. Saturated 

overnight cultures were diluted 100X in 5 mL of TB. After growing to OD600 0.45–

0.47, 1 mL of cell suspension was washed twice in motility buffer with 0.05% w/v of 

polyvinylpyrrolidone (MW 40 kDa) (PVP-40) added. Washes were done by centrifuging the 

suspension in an Eppendorf tube at 1700 RCF (4000 RPM in this centrifuge) for 3 minutes. 

After the last wash, cells were resuspended with varying concentrations of MeAsp (see 

below).
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Microfluidic device fabrication and loading for FRET measurements

Microfluidic devices for the FRET experiments42 were constructed from 

polydimethylsiloxane (PDMS) on 24 × 60 mm cover glasses (#1.5) following standard 

soft lithography protocols74. Briefly, the master molds for the device were created with a 

negative SU-8 photoresist on 100-mm silicon wafers. Approximately 16-μm-high master 

molds were created. To fabricate the device, the master molds were coated with a 5-mm-

thick layer of degassed 10:1 PDMS:curing agent mixture (Sylgard 184, Dow Corning). The 

PDMS layer was cured at 80 °C for 1 hour, and then cut and separated from the wafer, 

and holes were punched for the inlets and outlet. The punched PDMS layer was further 

cured at 80 °C for > 2 hours. Then, the PDMS was cleaned with transparent adhesive 

tape (Magic Tape; Scotch) followed by rinsing with (in order) isopropanol, methanol, 

and Millipore-filtered water. The glass was rinsed with (in order) acetone, isopropanol, 

methanol, and Millipore-filtered water. The PDMS device was tape-cleaned an additional 

time before the surfaces of the device and coverslip were treated in a plasma bonding 

oven (Harrick Plasma). After 1 min of exposure to plasma under vacuum, the device was 

laminated to the coverslip and then baked at 80°C hotplate for > 30 min to establish a 

covalent bond.

Sample preparation in the microfluidic device was conducted as follows. Five inlets of 

the device (Supplementary Fig. S3) were connected to reservoirs (Liquid chromatography 

columns, C3669; Sigma Aldrich) filled with motility buffer containing various 

concentrations of α-methyl-aspartate (MeAsp) through polyethylene tubing (Polythene 

Tubing, 0.58 mm id, 0.96 mm od; BD Intermedic). The tubing was connected to the PMDS 

device through stainless steel pins that were directly plugged into the inlets or outlet of 

the device (New England Tubing). Cells washed and suspended in motility buffer were 

loaded into the device from the outlet and allowed to attached to the cover glass surface via 

their sticky flagella by reducing the flow speed inside the chamber. The pressure applied to 

the inlet solution reservoirs was controlled by computer-controlled solenoid valves (MH1; 

Festo), which rapidly switched between atmospheric pressure and higher pressure (1.0 kPa) 

using a source of pressurized air. Only one experiment was conducted per device.

Single-cell FRET imaging system

FRET imaging in the microfluidic device was performed using an inverted microscope 

(Eclipse Ti-E; Nikon) equipped with an oil-immersion objective lens (CFI Apo TIRF 60X 

Oil; Nikon). YFP was illuminated by an LED illumination system (SOLA SE, Lumencor) 

through an excitation bandpass filter (FF01–500/24–25; Semrock) and a dichroic mirror 

(F01–542/27–25F; Semrock). The fluorescence emission was led into an emission image 

splitter (OptoSplit II; Cairn) and further split into donor and acceptor channels by a second 

dichroic mirror (FF580-FDi01–25×36; Semrock). The emission was then collected through 

emission bandpass filters (FF520-Di02–25×36 and FF593-Di03–25×36; Semrock) by a 

sCMOS camera (ORCA-Flash4.0 V2; Hamamatsu). RFP was illuminated in the same way 

as YFP except that an excitation bandpass filter (FF01–575/05–25; Semrock) and a dichroic 

mirror (FF593-Di03–25×36; Semorock) were used. An additional excitation filter (59026x; 

Chroma) was used in front of the excitation filters. To synchronize image acquisition and 

the delivery of stimulus solutions, a custom-made MATLAB program controlled both the 
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imaging system (through the API provided by Micro-Manager75) and the states of the 

solenoid valves.

Procedure for measuring the linear response functions

All experiments were performed in a background MeAsp concentration of c0 = 100 μM. 

Measurements were made in single cells. First, the FRET level at minimum kinase activity 

was measured by delivering a saturating stimulus (1 mM MeAsp plus 100 μM serine76) 

for 10 seconds. Immediately afterwards, the FRET level at maximum kinase activity was 

measured by delivering motility buffer with no attractant (0 μM MeAsp, 0 μM serine) for 

5 seconds. When cells are adapted to 100 μM MeAsp, removing all attractant is sufficient 

to elicit a maximal response18,44. Donor excitation interval (i.e., measurements of IDD and 

IDA; see SI Section 10) was 0.5 seconds and acceptor excitations (i.e., measurements of 

IAA) were done before and after the set of donor excitations. After this, the concentration 

of MeAsp was returned to the background c0, and no serine was delivered to the cells for 

the rest of the experiment. Imaging was then stopped and cells were allowed to adapt to the 

background for 120 seconds.

After this, a series of stimuli were delivered to the cells in the microfluidic device (see 

Figure 2E for stimulus protocol). Importantly, the cells were only illuminated and imaged 

for part of the experiment in order to limit photobleaching. First, cells were imaged for 7.5 

seconds in the background concentration c0. Then, the concentration of MeAsp was shifted 

up to c+ = 110 μM for 30 seconds and imaging continued. Donor excitation interval was 0.75 

seconds and acceptor excitations were done before and after the set of donor excitations. 

After this time, imaging was stopped and the MeAsp concentration returned to c0 for >60 

seconds to allow cells to adapt. Then, the same process was repeated, but this time shifting 

MeAsp concentration down to c− = 90 μM. Alternating up and down stimuli were repeated 

10 times each.

The change in concentration experienced by cells in this experiment is significantly larger 

than the changes experienced by cells swimming in our gradient experiments. Ideally, we 

could deliver the same magnitude of stimulus to cells in both conditions. However, to detect 

the responses to stimuli as small as the ones experienced in the gradient experiments above 

the noise, we would need to deliver and average over responses to many more instances of 

the stimulus. The photon budget is a major constraint when imaging in single cells, making 

this impossible. We chose the 10% stimuli to balance the need to measure responses above 

noise, while also keeping the response in the linear regime44,45 (Supplementary Fig. S5).

FRET levels at minimum and maximum kinase activity were measured again at the end 

of the experiment. The whole imaging protocol lasted <2200 seconds. In total, cells spent 

<60 minutes in the device, from loading to the end of imaging. Analyses of these data are 

described in SI Sections 10–16.

Procedure for measuring the noise statistics

Spontaneous fluctuations in kinase activity were also measured in a background MeAsp 

concentration of c0 = 100 μM. Measurements were made in single cells. FRET levels at 

minimum and maximum kinase activity were measured at the beginning and the end of 
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each experiment, as described above. As above, after these measurements, imaging was then 

stopped and cells were allowed to adapt to the background for 120 seconds. After this, cells 

were imaged for about 1200 seconds. Throughout, donor excitations (i.e., measurements 

of IDD and IDA; see SI) were done every 1.0 second, except when it was interrupted by 

acceptor excitations (i.e., measurements of IAA; see SI), which were conducted every 100 

donor excitations. The whole imaging protocol lasted <1400 seconds. In total, cells spent 

about < 60 minutes in the device, from loading to the end of imaging. Analyses of these data 

are described in SI Section 10–15, 17.

Procedure to measure swimming and behavioral parameters

After the second wash, cells were centrifuged again and resuspended in motility buffer 

containing 100 μM MeAsp. Then, the cell suspension was diluted to an OD600 of 0.00025. 

The cell suspension was then loaded into μ-Slide Chemotaxis devices (ibidi; Martinsried, 

Germany), the same type of device used to create static gradients, described below. 

However, instead of tracking cells in the gradient region, we tracked their swimming in one 

of the large reservoirs, which are roughly 750 μm deep. 1000-s movies of swimming cells 

were recorded on a Nikon Ti-E Inverted Microscope using a CFI Plan Fluor 4X objective 

(NA 0.13). This objective’s depth of field is about ±18 μm, much shorter than the depth of 

the chamber. Adjusting the focal plane to the middle of the chamber made cells that were 

swimming near the ceiling or floor of the device, which could experience hydrodynamic 

interactions that affect their behavior77,78, not visible in the movie. At the same time, this 

lower magnification objective allowed us to collect relatively longer swimming trajectories. 

Movies were captured around 30 minutes after loading cells into the chamber to mimic the 

gradient experiments below. Images here and below were captured using a sCMOS camera 

(ORCA-Flash4.0 V2; Hamamatsu). Analyses of these data are described in SI Sections 18–

21. Five biological replicates were done for behavioral parameter measurements, and four 

biological replicates were done for measuring Dr.

Procedure to measure chemotactic drift speeds

Chemotaxis experiments were performed in μ-Slide Chemotaxis devices (ibidi; Martinsried, 

Germany). These devices generate a linear gradient between two concentration reservoirs 

that is stable for a long time. After the second wash, the cell suspension was split into 

two Eppendorf tubes, 0.5 mL each. After one more centrifugation, one tube of cells was 

resuspended in 1 mL of motility buffer with 100 μM of MeAsp, to be injected into 

the “low-concentration reservoir”, and the other was resuspended in 1 mL of motility 

buffer with 2 μM of fluorescein and varying concentrations of attractant, to be injected 

into the “high-concentration reservoir”. Cells in both tubes were diluted to OD 0.001 for 

each experiment. Loading cells in both reservoirs ensured that the concentration of cells 

throughout the experimental device was approximately uniform. This limited the effects of 

potential biases that could arise from observing a finite field of view.

Using a background concentration of at least 100 μM MeAsp ensured that the cells were 

in the log-sensing regime12. The “high” concentrations of MeAsp used were 110.5 μM, 

122.1 μM, 135.0 μM, and 149.2 μM. With 1 mm separating the two reservoirs, these 

concentrations produced linear gradients that approximated shallow exponentials gradients 
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with steepness of roughly: g = {0.1, 0.2, 0.3, 0.4} mm−1. g was calculated from g = Δlogc
Δx , 

where Δ log c is the difference in log concentrations between the two reservoirs, and Δx 
is the distance between them. This is exactly the average steepness of log-concentration 

across with the width of the channel. To see this, the steady state concentration profile is 

linear, c(x) = Δc
Δx x − x0 + c0, where Δc is the difference in concentration between the two 

reservoirs, x0 is the midpoint between them, and c0 is the concentration at x = x0. From 

this, the gradient of log concentration depends on position x and can be computed from 

g(x) = dlog(c(x))
dx = 1

1Δc
c0Δxx + 1

1
c0

Δc
Δx , where we have defined a reference frame where x0 = 0. 

Averaging over the channel by integrating over x from −Δx/2 to Δx/2 and dividing by 

Δx gives, g =
log 1 + 1Δc

2c0
− log 1 − 1Δc

2c0
Δx =

log c0 + 1
2Δc − log c0 − 1

2Δc
Δx = Δlogc

Δx = g. Close to the 

low-concentration reservoir, g(x) is larger than g, and vice versa near the high-concentration 

reservoir, but these errors are small and approximately cancel each other out when we 

average drift speeds of cells across the channel.

To load the device, first the reservoirs were sealed with the manufacturer’s tabs. Cell 

suspension with 100 μM MeAsp was injected into the channel where the gradient would 

form. Excess liquid in the inlets was removed. Then one tab from each reservoir was 

removed, and the gradient channel was sealed with tabs. The left reservoir was then fully 

unsealed, and the right reservoir was sealed with tabs. 60–65 μL of cell suspension with 100 

μM MeAsp was injected into the left reservoir, and then both inlets of that reservoir were 

sealed with tape or tabs. Care was taken to make sure there were no bubbles in reservoir 

at the inlets. Then, the right reservoir was unsealed, and 60–65 μL of cell suspension with 

the higher concentration of MeAsp was injected. A timer was then immediately started. The 

right reservoir was then sealed.

Cells were imaged by phase contrast with a CFI Plan Fluor 10X objective (NA 0.30). The 

depth of the gradient region of the device is 70 μm, and the depth of field of the objective 

is about ±4 μm. Focusing on the middle of the chamber with this objective filtered out 

cells that could be interacting with the ceiling or floor surfaces. Images of fluorescein were 

taken every 5 minutes using a CFI Plan Fluor 4X objective (NA 0.13) through a YFP filter 

cube (Chroma 49003), illuminated by a LED (SOLA SE, Lumencor) with an exposure time 

of 100 ms. Since the diffusivity of fluorescein is similar to (slightly lower than) that of 

MeAsp (MW of fluorescein is 376 kDa; MW of MeAsp is 147 kDa; Sigma Aldrich), we 

used fluorescein as an indication of when the attractant gradient was stable and linear in 

the observation region between the two reservoirs, as has been done before55,79. Once the 

fluorescein profile was stable for several time points (typically around 50–60 minutes after 

loading), a 1000-second phase contrast movie was recorded at 20 FPS using the 10X phase 

contrast objective. Before the recording, the transmitted light illumination was adjusted to 

minimize the number of saturated pixels. After the recording, an additional image of the 

fluorescein profile was recorded, and the cells were observed to check that they were still 
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swimming normally. Analyses of these data are described below. At least five biological 

replicates were performed for each gradient steepness.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Information sets an upper limit on chemotaxis performance.
A) In our model, a cell navigates chemical gradients by sensing relative changes 

s(t) = dlog(c)
dt  in attractant concentration c over time using receptors, which influence the 

activity a of receptor-associated kinases. a encodes E. coli’s estimate of the signal, i.e. 

whether it’s going up or down the gradient. a then modulates stochastic transitions between 

behavioral states m: a run state R, in which the cell swims with constant speed v0 and 

rotational diffusion Dr; and a tumble state T, in which it reorients randomly with directional 

persistence a (see Supplementary Fig. S1). Responses to past signals {s} that are transduced 

from a to m are described by changes in the cell’s transition rate λR({s}) from run to tumble 

states. The cell’s motion creates the signal that it experiences (dashed arrow). B) Signals the 

cell experience s(t) (top) are encoded in noisy kinase activity a(t) (middle), which influences 

stochastic behavioral state transitions m(t) (bottom). The flow of information from s(t) to 

a(t) to m(t) implies that İs a ≥ İs m. C) Given an information rate İs a, there is an 

upper limit on chemotaxis performance (green line), defined as the cell’s up-gradient drift 

speed vd relative to v0 (Eqn. 1). The cell’s performance is ultimately set by how much 

relevant information contained in İs a is communicated to its behavior, quantified by 

İs m* . Thus, real cells cannot reach the limit because of two factors (quantified by the 

length of the blue line): some of the information they encode in CheA kinase activity is 
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irrelevant for climbing the gradient, and some of the relevant information in a is lost during 

transfer to the motors. These factors result in reduced performance (quantified by the length 

of the red line) and reduced efficiency of information usage.
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Figure 2. Measuring the rate of information transfer from signal to intracellular kinase.
A) Information rate İs a from signal s to kinase activity a depends on the signal 

power spectrum S(ω), the kinase frequency response K(ω), and the kinase noise power 

spectrum N(ω). The signal is s(t) = g vx(t), where g is the gradient steepness and 

vx is the cell’s up-gradient velocity. Thus, S(ω) = g2 V(ω), where V(ω) is the power 

spectrum of vx. Kinase activity a was quantified from the FRET between the substrate of 

the kinase, CheY-mRFP, and its phosphatase, CheZ-mYFP (Methods; SI Sections 10–15; 

Supplementary Figs. S3–S6). All experiments were performed in a background of 100 

μM MeAsp. B) (Gray) Individual cells’ vx(t). (Black: tumbles; scale bar 40 μm/s.) C) 
(Gray) Average autocorrelation of vx, V(t), for Prun = 0.93, 0.89, 0.84, 0.79, 0.74 (top to 

bottom; throughout, shading is ± one standard error; black dashed lines are fits to V(t) = 

av exp(−λtot |t|)). (Blue) Best fit to the median bin, Prun~0.89 (Supplementary Fig. S2; SI 
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Section 21). D) Immobilized cells were delivered 10 μM steps up (red shading) and down 

(blue shading). (Top, gray) a(t) for five cells (here and in (F), smoothed with 10th order 

median filter, and scale bars represent Δa = 0.3; Methods; SI Section 16; Supplementary 

Fig. S5). (Bottom, black) Population average a(t) (n = 442 cells). E) Single-cell average 

(top, gray) and population-average (bottom, black) response functions K(t) to positive 

and negative stimuli. (Blue line) K(t) = G exp(−t/τ2)(1 − exp(−t/τ1)) H(t), where H(t) 
is the Heaviside step function and G, τ1, and τ2 are the median parameters extracted 

from fits to single-cell responses. F,G) (Gray) Kinase activity (F) and corresponding 

autocorrelations (G) in single cells (Methods; SI Section 17; Supplementary Fig. S6). 

(Blue, G) N(t) = a(t)a(0) = σn2exp − | t | /τn , where σn and τn are the median parameters 

extracted from fits to single-cell traces (n = 262 cells). V(ω), K(ω), and N(ω) shown in 

Supplementary Fig. S7.
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Figure 3. E. coli use information efficiently to navigate.
A) The rate of information transfer from signal to kinase activity depends on gradient 

steepness g: İs a = β g2(β = 0.22 ± 0.03bits/s/mm−2; Fig. 2; SI Section 8). Throughout, 

shading and error bars indicate ± one standard error. B) Chemotactic performance as a 

function of gradient steepness g, in a background of 100 μM MeAsp. Gray dots: average 

drift speeds in individual experiments. Black dots: averages over experiments. Error bars 

on g are smaller than the markers. Population average drift speed increases linearly with 

gradient steepness, vd = χ g (χ = 4300 ± 150 μm2/s; blue line and shading; SI Section 22). 

C) From measurements of E. coli cells’ information rates and chemotactic drift speeds, we 

compared their performance to the theoretical bound (Eqn. 1). Green: predicted maximum 

performance given information acquisition rate İs a (Eqn. 1), with measured behavioral 

parameters θ = {λR0, Prun, α} (f(θ) = 0.531 ± 0.005). Blue: measured performance vd/v0 

(v0 = 22.61 ± 0.07 μm/s) versus information rate İs a, obtained by eliminating g from 

the fits of vd(g) = χ g and İs a(g) = β g2 to plot vd/v0 = χ/v0 İs a/β 1/2. Black and gray 

dots are data points from (B) plotted against İs a(g) = β g2. Taking the ratio of the blue 

and green curves, we find that E. coli achieve drift speeds within a factor η = 0.65 ± 0.05 

of the theoretical limit. Red: Theoretical bound (Eqn. 1) if λR0 is optimized, and all other 

behavioral parameters are held fixed at their measured values (f(θ) = 0.914 ± 0.006, just 

below the maximum value of 1).
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