Table 13. The best FC learning optimizer for each combination method and its average classification performance (using Recall metric).
PCA-FC | FA-FC | FastICA-FC | NCA-FC | MRMR-FC | CHI2-FC | FL-FC | |
---|---|---|---|---|---|---|---|
AlexNet | 0.85 | 0.83 | 0.87 | 0.89 | 0.97 | 0.90 | 0.96 |
RMSP | SGDM | ADAM | ADAM | ADAM | ADAM | ADAM | |
DenseNet201 | 0.89 | 0.88 | 0.74 | 0.86 | 0.84 | 0.80 | 0.93 |
RMSP | RMSP | ADAM | RMSP | SGDM | RMSP | SGDM | |
Inception-ResNetv2 | 0.73 | 0.82 | 0.75 | 0.76 | 0.76 | 0.72 | 0.89 |
ADAM | SGDM | ADAM | RMSP | RMSP | ADAM | RMSP | |
Inceptionv3 | 0.84 | 0.75 | 0.64 | 0.85 | 0.84 | 0.84 | 0.89 |
RMSP | SGDM | ADAM | RMSP | RMSP | ADAM | ADAM | |
MobileNetv2 | 0.88 | 0.81 | 0.79 | 0.87 | 0.87 | 0.90 | 0.95 |
RMSP | SGDM | ADAM | RMSP | RMSP | RMSP | RMSP | |
ResNet18 | 0.77 | 0.72 | 0.62 | 0.73 | 0.76 | 0.73 | 0.76 |
SGDM | ADAM | ADAM | ADAM | RMSP | RMSP | SGDM | |
ResNet50 | 0.87 | 0.83 | 0.71 | 0.89 | 0.82 | 0.82 | 0.97 |
ADAM | RMSP | ADAM | RMSP | RMSP | RMSP | ADAM | |
ResNet101 | 0.83 | 0.92 | 0.68 | 0.88 | 0.79 | 0.85 | 0.94 |
ADAM | SGDM | ADAM | ADAM | ADAM | RMSP | ADAM | |
VGG16 | 0.83 | 0.87 | 0.82 | 0.96 | 0.96 | 0.93 | 0.92 |
ADAM | RMSP | ADAM | ADAM | ADAM | ADAM | ADAM | |
VGG19 | 0.86 | 0.89 | 0.78 | 0.97 | 0.96 | 0.90 | 0.96 |
RMSP | RMSP | ADAM | ADAM | ADAM | ADAM | ADAM | |
Xception | 0.85 | 0.89 | 0.74 | 0.76 | 0.84 | 0.85 | 0.86 |
ADAM | ADAM | ADAM | ADAM | RMSP | RMSP | ADAM |