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Abstract Although many genes are known to influence sleep, when and how they impact sleep-
regulatory circuits remain ill-defined. Here, we show that insomniac (inc), a conserved adaptor for 
the autism-associated Cul3 ubiquitin ligase, acts in a restricted period of neuronal development to 
impact sleep in adult Drosophila. The loss of inc causes structural and functional alterations within 
the mushroom body (MB), a center for sensory integration, associative learning, and sleep regula-
tion. In inc mutants, MB neurons are produced in excess, develop anatomical defects that impede 
circuit assembly, and are unable to promote sleep when activated in adulthood. Our findings link 
neurogenesis and postmitotic development of sleep-regulatory neurons to their adult function and 
suggest that developmental perturbations of circuits that couple sensory inputs and sleep may 
underlie sleep dysfunction in neurodevelopmental disorders.

Editor's evaluation
This is an interesting study showing that the short sleep phenotype of inc mutants in Drosophila 
depends on the loss of the gene at a specific developmental time, and in a specific region, the 
mushroom bodies (MB). There are very few studies assessing the effects of sleep during develop-
ment, in any animal species, and thus this paper is a very welcomed addition. The experiments are 
carefully done, and the conclusions are warranted.

Introduction
A central goal of sleep research has been elucidating the mechanisms by which genes shape normal 
sleep patterns and cause sleep disorders. While numerous genes that strongly impact sleep have 
been identified in humans and in animals ranging from mammals to invertebrates (Chemelli et al., 
1999; Chiu et al., 2016; Cirelli et al., 2005; Funato et al., 2016; He et al., 2009; Lin et al., 1999; 
Raizen et al., 2008), when these genes act to influence sleep is in many cases unresolved. Genes that 
act in the adult brain to modulate the activity of sleep-regulatory circuits in an ongoing manner have 
been intensively investigated (e.g. Chemelli et al., 1999; Lin et al., 1999), including with conditional 
gain-of-function, loss-of-function, and rescue in adult animals (Chiu et al., 2016; Clasadonte et al., 
2017; Foltenyi et al., 2007; Guo et al., 2011; Ishimoto and Kitamoto, 2010; Joiner et al., 2006; 
Van Buskirk and Sternberg, 2007). In contrast, despite great progress in understanding neuronal 
development (Doe, 2008; Jessell and Sanes, 2000; Sanes and Zipursky, 2020; Tessier-Lavigne 
and Goodman, 1996; Weinstein and Hemmati-Brivanlou, 1999), developmental mechanisms by 
which genes influence sleep remain poorly explored, despite the likely relevance of such mechanisms 
to sleep disturbances in autism and other neurodevelopmental disorders (Angriman et al., 2015; 
Souders et  al., 2017). Notably, the temporal contributions of genes that impact sleep are rarely 
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assessed in a comprehensive manner, and a further challenge has been linking particular genes to 
developmental processes that control the structure and function of discrete sleep-regulatory circuits.

Here, we assess the temporal contributions of insomniac (inc), a gene whose mutation sharply 
curtails sleep in Drosophila (Pfeiffenberger and Allada, 2012; Stavropoulos and Young, 2011). Pan-
neuronal depletion of inc causes short sleep, while restoring inc solely to neurons is largely sufficient 
to rescue the sleep deficits of inc mutants, indicating that inc impacts sleep chiefly through neurons 
(Pfeiffenberger and Allada, 2012; Stavropoulos and Young, 2011). inc is expressed in the larval, 
pupal, and adult brain (Pfeiffenberger and Allada, 2012; Stavropoulos and Young, 2011), but when 
inc acts to influence sleep remains uncertain (Li and Stavropoulos, 2016; Pfeiffenberger and Allada, 
2012). inc encodes an adaptor for the Cul3 ubiquitin ligase (Li et al., 2019), which, like inc, is required 
in neurons for normal sleep (Pfeiffenberger and Allada, 2012; Stavropoulos and Young, 2011). 
Both inc and Cul3 are highly conserved, and mammalian inc orthologs restore sleep to inc mutants (Li 
et al., 2017), suggesting that functions and substrates of inc are conserved in mammals. Human Cul3 
mutations are implicated as a cause of autism and its associated sleep dysfunction (Codina-Solà et al., 
2015; Kong et al., 2012; O’Roak et al., 2012), but the underlying mechanisms are unknown. Studies 
of inc may thus reveal fundamental and conserved mechanisms underlying sleep regulation which are 
altered in sleep disorders.

Using conditional genetic manipulations of inc, we show that inc acts transiently in developing 
neurons to impact sleep in adulthood. We furthermore identify developmental defects in inc mutants 
within the mushroom body (MB), a brain structure that integrates sensory stimuli and regulates sleep. 
Loss of inc alters MB neurogenesis, causing the overproduction of late-born neurons and changes 

Figure 1. Expression of 3×FLAG-inc driven by inc-Gal4 in the larval, pupal, and adult brain. Maximal projections are shown for male inc-Gal4; UAS-
3×FLAG-inc/+ brains stained with anti-FLAG. For larval brain, projection from a partial z-stack is shown to allow visualization of signal in mushroom body 
projections (arrowheads). In pupae and adults, signal is prominent in the mushroom body, pars intercerebralis, fan-shaped body, and ellipsoid body. 
Scale bars, 100 μm.

https://doi.org/10.7554/eLife.65437
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in postmitotic development that impair the assembly of MB circuits. These developmental alter-
ations persist into adulthood and are associated with specific deficits in the ability of MB neurons to 
promote sleep in inc adults, in contrast to the anatomy and function of other sleep-regulatory circuits 
which remain intact. Together, these results elucidate an unexpected mechanism by which inc shapes 
the development and function of sleep-regulatory neurons to exert a lasting impact on sleep–wake 
behavior. Our findings additionally suggest that developmental alterations of neurogenesis and within 
brain centers that integrate sensory inputs may contribute to sleep dysfunction in autism and other 
neurodevelopmental disorders.

Results
inc acts transiently during a restricted developmental period to impact 
sleep in adulthood
inc impacts sleep through neurons and is expressed in the developing and adult brain (Figure 1; 
Pfeiffenberger and Allada, 2012; Stavropoulos and Young, 2011). To assess the temporal mecha-
nisms by which inc impacts sleep, we manipulated inc expression in neurons using the ligand-inducible 
Q-system (Potter et al., 2010; Riabinina et al., 2015). The Q-system circumvents nonspecific pertur-
bations of sleep caused by other inducible systems and allows constitutive, developmental, and adult 
manipulations of sleep (Li and Stavropoulos, 2016). We performed a series of conditional rescue 
experiments in short-sleeping inc1 null mutants bearing a UAS-inc-HA transgene whose expression is 
induced in neurons by the Q-system upon exposure to quinic acid (Figure 2A). Animals exposed to 
vehicle throughout development and adulthood slept indistinguishably from inc1 mutants, while animals 
exposed constitutively to quinic acid exhibited strongly rescued sleep (Figure 2B, C; Figure 2—figure 
supplement 1), consistent with the rescue conferred by constitutive neuronal expression of inc (Pfeiff-
enberger and Allada, 2012; Stavropoulos and Young, 2011). Anti-HA staining of brains confirmed 
that the Q-system controlled inc expression as expected: vehicle-fed animals lacked inc-HA signal, 
while those exposed constitutively to quinic acid expressed inc-HA in the larval, pupal, and adult 
brain (Figure 2D). We next asked whether inc influences sleep through adult-specific or develop-
mental mechanisms. Animals fed quinic acid in adulthood expressed inc-HA in the adult brain but 
exhibited no rescue of their sleep deficits (Figure 2B–D; Figure 2—figure supplement 1). In stark 
contrast, developmental induction of inc-HA from embryonic through pupal stages restored sleep to 
near wild-type levels (Figure 2B–D; Figure 2—figure supplement 1). These findings indicate that inc 
is dispensable in adult neurons and acts instead during neuronal development to ultimately impact 
sleep–wake behavior.

We further defined the developmental period in which inc functions, using more precise temporal 
manipulations. Neuronal induction of inc-HA from the late third instar larval stage through adulthood 
strongly rescued the inc sleep phenotype (Figure 2B–D; Figure 2—figure supplement 1), indicating 
that inc is dispensable in embryonic and early larval neurons. Induction of inc activity solely in late third 
instar larval and pupal neurons, using a pulse of quinic acid exposure (Figure 2D), restored sleep indis-
tinguishably from constitutive neuronal induction (Figure 2B, C; Figure 2—figure supplement 1). The 
sleep deficits of inc2 animals, which bear an independent inc null allele that can be reverted by Gal4 
(Stavropoulos and Young, 2011), were similarly rescued by this pulse of quinic acid (Figure 3A–C; 
Figure 3—figure supplement 1), confirming that inc activity in this developmental period is sufficient 
to restore sleep to inc mutants. We next assessed whether inc is required in late third instar larval and 
pupal neurons for normal sleep in adulthood, by using the Q-system to induce a pulse of inc RNAi. This 
manipulation markedly decreased sleep (Figure 3D, E; Figure 3—figure supplement 2). Together, 
these findings indicate that inc acts transiently in neurons of late third instar larvae and pupae to influ-
ence adult sleep–wake behavior. During these developmental stages, many neurons of the adult brain 
are born and assemble into circuits (Truman and Bate, 1988; White and Kankel, 1978).

inc has a critical function in the MB that impacts sleep
To identify neurons that might underlie the developmental impact of inc on sleep, we performed a 
rescue screen in inc2 mutants. We screened 277 Gal4 lines expressed in sleep-regulatory circuits or 
randomly selected populations of cells in the brain and identified two drivers, c253-Gal4 and c309-Gal4, 
that rescued sleep similarly to the pan-neuronal nsyb-Gal4 driver (Figure  4A). After backcrossing 

https://doi.org/10.7554/eLife.65437
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to an isogenic background, both drivers retained their ability to rescue most of the sleep pheno-
types of inc2 mutants (Figure 4B, C; Figure 4—figure supplement 1). In late third instar larvae and 
adults, c253-Gal4 and c309-Gal4 are strongly expressed in the MB (Figure 4D), a structure important 
for sensory integration, associative learning, and sleep regulation (Heisenberg, 2003; Joiner et al., 
2006; Pitman et al., 2006). Because c253-Gal4 and c309-Gal4 are also expressed outside of the MB, 
we used independent genetic manipulations to confirm that inc acts in the MB to influence sleep. inc-
Gal4, a driver that bears inc regulatory sequences and fully rescues inc mutants when used to restore 
inc activity (Li et al., 2017; Stavropoulos and Young, 2011), is expressed in the larval, pupal, and 
adult MB (Figure 1). We tested whether the rescue conferred by inc-Gal4 was altered by MB-Gal80, a 
Gal4 suppressor expressed in MB neurons during development and adulthood (Krashes et al., 2007; 

Figure 2. inc acts in a restricted period of neuronal development to impact sleep in adulthood. (A) Conditional rescue of inc1 mutants using the ligand-
inducible Q-system. Quinic acid relieves QS suppression of the pan-neuronally expressed Gal4QF transcriptional activator, inducing UAS-inc-HA in 
neurons. (B) Total sleep duration of controls (gray) and inc1; UAS-inc-HA/tub-QS; nsyb-GAL4QF/+ animals exposed to quinic acid (+) or vehicle (−) at 
indicated life stages; embryos (E), larval stages (1–3), pupae (P), and adults (A). Bars represent mean ± standard error of the mean (SEM). n = 11–86. 
One-way analysis of variance (ANOVA) (F(7,397) = 86.73, p < 0.0001) and Tukey post hoc tests, *p < 0.01 for comparisons to inc1; UAS-inc-HA/+. (C) 
Average sleep profiles of flies in (B), with induction regimens indicated below. Shading indicates ± SEM. (D) Anti-HA staining of inc1; UAS-inc-HA/tub-
QS; nsyb-GAL4QF/+ brains from indicated induction regimens. Scale bars, 100 μm.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Additional sleep parameters for conditional rescue of inc1 mutants using the Q-system.

https://doi.org/10.7554/eLife.65437
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Figure 3. Conditional rescue of inc2 mutants and conditional inc RNAi in larval and pupal neurons. (A) Conditional neuronal rescue of inc2 mutants using 
the ligand-inducible Q-system. inc2 mutants contain a transposon insertion in the inc 5′UTR immediately upstream of the endogenous start codon. A 
UAS/TATA element within the transposon terminus permits Gal4-dependent restoration of inc expression (Stavropoulos and Young, 2011). (B) Total 
sleep duration in inc2; tub-QS/+; nysb-Gal4QF/+ animals exposed to vehicle or quinic acid at the late third instar larval and pupal stages. n = 20–83. 
One-way analysis of variance (ANOVA) (F(3, 170) = 70.66, p > 0.0001) and Tukey post hoc tests, *p < 0.01 for comparisons to inc2. (C) Average sleep 
profiles of indicated genotypes from (B). (D) Total sleep duration in tub-QS/UAS-inc-RNAi; nsyb-Gal4QF/UAS-dcr2 animals exposed to vehicle or quinic 
acid at the late third instar larval and pupal stages. n = 16–24. Student’s t-test, *p < 0.01 for comparison to vehicle-treated control. (E) Average sleep 
profiles of animals from (D). For (B) and (D), bars represent mean ± SEM. For (C) and (E), shading represents ± SEM.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Additional sleep parameters for conditional inc2 rescue in third instar larval and pupal neurons.

Figure supplement 2. Additional sleep parameters for conditional inc RNAi in larval and pupal neurons.

https://doi.org/10.7554/eLife.65437
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Pauls et  al., 2010). MB-Gal80 partially suppressed the ability of inc-Gal4 to restore sleep to inc1 
mutants, indicating that while inc does not influence sleep solely through the MB, inc is required in MB 
neurons for normal sleep regulation (Figure 4E, F; Figure 4—figure supplement 2).

Loss of inc abolishes the sleep-promoting functions of MB neurons but 
spares the functions of other sleep-regulatory circuits
While different circuits within the MB can promote or inhibit sleep upon activation (Joiner et  al., 
2006; Pitman et  al., 2006; Sitaraman et  al., 2015a), ablation of the MB strongly reduces sleep 
(Joiner et al., 2006; Pitman et al., 2006), suggesting that the integrated activity of the MB is sleep-
promoting. To assess whether the sleep-regulatory functions of the MB are altered in inc mutants, we 
activated MB neurons in adult wild-type and inc1 flies using the dTrpA1 heat-activated cation channel 
(Hamada et al., 2008). Wild-type control flies lacking Gal4 drivers exhibited no change in total sleep 
when shifted to 28.5°C for 24 hr, while inc1 flies lacking Gal4 drivers exhibited decreased sleep at this 
temperature (Figure 5A, B), suggesting that inc mutants are hyperarousable by thermal stimuli, as for 
mechanical stimuli (Pfeiffenberger and Allada, 2012). Activation of neurons expressing TrpA1 under 

Figure 4. The mushroom body is a critical brain region through which inc impacts sleep. (A) Mean sleep is plotted for each line in a Gal4 rescue 
screen of inc2 animals. n ≥ 5 per genotype. (B) c253-Gal4 and c309-Gal4 rescue sleep in inc2 mutants. n = 14–78. One-way analysis of variance (ANOVA) 
(F(4, 172) = 20.36, p < 0.0001) and Tukey post hoc test, *p < 0.01 for comparisons to inc2. (C) Average sleep profiles of flies in (B). (D) Anti-GFP 
immunostaining of indicated genotypes. Scale bars, 100 μm. (E) MB-Gal80 suppresses sleep rescue in inc1 inc-Gal4; UAS-inc-HA/+ animals. n = 30–69. 
One-way ANOVA (F(3, 161) = 121.4, p < 0.0001) and Tukey post hoc tests, *p < 0.01. (F) Average sleep profiles of indicated genotypes from (E). For (B) 
and (E), bars represent mean ± SEM. For (C) and (F), shading represents ± SEM.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Rescue of inc sleep phenotypes by c253-Gal4 and c309-Gal4.

Figure supplement 2. Additional parameters for suppression of sleep rescue in inc1 inc-Gal4; UAS-inc-HA animals by MB-Gal80.

https://doi.org/10.7554/eLife.65437
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the control of c253-Gal4 or c309-Gal4 strongly increased sleep in wild-type animals (Figure 5A, B; 
Figure 5—figure supplement 1), consistent with observations that inactivating synaptic output using 
the same drivers promotes wakefulness (Pitman et al., 2006). Because c253-Gal4 and c309-Gal4 are 
expressed in some cells outside of the MB, we also assessed a split-Gal4 driver expressed specifically 
in MB neurons (Figure 5—figure supplement 2). Using this driver to express TrpA1 and activate MB 
neurons increased sleep in wild-type animals (Figure  5A, B, ‘pan-MB’). Strikingly, using the same 
three drivers to activate neurons in inc1 mutants elicited no significant changes in sleep compared to 
inc1; UAS-TrpA1/+ controls (Figure 5A, B; Figure 5—figure supplement 1), indicating that the sleep-
promoting effects of MB activation are abolished in inc mutants.

To test whether the loss of inc specifically impairs the sleep-regulatory functions of MB neurons 
or causes more general deficits in sleep regulation, we assessed other neuronal populations that 
influence sleep. Activation of sleep-promoting populations that include ellipsoid body R5 (EB) (Liu 
et al., 2016) or Dorsal Paired Medial (DPM) neurons (Haynes et al., 2015) increased sleep similarly in 

Figure 5. Sleep-promoting functions of the mushroom body are impaired in inc mutants. (A) Thermogenetic 
activation of neuronal populations expressing TrpA1 in control and inc1 animals. Percent change in sleep (mean ± 
SEM) elicited by activation is shown. n = 31–144. Control and inc1 animals expressing dTrpA1 are compared to no-
Gal4 controls (UAS-dTrpA1/+ and inc1; UAS-dTrpA1/+, respectively). *p < 0.01 for Dunnet’s post hoc comparisons 
after one-way analysis of variance (ANOVA) for control animals (F(8, 528) = 92.12, p < 0.0001) or inc1 mutants 
(F(8, 452) = 50.01, p < 0.0001). Green and pink bars indicate drivers that significantly promote or inhibit sleep, 
respectively; gray bars indicate no significant change with respect to controls. (B) Average sleep profiles of animals 
from (A) on the baseline day and during thermogenetic activation. Shading represents ± SEM.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Sleep profiles during baseline and neuronal activation.

Figure supplement 2. A split-Gal4 driver expressed specifically in mushroom body (MB) neurons.

https://doi.org/10.7554/eLife.65437
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wild-type and inc1 animals (Figure 5A, B; Figure 5—figure supplement 1). Conversely, activation of 
sleep-inhibiting populations that include Helicon (Donlea et al., 2018), l-LNv (Sheeba et al., 2008), 
or pars intercerebralis and dopaminergic PPM3 neurons (PI, PPM3) (Dubowy et al., 2016) strongly 
decreased sleep in wild-type and inc1 animals (Figure 5A, B; Figure 5—figure supplement 1). The 
functions of these populations thus appear to be intact in inc mutants, suggesting that the loss of inc 
specifically impairs the sleep-regulatory functions of MB neurons. These findings, together with the 
developmental time-of-action of inc and its requirement within the MB for normal sleep, suggest that 
inc acts developmentally in MB neurons to have a lasting impact on their sleep-regulatory functions 
in adulthood.

inc regulates the production and anatomy of late-born MB neurons
During the critical developmental period through which inc impacts sleep, MB neurons are born and 
assemble into adult circuits (Ito and Hotta, 1992; Lee et al., 1999). In each brain hemisphere, four 
MB neuroblasts proliferate to yield ~2000 neurons comprising seven sequentially born subtypes (γd, 
γm, α´/β´ap, α´/β´m, α/βp, α/βs, and α/βc) that project axons into distinct lobes (γ, α´/β´, and α/β) (Aso 
et al., 2014a; Ito et al., 1997; Ito and Hotta, 1992; Kurusu et al., 2002; Lee and Luo, 1999; Tanaka 
et al., 2008; Truman and Bate, 1988; Zhu et al., 2003). Chemical ablation of the MB by exposing first 
instar larvae to hydroxyurea, an inhibitor of DNA replication, causes sleep deficits in adulthood (Joiner 
et al., 2006; Pitman et al., 2006). The sleep deficits caused by MB ablation are similar to but less 
severe than those of inc mutants, including reductions in sleep across the day and decreased sleep 
consolidation (Figure 6A–F). These findings and the partial suppression of inc rescue by MB-Gal80 

Figure 6. Sleep phenotypes for mushroom body ablation and inc mutants. Sleep parameters for inc2 mutants and animals exposed to vehicle or 
hydroxyurea (HU). For all panels, n = 37–49; *p < 0.01 for post hoc tests. (A) Total sleep. One-way analysis of variance (ANOVA) (F(2, 122) = 132.9, p < 
0.0001) and Tukey post hoc tests. (B) Average daily sleep profiles. Shading represents ± SEM. (C) Nighttime sleep. One-way ANOVA (F(2, 122) = 126.6, p 
< 0.0001) and Tukey post hoc tests. (D) Daytime sleep. One-way ANOVA (F(2, 122) = 74.32, p < 0.0001) and Tukey post hoc tests. (E) Sleep bout length. 
Kruskal–Wallis (p < 0.0001) and Dunn’s post hoc tests. (F) Sleep bout number. One-way ANOVA (F(2, 122) = 24.89, p < 0.0001) and Tukey post hoc tests. 
For (A) and (C–F), bars represent mean ± SEM.

https://doi.org/10.7554/eLife.65437
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(Figure 4E, F; Figure 4—figure supplement 2) support the notion that reduced sleep in inc mutants 
results from impairments in the MB, alongside effects in additional neuronal populations.

To determine whether inc mutants have anatomical changes in the adult MB that might disrupt 
its sleep-regulatory functions, we examined MB neurons expressing UAS-Myr-GFP-2A-RedStinger, 
a bicistronic reporter that marks projections and nuclei (Daniels et al., 2014). Specifically, we used 
split-Gal4 drivers that label MB neuron subtypes born in embryos (γd), late larval stages (α´/β´), and in 
pupae (α/βc) (Aso et al., 2014a), to assess whether the loss of inc might preferentially alter subtypes 
whose birth and development coincides with the critical period through which inc impacts sleep. 
Consistent with this notion, we observed prominent changes in the number and anatomy of larval- 
and pupal-born MB neurons in inc mutants. While embryonic-born γd neurons were present in similar 
numbers in adult brains of controls and inc1 mutants (control, 102 ± 4; inc1, 94 ± 2) (Figure 7A, B), the 
number of larval-born α´/β´ neurons was increased 58% in inc1 animals (control, 141 ± 13; inc1, 223 ± 
24), and the number of pupal-born α/βc neurons was doubled (control, 223 ± 11; inc1, 458 ± 45). The 
surplus of α´/β´ and α/βc neurons varied between left and right hemispheres in individual inc1 brains 
and this variation was greatest for α/βc neurons, the last-born in the MB (Figure 7A, C; Figure 7—
figure supplement 1), indicating that inc mutants have a stochastic and cumulative defect in MB 
neurogenesis. Four clusters of α/βc neurons were present in control animals, reflecting their birth from 
four MB neuroblasts (Ito et al., 1997; Ito and Hotta, 1992; Truman and Bate, 1988), whereas inc1 
mutants exhibited an average of nearly seven clusters (control, 3.7 ± 0.2; inc1, 6.8 ± 0.6) (Figure 7A, 
D; Figure 7—figure supplement 1), suggesting an origin from aberrant or excess neuroblasts. The 
numbers of other sleep-regulatory neurons, including those of the dorsal fan-shaped body (dFB) and 
DH44+ neurons, were unchanged in inc mutants (Figure  7A, I), indicating that neuronal overpro-
duction in inc mutants is specific to the MB or manifests preferentially within this neuronal lineage. 
These findings indicate that inc regulates neurogenesis, a fundamental process regulated by proteins 
conserved from flies to mammals (Doe, 2008; Knoblich, 2008), and suggest that alterations in early 
nervous system development can exert a lasting impact on sleep.

To further assess MB anatomy in inc mutants, we examined axons marked with myr-GFP and sepa-
rately examined dendrites by expressing DenMark (Nicolaï et al., 2010). Axons of embryonic-born γd 
neurons exhibited no obvious changes in inc1 mutants (Figure 7A, H). In contrast, axons of larval- and 
pupal-born MB neurons exhibited morphological defects whose severity correlated with neuronal 
overproduction and birth order (Figure 7A, H). While α´/β´ axons were absent from MB lobes in a 
minority (10%) of inc1 brains, axons of α/βs neurons, the penultimate to be born, were missing from 
MB lobes in 53% of inc1 brains (1.07 ± 0.33 missing lobes per brain) (Figure 7H). Axons of last-born α/
βc neurons showed the most severe defects; they failed to project into lobes in 86% of inc brains (2.23 
± 0.3 missing lobes per brain), fasciculated from ectopic neuronal clusters, and often aggregated near 
the peduncle (Figure 7A, H; Figure 7—figure supplement 1). The dendrites of γd, α´/β´, and α/βc 
neurons occupied enlarged territories in inc mutants but otherwise appeared normal (Figure 7F, G). 
Expansions in dendritic volume for α´/β´ and α/βc subtypes paralleled increases in the numbers of these 
neurons (Figure 7A, B), while increases for γd dendrites occurred independently of neuron number, 
consistent with functions of inc in postmitotic γd neurons or non-cell autonomous mechanisms. Axons 
and dendrites of other sleep-regulatory circuits, including those of the dFB, CRZ+ neurons, and PDF+ 
circadian pacemaker neurons, exhibited no obvious changes in inc mutants (Figure 7I; Figure 7—
figure supplement 2), suggesting that alterations of neuronal anatomy in inc mutants are specific to 
the MB. These findings indicate that increases in the numbers of late-born MB neurons in inc mutants 
are associated with changes in postmitotic development expected to perturb circuit assembly and 
function. In particular, the altered axons of multiple MB neuron subtypes are unlikely to form normal 
circuits with their targets that influence sleep, including dopaminergic neurons, MB output neurons, 
and recurrent connections to the MB (Aso et al., 2014b; Sitaraman et al., 2015a; Sitaraman et al., 
2015b).

Discussion
Here, we have used temporally restricted genetic manipulations to show that inc acts during neuronal 
development to ultimately impact sleep in adulthood. While many genes are known to act in adults 
to impact sleep, developmental mechanisms underlying sleep regulation have only recently gained 
attention (Chakravarti Dilley et al., 2020; Gong et al., 2021; Iwasaki et al., 2021; Xie et al., 2019). 

https://doi.org/10.7554/eLife.65437
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Figure 7. inc regulates neurogenesis and anatomy of late-born mushroom body (MB) neurons. (A) Adult control 
and inc1 brains expressing UAS-MyrGFP-2A-RedStinger in indicated MB neuron subtypes, stained with anti-
GFP (cyan) and anti-dsRed (yellow). (B) MB neuron number per hemisphere. γd, n = 10–11; α ́/β ́, n = 7–10; α/βc, 
n = 16–18. *p < 0.01, Welch’s t-test. (C) Absolute difference in MB neuron number between left and right brain 
hemispheres; γd, n = 5–6; α ́/β ́, n = 3–5; α/βc, n = 8–9. *p < 0.01, Welch’s t-test. (D) Number of α/βc neuron clusters 
per hemisphere. n = 16–18. *p < 0.01, Welch’s t-test. (E) Numbers of dorsal fan-shaped body (dFB) and DH44+ 
neurons. dFB, n = 26; DH44+, n = 6–8. ns, p > 0.01, Welch’s t-test. (F) Adult control and inc1 brains expressing UAS-
DenMark-smGdP-V5 in indicated MB neuron subtypes, stained with anti-GFP. (G) Dendrite volume per hemisphere. 
γd, n = 16–17; α ́/β ́, n = 19; α/βc, n = 14–16. *p < 0.01, Welch’s t-test. (H) Quantification of axonal projection defects 
for MB neuron subtypes. Colored bars represent the number of MB lobes in each brain entirely lacking axonal myr-
GFP signal. See also panel (A). n = 10–25. (I) Adult control and inc1 brains expressing UAS-MyrGFP-2A-RedStinger 
in dFB neurons. All scale bars represent 100 μm. For (B–E) and (G), bars represent mean ± SEM.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Analysis of α/βc neuron clusters and projections.

Figure supplement 2. Analysis of dendrites in additional sleep-regulatory circuits.

https://doi.org/10.7554/eLife.65437
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Our results underscore the importance of unbiased temporal genetic manipulations to define critical 
periods through which genes impact sleep, and suggest that genes may influence sleep through 
unappreciated developmental mechanisms. A clear implication of these findings is that variations in 
human sleep patterns, including pathological disruptions of sleep, may have a developmental origin.

Reciprocal conditional manipulations have been critical in revealing surprising developmental and 
adult contributions of genes to neuronal function and behavior. In one notable example, anxiety-like 
behaviors in mice caused by mutations of the 5-HT1A serotonin receptor were found to be rescued 
by developmental expression of the receptor (Gross et al., 2002). Withdrawal of receptor expression 
in adulthood had no measurable consequences on anxiety-like behavior, and adult-specific receptor 
expression failed to provide rescue, indicating the necessity and sufficiency of the receptor during 
development (Gross et al., 2002). A second noteworthy example is provided by a mouse model of 
Rett syndrome, a neurodevelopmental disorder caused by mutation of MECP2, a transcriptional regu-
lator. Conditional MeCP2 expression solely in adulthood was found to be sufficient to rescue mutant 
phenotypes, indicating a critical period for MeCP2 function in adults rather than during brain devel-
opment (Guy et al., 2007; Guy et al., 2012). Inactivation of MECP2 specifically in adulthood causes 
MECP2 mutant phenotypes (McGraw et  al., 2011), confirming its adult requirement. By analogy, 
various genes that influence sleep might act developmentally or in adulthood in a manner that cannot 
be anticipated in the absence of conditional manipulations.

inc activity is required in neurons for normal sleep, and conversely, restoring inc solely to neurons 
is largely sufficient to rescue the short sleep of inc mutants (Pfeiffenberger and Allada, 2012; Stav-
ropoulos and Young, 2011). Our conditional neuronal manipulations of inc span embryonic devel-
opment through adulthood and indicate that inc expression in neurons of late third instar larvae and 
pupae is sufficient to rescue sleep in inc mutants to near wild-type levels, indistinguishable from the 
rescue provided by constitutive neuronal inc expression (Pfeiffenberger and Allada, 2012; Stav-
ropoulos and Young, 2011). Extending this developmental pulse of neuronal inc expression into 
adulthood does not augment the rescue of inc sleep phenotypes, nor does expressing inc only in 
adult neurons restore sleep to inc animals. inc expression in embryonic, early larval, and adult neurons 
thus appears dispensable for normal sleep. Instead, inc is required at a time coincident with the birth 
and development of many adult neurons, including those of the MB (Ito and Hotta, 1992; Lee et al., 
1999; White and Kankel, 1978). While our findings suggest that the MB is not the sole brain structure 
through which inc impacts sleep, they establish a vital role for inc in regulating MB development and 
its sleep-regulatory functions.

Our findings reveal that inc governs neurogenesis, a fundamental process regulated by genes and 
pathways conserved from flies to mammals (Doe, 2008; Knoblich, 2008), and suggest that alter-
ations of neurogenesis can cause lasting changes in sleep–wake behavior. The cellular and molecular 
mechanisms underlying altered neurogenesis in inc mutants, including the stochastic nature of these 
phenotypes and their apparent restriction to the MB, are of particular interest. inc null mutations are 
viable (Stavropoulos and Young, 2011), in contrast to the lethality of mutations that globally alter 
neurogenesis (Betschinger et al., 2006; Lee et al., 2006a; Lee et al., 2006b; Rolls et al., 2003; 
Vaessin et al., 1991), consistent with the notion that altered neurogenesis in inc mutants manifests 
preferentially or specifically within the MB. The stochastic nature of neurogenic defects in inc mutants 
and the overproduction of neurons with projection defects are reminiscent of phenotypes of mush-
room body defect (mud) mutants (Guan et al., 2000; Hovhanyan and Raabe, 2009; Prokop and 
Technau, 1994). In mud mutants, infrequent errors in asymmetric neuroblast division give rise to 
excess neuroblasts and MB neurons (Bowman et al., 2006; Siller et al., 2006). Similar alterations in 
neuroblast proliferation in inc mutants may account for the stochastic and cumulative defects in the 
production of late-born MB neurons; a subtle defect in neuroblast proliferation would be expected to 
manifest particularly in the MB lineage, the longest in the fly brain. Our results do not yet distinguish 
the cellular populations through which inc regulates neurogenesis. One possibility is that inc acts in 
neurons to promote their differentiation, analogous to lola and midlife crisis, genes whose absence 
causes neurons to dedifferentiate and acquire the proliferative character of neuroblasts (Carney 
et al., 2013; Southall et al., 2014). Another possibility is that inc functions in neuroblasts, like mud, 
to govern their asymmetric division.

Our studies and recent findings (Gong et al., 2021) suggest that proper regulation of neurogenesis 
is essential for normal sleep and that altered neurogenesis in discrete circuits can cause lifelong sleep 

https://doi.org/10.7554/eLife.65437
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dysfunction. Intriguing but fragmentary evidence suggests that other genes whose mutation impacts 
sleep might similarly alter neurogenesis. wide awake (wake), whose mutation causes short sleep in 
Drosophila (Liu et  al., 2014; Zhang et  al., 2015), was characterized in an independent study as 
banderuola (bnd) and shown to regulate the asymmetric division of neuroblasts (Mauri et al., 2014). 
An interesting possibility yet to be assessed is whether sleep phenotypes of wake/bnd mutants might 
arise developmentally or through neuroblasts. Similarly, while short sleep phenotypes caused by muta-
tions in the potassium channel subunits encoded by Shaker and Hyperkinetic (Bushey et al., 2007; 
Cirelli et al., 2005) are thought to reflect their role in regulating excitability in specific adult neurons 
(Kempf et al., 2019; Pimentel et al., 2016), developmental functions that could contribute to their 
impact on sleep remain unexplored. Notably, mutations in the Shaker ortholog Kv1.1 analogous to 
those that strongly reduce sleep in Drosophila (Cirelli et al., 2005; Gisselmann et al., 1989) cause 
megencephaly and neuronal overproduction in mammals, implicating Kv1.1 in regulating neurogen-
esis (Chou et al., 2021; Donahue et al., 1996; Petersson et al., 2003; Yang et al., 2012). Explicit 
tests of whether wake/bnd and Shaker impact sleep through adult or developmental mechanisms, or 
through a combination of the two, await conditional temporal analysis.

While further manipulations of inc are required to elucidate the precise developmental mech-
anisms by which it impacts sleep, Cul3 is known to regulate various aspects of neuronal develop-
ment. Clonal analysis of Cul3 mutations in Drosophila indicates that Cul3 is required for normal 
axonal arborization and dendritic elaboration within the MB, as well as axonal fasciculation (Zhu 
et al., 2005). These phenotypes overlap those of inc mutants, although direct comparisons are 
complicated by the pleiotropic nature of Cul3 mutations, which dysregulate multiple adaptor and 
substrate pathways. Mosaic analysis of inc is required to discern its developmental functions in 
postmitotic neurons, to compare its phenotypes with Cul3, and to distinguish cell autonomous 
and non-cell autonomous mechanisms. In mammals, Cul3 mutations alter neurogenesis, cortical 
lamination, neuronal migration, synaptic development, and cause behavioral deficits (Amar et al., 
2021; Dong et al., 2020; Fischer et al., 2020; Rapanelli et al., 2021). inc and Cul3 are present 
at synapses in flies and mammals (Kikuma et al., 2019; Li et al., 2017) and are required at the 
Drosophila larval neuromuscular junction for synaptic homeostasis (Kikuma et al., 2019), a process 
proposed to be a core function of sleep (Tononi and Cirelli, 2003). The impact of inc on the 
development and function of central synapses has yet to be assessed, and whether such func-
tions contribute to inc sleep phenotypes remains unknown. As a Cul3 adaptor, inc may engage 
multiple molecular targets and cellular pathways. Identifying and manipulating inc substrates are 
thus important goals in elucidating the mechanisms through which inc impacts neuronal develop-
ment and sleep–wake behavior.

The loss of inc causes enduring developmental and functional impairments in the MB, a structure 
important for sensory integration, learning, and sleep regulation. The MB integrates olfactory (de 
Belle and Heisenberg, 1994; Heisenberg et al., 1985), gustatory (Keene and Masek, 2012; Masek 
and Scott, 2010), visual (Li et al., 2020; Vogt et al., 2016), and thermal inputs (Frank et al., 2015; 
Hong et al., 2008; Shih et al., 2015), and its activity is altered by sleep pressure (Bushey et al., 2015; 
Sitaraman et al., 2015a). The MB may thus integrate and filter sensory stimuli to promote sleep in 
appropriate environmental conditions, in a manner modulated by learning and sleep history. The 
anatomical defects in inc mutants may render the MB hypersensitive to sensory stimuli, alter functions 
of the MB that link learning and sleep (Berry et al., 2015; Cervantes-Sandoval et al., 2017; Haynes 
et al., 2015; Seugnet et al., 2011; Seugnet et al., 2008), or impair the relay of sensory input from 
MB neurons to downstream sleep-promoting circuits (Aso et al., 2014b; Sitaraman et al., 2015a). 
While MB circuits and genetic pathways that act in the MB to influence sleep have been manipulated 
with increasing precision (Aso et al., 2014b; Cavanaugh et al., 2016; Guo et al., 2011; Joiner et al., 
2006; Pitman et al., 2006; Sitaraman et al., 2015a; Sitaraman et al., 2015b; Yi et al., 2013), much 
remains unknown about the function of the MB in sleep regulation, and additional analysis is required 
to elucidate how inc lesions might alter discrete circuits within the MB and signaling to their targets.

While sensory hypersensitivity and sleep dysfunction are hallmarks of autism and other neurode-
velopmental disorders, the underlying mechanisms remain obscure. Given the conserved functions 
of Cul3–inc complexes and the associations of Cul3 lesions with autism (Kong et al., 2012; Li et al., 
2017; O’Roak et al., 2012), elucidating inc substrates and their contributions to neurogenesis and 
neuronal anatomy may provide insights into brain development, tumorigenesis, and sleep disorders.

https://doi.org/10.7554/eLife.65437
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Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Antibody α-HA (rat monoclonal) Roche
Cat# 11867431001, 
RRID:AB_390919 (1:100)

Antibody α-Brp (mouse monoclonal) DSHB
Cat# nc82, 
RRID:AB_2314866 (1:20 and 1:50)

Antibody α-FLAG (mouse monoclonal) Sigma-Aldrich
Cat# F1804, 
RRID:AB_262044 (1:100)

Antibody α-GFP (mouse monoclonal) DSHB
Cat# GFP-G1, 
RRID:AB_2619561 (1:1000)

Antibody α-GFP (rabbit polyclonal)
Thermo Fisher 
Scientific

Cat# A11122, 
RRID:AB_221569 (1:2000)

Antibody α-dsRed (rabbit polyclonal) Takara Bio
Cat# 632496, 
RRID:AB_10013483 (1:1000)

Antibody α-FasII (mouse monoclonal) DSHB
Cat# 8 C6, 
RRID:AB_2314391 (1:50)

Antibody
α-mouse Alexa Fluor 488 
(donkey polyclonal)

Thermo Fisher 
Scientific

Cat# A21202, 
RRID:AB_141607 (1:1000)

Antibody
α-rabbit Alexa Fluor 488 
(donkey polyclonal)

Thermo Fisher 
Scientific

Cat# A21206, 
RRID:AB_2535792 (1:1000)

Antibody
α-rat Alexa Fluor 488 (donkey 
polyclonal)

Thermo Fisher 
Scientific

Cat# A21208, 
RRID:AB_2535794 (1:1000)

Antibody
α-rabbit Alexa Fluor 568 
(donkey polyclonal)

Thermo Fisher 
Scientific

Cat# A10042, 
RRID:AB_2534017 (1:1000)

Antibody
α-mouse Alexa Fluor 647 
(donkey polyclonal)

Thermo Fisher 
Scientific

Cat# A31571, 
RRID:AB_162542 (1:1000)

Chemical compound, 
drug Hydroxyurea Sigma-Aldrich H8627

Genetic reagent (D. 
melanogaster) w1118

Bloomington 
Drosophila Stock 
Center RRID:BDSC_5905 Ryder et al., 2004

Genetic reagent (D. 
melanogaster) inc1 Stavropoulos lab FLYB:FBal0266013

Stavropoulos and Young, 2011; BDSC 
#5,905 background

Genetic reagent (D. 
melanogaster) inc2 Stavropoulos lab FLYB:FBal0162225

Stavropoulos and Young, 2011; BDSC 
#5,905 background

Genetic reagent (D. 
melanogaster) tub-QS; nsyb-Gal4QF Christopher Potter

Riabinina et al., 2015; Li and 
Stavropoulos, 2016; BDSC #5,905 
background

Genetic reagent (D. 
melanogaster) inc-Gal4 Stavropoulos lab

Stavropoulos and Young, 2011; BDSC 
#5,905 background

Genetic reagent (D. 
melanogaster) inc1inc-Gal4 Stavropoulos lab Li et al., 2017; BDSC #5,905 background

Genetic reagent (D. 
melanogaster) nsyb-Gal4 Julie Simpson Simpson, 2016; BDSC #5,905 background

Genetic reagent (D. 
melanogaster) c253-Gal4 (MB)

Bloomington 
Drosophila Stock 
Center RRID:BDSC_6980

Pitman et al., 2006; BDSC #5,905 
background; used in inc[2] rescue screen

Genetic reagent (D. 
melanogaster) c309-Gal4 (MB)

Bloomington 
Drosophila Stock 
Center RRID:BDSC_6906

Connolly et al., 1996; Pitman et al., 
2006 Joiner et al., 2006; Aso et al., 
2009; BDSC #5,905 background; used in 
inc[2] rescue screen
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Genetic reagent (D. 
melanogaster) c929-Gal4 (l-LNv) Amita Sehgal

Hewes et al., 2000; Hewes et al., 2003; 
Sheeba et al., 2008; Parisky et al., 2008; 
Shang et al., 2008; iso31 background; 
used in inc[2] rescue screen

Genetic reagent (D. 
melanogaster) c584-Gal4 (PI, PPM3) Amita Sehgal

Martin et al., 1999; Dubowy et al., 
2016; iso31 background; used in inc[2] 
rescue screen

Genetic reagent (D. 
melanogaster) R69F08-Gal4 (EB) Mark Wu

Liu et al., 2016; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) R24B11-Gal4 (Helicon)

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49070 Donlea et al., 2018

Genetic reagent (D. 
melanogaster) R23E10-Gal4 (dFB)

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49032 Donlea et al., 2014

Genetic reagent (D. 
melanogaster) NP2721-Gal4 (DPM) Leslie Griffith

Wu et al., 2011; Haynes et al., 2015; 
used in inc[2] rescue screen

Genetic reagent (D. 
melanogaster) DH44-Gal4

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39347 Cavanaugh et al., 2014

Genetic reagent (D. 
melanogaster) pdf-Gal4 Stavropoulos lab Renn et al., 1999

Genetic reagent (D. 
melanogaster) crz-Gal4 Stavropoulos lab Tayler et al., 2012

Genetic reagent (D. 
melanogaster) MB004B (pan-MB) Yoshinori Aso Sitaraman et al., 2015a

Genetic reagent (D. 
melanogaster) MB607B (ɣd) Yoshinori Aso Sitaraman et al., 2015a

Genetic reagent (D. 
melanogaster) MB370B (α'β'm + α'β'ap) Yoshinori Aso Sitaraman et al., 2015a

Genetic reagent (D. 
melanogaster) MB185B (αβs) Yoshinori Aso Sitaraman et al., 2015a

Genetic reagent (D. 
melanogaster) MB594B (αβc) Yoshinori Aso Sitaraman et al., 2015a

Genetic reagent (D. 
melanogaster) MB-Gal80 Michael Young Krashes et al., 2007

Genetic reagent (D. 
melanogaster) UAS-3xFLAG-Inc Stavropoulos lab Li et al., 2017; BDSC #5,905 background

Genetic reagent (D. 
melanogaster) UAS-inc-HA Stavropoulos lab Li et al., 2017; BDSC #5,905 background

Genetic reagent (D. 
melanogaster) UAS-inc-RNAi

Vienna Drosophila 
Resource Center FLYB:FBst0453067

Dietzl et al., 2007; Stavropoulos and 
Young, 2011

Genetic reagent (D. 
melanogaster) UAS-dcr2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_24651

Dietzl et al., 2007; BDSC #5,905 
background

Genetic reagent (D. 
melanogaster) UAS-TrpA1 Stavropoulos lab

Hamada et al., 2008; BDSC #5,905 
background

Genetic reagent (D. 
melanogaster) UAS-MyrGFP-2A-RedStinger Barry Ganetzky Daniels et al., 2014
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Genetic reagent (D. 
melanogaster) 5xUAS-DenMark::smGdP-V5

Bloomington 
Drosophila Stock 
Center RRID:BDSC_62138 Nern et al., 2015

Genetic reagent (D. 
melanogaster) 5xUAS-IVS-Syt1::smGdP-HA

Bloomington 
Drosophila Stock 
Center RRID:BDSC_62142 Nern et al., 2015

Genetic reagent (D. 
melanogaster) 20xUAS-IVS-CD8-GFP

Bloomington 
Drosophila Stock 
Center RRID:BDSC_32194 Pfeiffer et al., 2010

Genetic reagent (D. 
melanogaster) NP1227-Gal4 Kathy Nagel

Okada et al., 2009; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) R2-Split Gal4 Greg Suh

Liu et al., 2016; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) R72G06-Gal4 Mark Wu used in inc[2] rescue screen

Genetic reagent (D. 
melanogaster) VT64246-Gal4 Leslie Griffith used in inc[2] rescue screen

Genetic reagent (D. 
melanogaster) c305a-Gal4 Leslie Griffith used in inc[2] rescue screen

Genetic reagent (D. 
melanogaster) P{GMR49E09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_38692

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR49F01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_38694

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR49F02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_38695

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR49G06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_38707

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR51G05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_38797

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR53B06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_38863

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR53C04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_38871

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR54F06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39081

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR55A03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39095

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR55B12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39103

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR55D01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39110

Jenett et al., 2012; used in inc[2] rescue 
screen
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Genetic reagent (D. 
melanogaster) P{GMR55D05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39112

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR55F07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39128

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR55G11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39132

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR56H02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39164

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR56H09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39166

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR58E10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39184

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR58H05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39198

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR59B10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39209

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR59E09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39220

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR59H05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39229

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR60C01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39240

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR60D05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39247

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR60H12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39268

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR64A11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39289

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR64F03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39309

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR64G05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39316

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR65B04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39336

Jenett et al., 2012; used in inc[2] rescue 
screen
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or resource Designation Source or reference Identifiers Additional information

Genetic reagent (D. 
melanogaster) P{GMR65D06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39352

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR65D07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39353

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR67A04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39396

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR69C02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39483

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR71D01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39579

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR72H03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39799

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR74H01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39872

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR76F06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39937

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR77H03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39976

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR78A01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_39985

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR78G06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40013

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR79A01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40021

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR79B08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40029

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR83H01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40368

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR85C07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40422

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR87A08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40473

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR92G09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40629

Jenett et al., 2012; used in inc[2] rescue 
screen
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Genetic reagent (D. 
melanogaster) P{GMR93C06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40647

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR93G05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40662

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR93H07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40669

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR94D04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40681

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR94E07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40688

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR94F06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40694

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR95E08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40710

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR95F11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_40714

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR40B09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_41235

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR40E08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_41238

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR41G11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_41244

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR42F06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_41253

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR60D10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_41284

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR65C03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_41290

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR74B11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_41301

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR87B02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_41316

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR65B09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_41353

Jenett et al., 2012; used in inc[2] rescue 
screen
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Genetic reagent (D. 
melanogaster) P{GMR34C12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_45219

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR45D10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_45323

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR60G12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_45360

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR23G07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_45493

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR26C01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_45518

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR48D06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_45774

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR20E01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_45837

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR25G01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_45851

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR53G07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46041

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR55G02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46070

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR35H03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46205

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR46H09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46275

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR58G05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46410

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR59H01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46423

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR64D08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46539

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR65C05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46554

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR65H08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46566

Jenett et al., 2012; used in inc[2] rescue 
screen
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Genetic reagent (D. 
melanogaster) P{GMR69H02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46620

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR70G11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46641

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR71E04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46658

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR72A04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46665

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR73D06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46692

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR56F05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46714

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR77A04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_46976

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR80C12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47059

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR81C04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47087

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR81D04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47094

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR91A08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47148

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR91G01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47175

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR92H11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47211

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR93B04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47215

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR93D01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47221

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR93D06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47224

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR93G11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47238

Jenett et al., 2012; used in inc[2] rescue 
screen
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Genetic reagent (D. 
melanogaster) P{GMR94H10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47268

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR16D12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47325

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR16H05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47327

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR10E03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47447

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR42E09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47589

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR52A01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47634

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR70A09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47720

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR72F10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47731

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR74G04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47742

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR10A11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47839

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR10A12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47840

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR13C06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47860

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR19G10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47887

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR21C11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47898

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR30F07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47911

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR44G12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47933

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR52F09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_47943

Jenett et al., 2012; used in inc[2] rescue 
screen
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Genetic reagent (D. 
melanogaster) P{GMR28F06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48083

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR33H11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48119

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR50A07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48179

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR51B08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48183

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR52C05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48190

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR54H12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48205

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR58F01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48213

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR59B11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48215

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR59C12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48219

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR59E04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48221

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR10D10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48261

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR10H09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48277

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR67B06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48294

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR73H09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48318

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR87C01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48389

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR89C02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48404

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR92A08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48414

Jenett et al., 2012; used in inc[2] rescue 
screen
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Genetic reagent (D. 
melanogaster) P{GMR93C08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48417

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR93F02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48422

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR95F03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48433

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR10E07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48440

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR11C07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48448

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR12B10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48490

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR12D12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48506

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR12G09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48525

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR13B10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48548

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR13D09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48561

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR13E04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48565

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR13E06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48566

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR13F04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48573

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR14C08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48606

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR20F01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48610

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR14E05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48642

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR14E06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48643

Jenett et al., 2012; used in inc[2] rescue 
screen
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Genetic reagent (D. 
melanogaster) P{GMR14E09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48645

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR14E12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48647

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR14F11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48653

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR14G08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48661

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR14H02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48664

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR15B07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48678

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR15D11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48690

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR15E09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48696

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR16E03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48727

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR17B12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48759

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR17D02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48764

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR17G05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48782

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR18D04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48811

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR18D07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48813

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR18F04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48820

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR18G06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48826

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR19F05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48855

Jenett et al., 2012; used in inc[2] rescue 
screen
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Genetic reagent (D. 
melanogaster) P{GMR20F04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48904

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR21C09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48936

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR21D02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48939

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR21D06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48942

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR22C12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48978

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR22E06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_48986

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR22H10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49005

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR23B04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49016

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR23C06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49023

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR23E10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49032

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR23F05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49035

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR24A08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49058

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR24B11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49070

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR24C06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49073

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR24C07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49074

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR24C10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49075

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR24E05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49081

Jenett et al., 2012; used in inc[2] rescue 
screen
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Genetic reagent (D. 
melanogaster) P{GMR24F03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49086

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR24H03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49098

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR25A01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49102

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR25A06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49105

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR25C01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49115

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR25C03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49117

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR25E04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49125

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR25H06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49144

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR26B04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49158

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR26B11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49164

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR26B12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49165

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR26C11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49171

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR26E02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49179

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR26E07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49182

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR26F09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49194

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR27A02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49207

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR10E06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49236

Jenett et al., 2012; used in inc[2] rescue 
screen
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Genetic reagent (D. 
melanogaster) P{GMR14B11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49255

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR15B03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49261

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR18G02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49278

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR32D08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49357

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR35F09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49371

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR60F05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49405

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR28E01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49457

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR29A12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49478

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR30B10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49522

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR43D09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49553

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR47E07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49568

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR48D07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49572

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR52F11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49579

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR59A05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49593

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR65H10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49614

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR66A03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49615

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR30G03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49646

Jenett et al., 2012; used in inc[2] rescue 
screen
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or resource Designation Source or reference Identifiers Additional information

Genetic reagent (D. 
melanogaster) P{GMR31F06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49684

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR31G04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49686

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR31H05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49692

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR32E04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49717

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR33H07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49760

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR34B11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49774

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR34C08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49780

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR35B08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49818

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR10G02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49825

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR11E05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49827

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR19C10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49831

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR19E12-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49835

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR20D07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49848

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR20E08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49851

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR21H06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49866

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR22F03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49875

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR35D07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49908

Jenett et al., 2012; used in inc[2] rescue 
screen
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or resource Designation Source or reference Identifiers Additional information

Genetic reagent (D. 
melanogaster) P{GMR37E08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49958

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR37F05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49961

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR38A11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49980

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR38B06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_49986

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR38E08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50008

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR39C07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50039

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR39E10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50053

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR39G09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50064

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR40C07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50080

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR42D11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50156

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR44B03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50200

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR44B10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50202

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR44D02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50205

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR45D05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50227

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR45G01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50241

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR45G05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50243

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR45H11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50248

Jenett et al., 2012; used in inc[2] rescue 
screen
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or resource Designation Source or reference Identifiers Additional information

Genetic reagent (D. 
melanogaster) P{GMR46B05-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50253

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR47D07-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50304

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR47F04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50319

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR47G08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50328

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR47H01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50330

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR48A03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50339

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR48A08-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50341

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR48B10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50352

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR48C06-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50357

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR48E02-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50367

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR48G01-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50381

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR48G04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50383

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR48H04-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50392

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR48H10-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50395

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR48H11-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50396

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR49A09-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50403

Jenett et al., 2012; used in inc[2] rescue 
screen

Genetic reagent (D. 
melanogaster) P{GMR49C03-GAL4}attP2

Bloomington 
Drosophila Stock 
Center RRID:BDSC_50414

Jenett et al., 2012; used in inc[2] rescue 
screen
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Fly food and culture
Fly food was prepared in batches containing the following ingredients: 1800 g cornmeal (Labscientific, 
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266 g agar (Mooragar, 41084), 56 g methyl paraben (Sigma, H3647), 560 ml alcohol (Fisher, A962P4), 
190 ml propionic acid (Fisher, A258500), and 47 l of water. Unless indicated otherwise, crosses were 
performed with five females and three males in vials (28.5 mm diameter × 95 mm height) containing 
standard fly food supplemented with dry yeast (Fleischmann, B000LRFVHE). Crosses were cultured at 
25°C in 12 hr light–dark (LD) cycles.

To prepare food for conditional induction of the Q-system, solid fly food was melted in a microwave 
oven and allowed to cool before addition of quinic acid or vehicle. Quinic acid solution was freshly 
prepared essentially as described (Riabinina et al., 2015). 10 g of quinic acid (Sigma, 138622) was 
dissolved in 30 ml of water and the pH was adjusted to 6.5 with 10 mM NaOH. A volume of quinic 
acid solution containing the equivalent of 0.66 g of quinic acid (~2.4 ml) was added for each 10 ml 
of melted fly food and mixed well; ~12.4 ml was distributed to each empty vial. Food was allowed to 
cool and subsequently stored at 4°C prior to use. Vehicle food was prepared similarly, substituting an 
equal volume of water.

Conditional Q-system induction
Three sets of conditional induction experiments were performed. The first set contained vehicle treat-
ment and constitutive, developmental-specific, and adult-specific induction regimens. The second set 
included vehicle, constitutive induction, and induction from the late third instar larval stage through 
adulthood. The third set included vehicle, constitutive induction, and a pulse of induction from the 
late third instar larval stage through pupal stages. Initiation, maintenance, or termination of induc-
tion at desired developmental stages was achieved by transferring larvae, pupae, and/or adults to 
food containing quinic acid or vehicle as described below. Within each set of experiments, w1118 and 
inc1 controls were exposed to vehicle and quinic acid induction regimens, and all animals under-
went the same physical transfers in parallel. Sleep of w1118 and inc1 animals was not altered by expo-
sure to vehicle or quinic acid, as described previously (Li and Stavropoulos, 2016), nor by physical 
transfer at larval, pupal, or adult stages. Vehicle-treated w1118 and inc1 animals, pooled across all three 
sets of experiments, are shown in Figure 2B. Two to three independent biological replications were 
performed for all induction experiments.

In the first set of experiments, developmental-specific induction was achieved by setting crosses 
on food containing quinic acid, allowing animals to develop and pupate in the same vials, and trans-
ferring adult males within 2–3 hr of eclosion to fresh vials with vehicle-containing food to terminate 
Q-system induction. Adult animals were maintained in these vials for 3–4 days, anesthetized with 
CO2, and transferred to DAM tubes with vehicle-containing food for measurement of sleep. For adult-
specific induction, crosses were set on vehicle food and animals developed in the same vials. Adult 
males eclosing from these cultures were transferred within 2–3 hr of eclosion to fresh vials with food 
containing quinic acid, maintained on this food for 3–4 days, and transferred to DAM tubes containing 
food with quinic acid for measurement of sleep. For constitutive induction and vehicle treatment, food 
containing quinic acid or vehicle, respectively, was used throughout, along with the same transfer 
procedure.

In the second set of experiments, induction from the late third instar larval stage through adulthood 
was achieved as follows: crosses were set on vehicle-containing food and wandering third instar larvae 
from these cultures were gently collected with blunt forceps and examined under brief phosphate-
buffered saline (PBS) immersion to select males by visual identification of gonads as described (Kerkis, 
1931). Larvae were transferred to recipient vials containing isogenic w1118 larvae and pre-churned 
quinic acid food; these recipient cultures were initiated in parallel with experimental crosses to allow 
food consistency to be maintained during Q-system induction. Adult animals bearing mini-white-
marked transgenes were transferred within 2–3 hr of eclosion to fresh vials containing quinic acid food 
to maintain Q-system induction. Three- to four-day-old adults were subsequently transferred to DAM 
tubes with food containing quinic acid for measurement of sleep. Constitutive induction and vehicle 
treatment were performed similarly, using appropriate food and the same transfer procedure.

In the third set of experiments, a pulse of Q-system induction specific to late third instar larval and 
pupal stages was achieved as follows: crosses were set on vehicle food and male wandering third 
instar larval progeny were selected and transferred to w1118 recipient vials containing pre-churned 
quinic acid food as described above. To prevent adult exposure to quinic acid, pupae bearing mini-
white-marked transgenes were identified at approximately the P13–P14 stage by pigmented eyes and 
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black wings (Ashburner et al., 2005; Bainbridge and Bownes, 1981) and gently dislodged from vial 
walls with a paintbrush and transferred to the walls of fresh vials containing vehicle food. Three- to 
four-day-old adults eclosing from these vials were transferred to DAM tubes containing vehicle food 
for measurements of sleep. Constitutive induction and vehicle treatment were performed similarly, 
using appropriate food and the same transfer procedure.

inc2 rescue screen
inc2 virgins were crossed to male flies carrying Gal4 transgenes and a minimum of five male progeny 
were screened for each genotype. A total of 277 Gal4 lines were screened, including 266 randomly 
selected drivers and 11 drivers previously characterized for expression in sleep-regulatory circuits. To 
select random lines, 4088 lines from the FlyLight collection available from the Bloomington Drosophila 
Stock Center were assigned sample numbers. Using the randperm command in Matlab, 300 lines 
were randomly selected. Expression patterns for these lines in the Janelia Flylight database were 
examined; 84 lines were excluded due to very low levels of expression, very broad expression patterns 
unlikely to be useful for functional mapping, or because expression data were unavailable. Expression 
patterns for the remaining 216 lines ranged from broad to sparse. This procedure for random selec-
tion was applied iteratively to yield 266 lines. Top-ranking hits from the initial screen were rescreened 
in independent crosses. Rescreening of c253-Gal4 and c309-Gal4 was performed after backcrossing 
each line six generations to an isogenic w1118 stock (BDSC #5905) (Ryder et al., 2004).

MB ablation
MB ablation was performed essentially as described previously (de Belle and Heisenberg, 1994). 
Egg collection was performed on grape juice agar plates containing a spot of rehydrated dry yeast. 
w1118 larvae at the first instar stage were transferred to a well of a 24-well plate bearing a spot of 
rehydrated dry yeast paste, containing water vehicle or 50 mg/ml hydroxyurea (Sigma, H8627). After 
4–5 hr, larvae were collected and washed briefly with distilled water on a Nitex mesh filter (Genesee 
Scientific, 57–102) to remove yeast and subsequently transferred to vials containing standard food. 
Vials were cultured at 25°C in LD cycles and adult animals eclosing from these cultures were assayed 
for sleep as described below. MB ablation was verified in adult brains in a separate cohort of animals 
by staining with anti-FasII primary antibody (1:50, DSHB) and Alexa 488-conjugated donkey anti-
mouse secondary as described below. Vehicle-treated animals exhibited MB lobes demarcated with 
FasII signal (100%, n = 9), while hydroxyurea-treated animals exhibited complete MB ablation as indi-
cated by the lack of residual FasII staining (100%, n = 12); FasII signal within the EB was observed in 
all brains, providing a control for staining of the MB.

Immunohistochemistry
All fixing, washing, and incubation steps for immunohistochemistry were performed on a nutator. 
To assess conditional induction of inc-HA using the Q-system, larval, pupal, and adult brains were 
dissected from inc1; UAS-inc-HA/tub-QS; nsyb-Gal4QF/+ males. Wandering third instar male larvae 
were selected by visual identification of gonads as described above. Larval brains were dissected in 
ice-cold PBS, fixed with 4% paraformaldehyde in PBS for 30 min at room temperature, and washed 3× 
15 min in PBS containing 0.2% Triton X-100 (PBST). Male pupae at stage P13–P14 were identified by 
the staging criteria described above and the presence of sex combs. Pupal brains were dissected in 
ice-cold PBST, fixed with 4% paraformaldehyde in PBST for 30 min at room temperature, and washed 
3× 15 min in PBST. To prepare adult brains, 2- or 4-day-old whole male adults were fixed with 4% 
paraformaldehyde in PBST for 3 hr at 4°C and washed 3× 15 min in PBST at room temperature prior to 
brain dissection in PBST. After dissection, all brains were blocked with 5% normal donkey serum (NDS) 
(Lampire Biological, 7332500) in PBST at room temperature for 30–60 min. Samples were incubated 
overnight at 4°C in rat anti-HA (1:100; Sigma, 11867431001) and mouse anti-Brp (1:20, DSHB, nc82) 
antibodies prepared in 5% NDS in PBST. Brains were subsequently washed 3× 15 min in PBST at room 
temperature, incubated overnight at 4°C in Alexa 488 donkey anti-rat (1:1000; Life Technologies, 
A21208) and Alexa 647 donkey anti-mouse (1:1000, Life Technologies A31571) antibodies prepared in 
5% NDS in PBST, washed 3× 15 min at room temperature in PBST, and mounted on microscope slides 
(Fisher, 1255015) in Vectashield (Vector Labs, H-1000).
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For all other immunohistochemistry, adult brains of 4-day-old males were dissected in PBST, fixed 
with 4% paraformaldehyde in PBST for 30 min at room temperature, and washed 3× 20 min in PBST 
at room temperature. Brains of male wandering third instar larvae and stage P13–P14 pupae were 
dissected, fixed, and stained as described above for Q-system experiments. Primary antibodies were 
mouse anti-FLAG (1:100; Sigma, F1804), rabbit anti-GFP (1:2000; Fisher, A11122), mouse anti-GFP 
(1:1000; DSHB, GFP-G1), rabbit anti-dsRed (1:1000; Takara, 632496), and mouse anti-Brp (1:50, DSHB, 
nc82). Secondary antibodies were Alexa 488 donkey anti-rabbit (1:1000; Life Technologies, A21206), 
Alexa 488 donkey anti-mouse (1:1000; Life Technologies, A21202), and Alexa 568 donkey anti-rabbit 
(1:1000; Life Technologies, A10042).

Imaging and quantitation of neuron number and cluster number
All imaging was performed on a Zeiss LSM800 confocal microscope, using a 10X air objective to 
capture z-stacks at 512 × 512 pixel resolution with 1  μM z-slices, unless indicated otherwise. All 
imaging settings were identical for each experiment comprising control and experimental brains 
stained in parallel.

To quantify MB neuron numbers, wild-type and inc1 brains expressing UAS-MyrGFP-2A-
RedStinger under the control of split-Gal4 drivers were imaged as described above. For each 
neuron subtype, wild-type and inc1 brains were assigned sample numbers and a subset, randomly 
selected using the randperm command in Matlab, was imaged at higher resolution with a 63X 
oil objective. Both hemispheres of brains were imaged, capturing dsRed and myr-GFP channels 
separately. Only a single hemisphere could be imaged for two wild-type brains, one each in the γd 
and α´/β´ groups, due to sample compression by the objective. z-stacks encompassing nuclei were 
captured at 512 × 512 resolution for γd neurons and at 1024 × 1024 resolution for α´/β´ and α/βc 
neurons; 2 μM z-slices were used to ensure that all nuclei (diameter ~3 μM) were segmented in at 
least one optical section.

High resolution z-stacks were assigned a random letter code and neurons were counted in a single-
blind manner by two independent experimenters. Nuclei of γd and α´/β´ neurons exhibited minimal 
overlap along the z-axis, allowing nuclei to be counted in maximum intensity z-projections using the 
Cell Counter plug-in in ImageJ; visual inspection of z-stacks in parallel allowed overlapping nuclei to 
be differentiated. Dense distribution of α/βc neurons prohibited accurate counting in single maximum 
intensity z-projections; maximum intensity z-projections were generated for every 10 z-slices, yielding 
three to four maximum intensity z-projections representing 20  μM each. To improve visualization 
of densely clustered α/βc nuclei, background was subtracted using a rolling ball/sliding paraboloid 
algorithm (radius set to the size of the largest nucleus: 50 pixels) and image intensity display range 
was adjusted (minimum: 5; maximum: 175). Processed maximum intensity z-projections representing 
20 μM each were then merged into a single z-stack for manual counting using the Cell Counter plug-in 
in ImageJ; to avoid double-counting of nuclei segmented in adjacent z-projections, the original unpro-
cessed z-stack was examined in parallel. The variation in MB neuron counts between experimenters, 
calculated as the absolute difference between the two counts divided by their mean, was (mean ± 
SEM) 2.0% ± 0.2% for γd; 1.5% ± 0.3% for α´/β´; and 2.6% ± 0.3% for α/βc. Where neuron counts 
were different for a given hemisphere, the average was plotted. Numbers of γd neurons in wild-type 
animals were intermediate between those reported in prior studies (Aso et al., 2014a; Shih et al., 
2019), while numbers of α´/β´ and α/βc neurons were lower, likely reflecting conservative assignment 
of nuclei in our study and the use of different antibodies and reporters (Aso et al., 2014a; Shih et al., 
2019). α´/β´ counts obtained using the MB370B driver were similar to previously reported numbers of 
α´/β´m neurons; because MB370B labels α´/β´m neurons strongly and α´/β´ap neurons weakly, the lower 
absolute numbers of α´/β´ neurons in our studies may reflect detection sensitivity and correspond 
chiefly to α´/β´m neurons.

To count the number of α/βc neuron clusters in wild-type and inc1 brains, the same randomly 
selected samples used to quantify neuron numbers were assessed in a single-blind manner by two 
independent experimenters. Each z-stack was analyzed using a combination of visual inspection of 
z-sections and rotating the image stack in three dimensions using the 3D Viewer plug-in in ImageJ 
(threshold: 0; resampling factor: 2). A group of nuclei distributed continuously along all axes was clas-
sified as a cluster; a continuous gap at least one nuclear diameter in width across all axes was used 
to define cluster edges and discrete clusters. Cluster counts were identical for wild-type brains; total 
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cluster counts for inc1 brains differed by 8.2% ± 0.2% (mean ± SEM) between experimenters. Where 
cluster counts were different for a given hemisphere, the average was plotted.

DH44 and dFB somata were counted in a single-blind manner by two independent experimenters 
as described for γd and α´/β´ neurons, using DH44-Gal4 to drive UAS-MyrGFP-2A-RedStinger and 
23E10-Gal4 to drive 5× UAS-IVS-Syt1::smGdP-HA. Numbers of dFB and DH44 neurons were identical 
between two independent experimenters.

Analysis of axonal projections and dendritic volume
To analyze axonal projections and dendritic volume, image stacks were captured using a 10X objective 
at 512 × 512 resolution with 1 μM z-slices. Axonal projection defects were assessed in maximum inten-
sity z-projections. The number of horizontal and/or vertical lobes missing myr-GFP signal entirely was 
counted for each brain. To quantify dendritic volume, the Threshold command in ImageJ was applied 
to z-stacks to select dendrites based on DenMark immunofluorescence; high signal to noise allowed 
unambiguous demarcation of dendrites and clear separation from background. The same minimum 
and maximum threshold values were applied to all wild-type and inc1 brains stained in parallel in an 
experiment and captured the entirety of dendritic signal for all samples. A single rectangular region 
of interest of minimal area encompassing dendritic signals from both brain hemispheres across all 
z-slices was drawn for each z-stack. Dendritic volume was quantified using the Voxel Counter plug-in 
in ImageJ.

Sleep analysis
Three- to four-day-old male flies eclosing from LD-entrained cultures raised at 25°C were loaded 
in glass tubes (5 mm diameter × 65 mm length) containing standard food or appropriate food 
for Q-system experiments as described above. Animals were monitored for 5–7 days at 25°C 
in LD cycles using DAM2 monitors (Trikinetics). Locomotor activity data were collected in 1 min 
bins. Inactive periods of 5 min or longer were classified as sleep. The first 36–48 hr of data were 
discarded to allow acclimation of animals to tubes, and 3–5 integral days of data were analyzed 
beginning with ZT0. Dead animals were excluded from analysis by a combination of automated 
filtering and visual inspection of locomotor traces. Matlab code used to analyze sleep is avail-
able in Source code 1.

Thermogenetic activation
Crosses were set on standard fly food as described above and cultured at 21.5°C. One- to four-day-old 
male flies eclosing from these cultures were assayed for 5 days in LD cycles. Animals were maintained 
at 21.5°C for the first 60–72 hr of the assay, including 36–48 hr of acclimation and the subsequent 
baseline day beginning at ZT0. Temperature was increased to 28.5°C for 24 hr to activate dTrpA1, 
followed by 24 hr of recovery at 21.5°C. The percent change in sleep was calculated for each animal 
by subtracting the amount of sleep on the baseline day from the amount of sleep on the activation day 
and dividing this difference by the amount of sleep on the baseline day. The percent change in sleep 
for individual animals was averaged for each genotype.

Gal4 drivers used to express TrpA1 were as follows: pan-MB, MB004B split-Gal4; MB, c253-Gal4 
and c309-Gal4; EB, R69F08-Gal4; DPM, NP2721-Gal4; Helicon, R24B11-Gal4; l-LNV, c929-Gal4; PI, 
PPM3, c584-Gal4.

Statistics
One-way analysis of variance (ANOVA) and Tukey post hoc tests were used for comparisons between 
more than two groups of animals for total sleep, daytime sleep, nighttime sleep, and sleep bout 
number; for comparisons of these sleep parameters between two groups, unpaired two-sided 
Student’s t-tests were used. Kruskal–Wallis tests and Dunn’s post hoc tests were used for compar-
isons of sleep bout length between more than two groups of animals; for comparison between two 
groups, Mann–Whitney tests were used. One-way ANOVA and Dunnett’s post hoc tests were used for 
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comparisons of percent change in sleep. Unpaired two-sided Welch’s t-tests were used for pairwise 
comparisons of neuron number, cluster number, and dendrite volume.
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