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Abstract
This paper proposes and analyses a new fractional-order SIR type epidemic model
with a saturated treatment function. The detailed dynamics of the corresponding
system, including the equilibrium points and their existence and uniqueness, uniform-
boundedness, and stability of the solutions are studied. The threshold parameter, basic
reproduction number of the system which determines the disease dynamics is derived,
and the condition of occurrence of backward bifurcation is also determined. Some
numerical works are conducted to validate our analytical results for the commen-
surate fractional-order system. Hopf bifurcations for the fractional-order system are
studied by taking the order of the fractional differential as a bifurcation parameter.
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1 Introduction

Disease is an integral part of modern civilization. As long as human lives, illnesses
will last in our society. But, the extent of these diseases can be reduced, and even we
can eradicate the disease from the population. Among various types of diseases, infec-
tious diseases are the most vulnerable diseases. Any contagious disease, caused by the
pathogen of bacteria, viruses, fungi, or some parasites can transmit from an infected
human to a susceptible human either through direct contact (viz. influenza, tubercu-
losis, rubella, measles, HIV-AIDS, etc.) or via some medium (viz. malaria, dengue,
chikungunya, etc.). Among all infectious diseases, the recent pandemic COVID-19
caused by the virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2),
the first pandemic of the twenty-first century has affected the lifestyle of human popu-
lation of every country throughout the globe. The disease COVID-19 was first noticed
in the Wuhan city of the Republic of China in December of last year [38]. Till today
except for very few countries, COVID-19 pandemic has worsened the situation all
over the globe [37]). It should be noted that till May 2020, more than six million world
populations have been affected by the disease COVID-19, where almost 50% closed
cases, including 12% death (see [37]).

The rate of progression of infectious diseases including COVID-19 depends on the
amount of pathogen living within a host, its rate of growth, and the interaction with the
host’s immunity. A mathematical model can perfectly capture these relations. Mathe-
matical models help to represent all the scenarios in a compact form. It also captures
how disease propagates, its long-term behavior, and ultimately helps to determine pos-
sible interventions to restrain the infectious disease. The mathematical model of an
infectious disease was first introduced by Kermack and McKendrick [19]. They have
used a simple SIR model to formulate the mathematical model. After this theoretical
epidemiology has come a long way. Several works on control strategies like vaccina-
tion, treatment, isolationwere taken into considerationbymany researchers [17,20,24].
But, in all the works done so far, researchers have considered the integer order sys-
tem while constructing the mathematical model. Recently some researchers have also
developed somemodel-basedworks to examine the detailed dynamical behavior of the
COVID-19. The researchers including Ahmed et al. [3], Kucharski et al. [21], Prem et
al. [32], etc. have also developed some mathematical models and presented rigorous
analysis. In an article, Ribeiro et al. [33] have used some stochastic-based regression
models to forecast the phenomena in ten most affected states of Brazil. Noting that
isolation is a good measure to control the disease, Hellewell et al. [14] have used the
operative techniques of COVID-19 diseases using separation. In the recent works,
Mandal et al. [25,27] have constructed and analyzed a mathematical model on the
COVID-19 in the pandemic scenario of three states of India. In other recent work, a
balance between lockdown and compliance to investigate the COVID-19 scenes has
been proposed by Zegarra et al. [2]. Some more theoretical works on COVID-19 can
be found in [25,27,34].

The shortcoming of the integer order system is that it does not rely on the previous
history of the system. But, when a disease transmits, the susceptible population uses
their memory to prevent infection. A dynamical system involving fractional-order
derivatives bears the information regarding its present and also its past states [12].
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Complex dynamics of a fractional-order SIR system… 4053

Hence, fractional-order systems give more in-depth knowledge about the system than
integer order systems. Also, as there aremany developments in fractional calculus (See
the articles [1,4,28,29]), so, it is logical to apply a fractional-order differential equation
to represent a biological phenomenon through mathematical modeling. According to
Du et al. [10], if the parameter α(∈ (0, 1]), the order of the fractional-order system
tends to 0, the model has full memory, and when α = 1, the model system is known
as memoryless. Hartley et al. [13] used fractional differentiation for the first time
for a physical system in demonstrating the behavior of the semi-infinite lossy (RC)
line. Torvik et al. [35] have studied that fractional derivatives appear naturally to
describe some properties of motions of a Newtonian fluid. At present, there are several
works involving the application of fractional-order systems in various fields including
epidemic models [15,26].

In human society, any epidemic can not be thought without the effect of mem-
ory. Whenever an infectious disease propagates in human society, the knowledge or
experience of each people about that particular disease should affect their response
[36]. People apply several precautions (e.g. vaccination, if it is available) for a disease
if they have a past experience of the disease. In this regard, some important control
measures can suppress the spreading of the disease. But, mere knowledge about a
disease may not protect all the time. That is why people are willing to adopt some
new paths to control these diseases. The memory of an infectious disease from the
previous situation has more contribution on the recent situation as compared to no
memory. It is anticipated that the long-time impact of memory decreases in future
time more tardily than exponential decay, but generally, its behavior is a similar way
of power-law damping function.

In this work, we have formulated a new SIR type epidemic model with the help of
fractional differential equations. Although there are many ways to define a fractional-
order differential equation in the sense of Riemann-Liouville, Grünwald-Letnikov, and
the Caputo. In this work, we use the Caputo definition due to its similarity in using the
initial conditions with the integer-order differential equation. From this perspective,
we develop amathematical model considering a system of fractional-order differential
equations and analyze the thorough dynamics of the proposed model. Moreover, we
apply this model to predict the COVID-19 situation of India after the second wave.

The whole manuscript is structured in the following way: An SIR type model with
the fractional differential equation is formulated in Sect. 2. The equilibrium points,
existence and uniqueness of solution, their dynamical behavior, stability of the system,
and the occurrence of Hopf bifurcation are discussed in Sect. 3. Several numerical
simulations are performed in Sect. 4, and the application of the model on some real-
world data is discussed in Sect. 5, and lastly, in Sect. 6, we present a concise discussion
and conclusion.

2 Model formulation

In this section, a newSIR typemodel is considered.Wedivide thewhole population into
susceptible S(t), infected I (t), and recovered R(t), the three mutually exclusive time-
dependent classes. First, we consider that at any time t, A be the newly recruitment
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Fig. 1 Flow chart of the disease transmission

rate, β be the disease transmission rate, d be the natural death rate, δ be the rate of
death due to the disease, ε be the natural recovery rate. We assume that some infected
person will be recovered due to available treatment control. Let v denote the treatment
control parameter for the infected population. The rate of recovery is considered as

γ v
1+v I with γ representing the effectiveness of the treatment due to saturated type
treatment control (see Jana et al. [16]). Every country, including the most developed
countries in the world, has limitations in providing medical resources like proper
medicines, availability of beds in hospitals, etc. Particularly, the contagious disease
like COVID-19, which has appeared all of a sudden, it is not possible to provide
treatment to every patient when the number of patients becomes very large. From
this point of view, we have used the saturated type recovered rate due to treatment.
A schematic diagram of the above assumptions is described in Fig. 1. Based on these
assumptions, we define our model in the following manner:

dS

dt
=A − βSI − dS,

d I

dt
=βSI −

(
ε + γ v

1 + v I

)
I − (d + δ)I ,

dR

dt
=

(
ε + γ v

1 + v I

)
I − dR,

(2.1)

with initial conditions

S(t0) = S0 ≥ 0, I (t0) = I0 ≥ 0, R(t0) = R0 ≥ 0.

According to Du et al. [10] a memory process usually consists of two stages: the fresh
stage and the working stage. The fresh memory is used to just remember things while
the working memory helps to do cognitive works. In the fractional model, we capture
theworkingmemory. The critical point between the fresh stage and theworking stage is
usually not the origin. This observation is quite different from the traditional fractional
models of one stage. For example, the fractionalMaxwell’smodel is a one-stagemodel.
As the combination of two simple models, it has a more complicated expression than
Eq. (2.1).We also find that the order of fractional. Also, in reality, no individual has the
same memories, it changes from person to person. Once infected an individual gains
knowledge about the disease which helps to obstruct the transmission of infectious
disease. We consider this fact into the fractional form of the system (2.1). Here we
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assume thatα1,α2 andα3 are such properties corresponding to the susceptible, infected
and recovered population respectively, where αi ∈ (0, 1], i = 1, 2, 3. Whereas, the
recoveredwill have betterworkingmemory than infected one but lessworkingmemory
than susceptible. So, the fractional order form of the system (2.1) takes the form

t0D
α1
t S(t) = A

′ − β
′
SI − d

′
S, S(t0) ≥ 0

t0D
α2
t I (t) = β

′
SI − (

ε
′ + γ

′
v

′

1 + v
′ I

)
I − (d

′ + δ
′
)I , I (t0) ≥ 0

t0D
α3
t R(t) = (

ε
′ + γ

′
v

′

1 + v
′ I

)
I − d

′
R, R(t0) ≥ 0. (2.2)

Here Dαi
t is the fractional-order derivative in Caputo sense [30,31] for i = 1, 2, 3. In

the system (2.2) we replace the parameters of the system (2.1) in such a way that the
problem of dimension mismatch is solved.

For simplicity, we set A′ = A, β ′ = β, d ′ = d, ε′ = ε, γ ′ = γ, v′ = v, δ′ = δ.
Using these transformations into the system (2.2), we have

t0D
α1
t S(t) =A − βSI − dS,

t0D
α2
t I (t) =βSI − (

ε + γ v

1 + v I

)
I − (d + δ)I ,

t0D
α3
t R(t) =

(
ε + γ v

1 + v I

)
I − dR

(2.3)

with initial conditions S(t0) = S0 ≥ 0, I (t0) = I0 ≥ 0, R(t0) = R0 ≥ 0. Here Dαi
t

is the fractional-order derivative in Caputo sense [30,31] for i = 1, 2, 3. The system
(2.3) is called to be an incommensurate fractional-order system. If α1 = α2 = α3 =
α ∈ (0, 1], then the system is said to be a commensurate fractional-order systemwhich
is given by

t0D
α
t S(t) =A − βSI − dS,

t0D
α
t I (t) =βSI − (

ε + γ v

1 + v I

)
I − (d + δ)I ,

t0D
α
t R(t) =

(
ε + γ v

1 + v I

)
I − dR

(2.4)

with initial conditions S(t0) = S0 ≥ 0, I (t0) = I0 ≥ 0, R(t0) = R0 ≥ 0. Here Dα
t

is the fractional-order derivative in Caputo sense [30,31].

3 The analysis of fractional-order system

At this stage, we analyze the dynamical behavior of the fractional-order system (2.4).
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3.1 Equilibrium points

Now we discuss the existence of nonnegative equilibrium points of the system (2.4).
We observe that the system (2.4) has three equilibrium points. One is disease free
equilibrium (DFE) E0 = ( A

d , 0, 0
)
and the other two equilibrium points are endemic

equilibrium (EE) if they exist E1(S∗, I ∗, R∗) and E2(S∗∗, I ∗∗, R∗∗) where I ∗ and
I ∗∗ are the roots of the following quadratic equation

a0 I
2 + a1 I + a2 = 0 (3.1)

where a0 = βv(ε + d + δ), a1 = [(ε + d + δ)(β + dv) − (A − γ )βv], a2 =
d(ε + d + δ + γ v)(1 − R0), and R0 = βA

d(ε+d+δ+γ v)
.

Here the parameter R0 is recognized as the basic reproduction number. Hence
we can derive S∗ = 1

β
[ε + d + δ + γ v

1+v I ∗ ], R∗ = 1
d (ε + γ v

1+v I ∗ )I ∗ and S∗∗ =
1
β
[ε + d + δ + γ v

1+v I ∗∗ ], R∗∗ = 1
d (ε + γ v

1+v I ∗∗ )I ∗∗.
Let D = a21 − 4a0a2 be the discriminant of the Eq. (3.1).

If R0 > 1, (i.e. if a2 < 0) then (3.1) has a unique positive root, I ∗ = −a1+
√
D

2a0
.

Thus we can say that the system (2.1) has a positive unique EE (S∗, I ∗, R∗) if R0 > 1.
If R0 = 1, then a2 = 0 which implies (a0 I + a1)I = 0. From this we can get a

positive EE of the system (2.4) as − a1
a0

if and only if a1 < 0. Now, a1 < 0 gives the

treatment control parameter to be v >
β(ε+d+δ)

(A−γ )β−d(ε+d+δ)
.

If R0 < 1, (i.e. if a2 > 0) and D < 0, then the system (2.1) possesses no EE.
Also if R0 < 1 and a1 ≥ 0 i.e. 0 < v ≤ β(ε+d+δ)

(A−γ )β−d(ε+d+δ)
then there is no endemic

equilibrium points.
We formulate the next theorem which is grounded on the above discussions.

Theorem 3.1 (i) The system (2.4) possesses two EE points if R0 < 1, D > 0, a1 < 0
and no EE point if R0 < 1, D > 0, a1 ≥ 0.

(ii) The system (2.4) possesses two equal EE points if R0 < 1, D = 0, a1 < 0 and
no EE points if R0 < 1 and D < 0.

(iii) If the basic reproduction number, R0 = 1, then the system (2.4) possesses a
unique EE point if a1 < 0 i.e. v >

β(ε+d+δ)
(A−γ )β−d(ε+d+δ)

, where v is the control
parameter and no EE points if a1 ≥ 0.

(iv) The system (2.4) possesses a unique EE point if R0 > 1.

From the above theorems we experience that the system (2.4) has two different
equilibrium points even when R0 < 1. Hence we can conclude that the proposed
model experiences a backward bifurcation at R0 < 1 which shown in Fig. 2. Thus the
condition R0 < 1 is not sufficient to eradicate the disease from the population.

Theorem 3.2 [5] The system (2.4) passes through a backward bifurcation at R0 = 1
if and only if R0

′ < R0, where R0
′ is determined in subsequent steps.

Here the treatment control parameter v is selected as the backward bifurcation param-
eter. Observe that if the case (iii) of theorem (3.1) is true then the system (2.4)
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Fig. 2 Backward bifurcation of the system (2.4) with the parameter values A = 0.85 , β = 0.1, d = 0.01,
δ = 0.5, ε = 0.001, γ = 0.01, and v = 1

undergoes a backward bifurcation at R0 = 1. Hence it can be explained that the
system possesses two EE point in some interval [R0

′, R0], where R0 = 1 and
R0

′ = R0
′(v∗). v∗ can be derived from D = 0 i.e. a21 = 4a0a2. Now, a21 = 4a0a2 gives

Bv∗2 − 2Cv∗ + β2(ε + d + δ)2 = 0 where B = [β(A − γ ) − (ε + d + δ)d]2, and
C = β(d+ε+δ)[d(d+ε+δ)−β(γ +A)].Solvingwehave v = C±

√
C2−Bβ2(ε+d+δ)2

B .

Now, this case occurs only when a1 < 0 and R0 < 1. Thus we get,

v > max

{
β(ε + d + δ)

β(A − γ ) − d(d + ε + δ)
,
βA − d(ε + d + δ)

γ d

}

From the above conditions we have derived at the critical value of v as v∗ =
C+

√
C2−Bβ2(ε+d+δ)2

B . Thus the new threshold value at which the diseases eradicates

from the population R0
′ (say) is R0

′ = βA
d(ε+d+δ+γ v∗) . Therefore, depending on the

above discussion we can state the next theorem.

Theorem 3.3 The system (2.4) holds

(i) a unique EE point if R0 > 1 and the disease will remain in the population.
(ii) two EE points if R0

′ < R0 < 1 which implies that the system passes through a
backward bifurcation.

(iii) a unique DFE point if R0 < R0
′ < 1 which implies that the disease will die out.

3.2 Existence and uniqueness of the solutions

We now state and prove the following lemma which helps us to conclude that our
constructed model has a unique solution.
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Lemma 3.4 [22] Consider the fractional-order system

t0D
α
t x(t) = f (t, x), t0 > 0, and x(t0) = x0 (3.2)

where α ∈ (0, 1], f : [t0,∞) × R → R
n, R ⊂ R

n . If the Lipschitz condition with
respect to x is satisfied by the function f (t, x), then the system (3.2) has a unique
solution on the interval [t0,∞) × R.

Theorem 3.5 The system (2.4) has a unique solution in the region [t0, P] ×R where,
R = {(x, y, z) ∈ R

3 : max{|S|, |I |, |R|} ≤ Q}, and P, Q ∈ R
+.

Proof We prove the existence and uniqueness criterion for the fractional-order system
(2.4). For that purpose we consider the region [t0, P] × R where R = {(x, y, z) ∈
R
3 : max{|S|, |I |, |R|} ≤ Q}. Let X = (S, I , R) and Y = (S1,Y1, R1) be arbitrary

two points in the region R and define the mapping H : R → R
3 by H(X) =

(H1(X), H2(X), H3(X)), where

H1(X) = A − βSI − dS, H2(X) = βSI −
(

ε + γ v

1 + v I

)
I − (d + δ)I , and

H3(X) =
(

ε + γ v

1 + v I

)
I − dR.

For any X ,Y ∈ R, we have

||H(X) − H(Y )||

=
3∑

i=1

|Hi (X) − Hi (Y )|

= |A − βSI − dS − A + βS1 I1 + dS1| + |βSI − (ε + γ v

1 + v I
)I

− (d + δ)I − βS1 I1

+ (ε − γ v

1 + v I1
)I + (d + δ)I1| + |(ε + γ v

1 + v I
)I − dR

− (ε + γ v

1 + v I1
)I1 + dR1|

≤ 2β|SI − S1 I1| + d|S − S1| + 2ε|I − I1| + 2γ v| I

1 + v I

− I1
1 + v I1

| + (d + β)|I − I1|
+ d|R − R1|

≤ (2βQ + d)|S − S1| + (2d + 2ε + 2γ v + δ)|I − I1| + d|R − R1|
≤ K ||X − Y ||,where K = max{2βQ + d, 2(d + ε + γ v) + δ, d}

Therefore, the function H(X) fulfills the criteria of the Lipschitz’s condition with
respect to X = (S, I , R) ∈ R. Then by using the Lemma 3.4, we can conclude
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that our system (2.4) has a unique solution X ∈ R with initial conditions Xt0 =
(St0 , It0 , Rt0) ∈ R. ��

3.3 Nonnegativity and boundedness of solutions

In mathematical biology, our main concern is on the nonnegative and bounded
solutions. Hence, we try to find the solutions that possess the (i) non-negativity
and (ii) bounded properties. For this purpose, we consider the following region
R+ = {(S, I , R) ∈ R : S, I , R ∈ R

+}.
Theorem 3.6 Every solutions of the fractional system (2.4) whose initial values start
in R+3 i.e. St0 ≥ 0, It0 ≥ 0, Rt0 ≥ 0 are all nonnegative and bounded.

Proof To prove the nonnegativity of the solution, we use Lemma 3.2 [15]. We have
discussed the existence of solution of the system (2.1) in Theorem 3.1. As (2.4) is a
homogeneous system of equations with initial conditions S(t) ≥ 0, I (t) ≥ 0, R(t) ≥
0we can conclude that the solutions of (2.4) is non-negative. Furthermore, the solutions
are nondecreasing in t . Now to prove the uniform boundedness of the solutions, we
consider a mapping F(t) = S(t) + I (t) + R(t). Then we have,

t0D
α
t F(t) + dF(t)

= t0D
α
t S(t) + t0D

α
t I (t) + t0D

α
t R(t) + dS(t) + d I (t) + dR(t)

= A − βSI − dS + βSI −
(

ε + γ v

1 + v I

)
I

− (d + δ)I +
(

ε + γ v

1 + v I

)
I − dR + dS(t) + d I (t) + dR(t)

= A − δ I ≤ A as I (t) ≥ 0.

Using the Lemma 3.2 [15], we have F(t) ≤ (F(t0) − A
d )Eα[−d(t − t0)α] + A

d →
A
d as t → ∞. Therefore, all the solution of the fractional system (2.4) whose initial
conditions start in the region R+ is bounded and it lies in the region {(S + I + R) ∈
R+ : S + I + R ≤ A

d }. ��

3.4 Dynamical behavior

In this portion of the research article, we study the stability conditions of each equi-
librium point. Here, we assume that the fractional system (2.4) possesses unique EE
point. The local stability investigation of the system (2.4) is done with the help of mak-
ing linearization around each equilibrium point. The Jacobian matrix of the fractional
system (2.4) at the DFE point ( A

d , 0, 0) is

J

(
A

d
, 0, 0

)
=

⎛
⎝−d 0 0

0 βA
d − (d + ε + δ) − γ v 0

0 ε + γ v −d

⎞
⎠
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The eigenvalues of the above Jacobian matrix are λ1 = −d, λ2 = −d, λ3 = βA
d −

(ε + d + δ + γ v). Therefore, |arg(λ1)| = |arg(λ2)| = π > απ
2 , where α ∈ (0, 1]

and |arg(λ3)| = π > απ
2 if βA

d − (d + ε + δ)−γ v < 0 i.e. if R0 < 1. Again we have
established that the system undergoes backward bifurcation iff R0

′ < R0. Hence, by
the Lemma 3.3 [15], we can conclude that the system is asymptotically stable around
the DFE if R0 < min{1, R0

′}. Thus, we can state the next theorem.

Theorem 3.7 TheDFE
( A
d , 0, 0

)
of the fractional system (2.4) is locally asymptotically

stable iff

R0 < min{1, R0
′}.

Next, we discuss the local stability criteria of EE point (S∗, I ∗, R∗). J , the Jacobian
matrix at (S∗, I ∗, R∗) of the system (2.4) is given by

J (S∗, I ∗, R∗) =
⎛
⎜⎝

−d − β I ∗ −βS∗ 0
β I ∗ βS∗ − (d + ε + δ) − γ v

(1+v I ∗)2 0

0 ε + γ v

(1+v I ∗)2 −d

⎞
⎟⎠

One eigenvalue of the matrix is λ1 = −d and the other two eigenvalues are obtained
from the matrix

J ∗ =
(−d − β I ∗ −βS∗

β I ∗ βS∗ − (d + ε + δ) − γ v

(1+v I ∗)2

)

The characteristic equation of the Jacobian matrix at the EE, (S∗, I ∗, R∗) is given by

λ2 − 2a1(γ )λ + a2(γ ) = 0 (3.3)

where a1(γ ) = 1
2 [ γ v2 I ∗

(1+v I ∗)2 − (β I ∗ + d)], and a2(γ ) = β I ∗(ε + d + δ + γ v
1+v I ∗ ) −

(β I ∗ + d)
γ v2 I ∗

(1+v I ∗)2 .
Let λ2 and λ3 be the eigenvalues of the matrix J ∗. Now, a1 will be negative if

0 < γ <
(β I ∗ + d)(1 + v I ∗)2

v2 I ∗ = γ0, say (3.4)

Then the eigenvalues are

λ2,3 = a1 ±
√
a21 − a2 (3.5)

Previously, we have determined one eigenvalue λ1 = −d whose argument i.e.
|arg(−d)| = π > απ

2 , for α ∈ (0, 1). Now, we consider different cases considering
different values of b1 and a2.
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(i) If a21 ≥ a2 and a1 < 0, then both the eigenvalues are negative. So, |arg(λ2,3)| =
π > απ

2 , α ∈ (0, 1). Hence from Lemma 3.3 and Lemma 3.4 of the article by
Jana et al. [15], the EE is asymptotically stable.

(ii) If a21 ≥ a2 and a1 ≥ 0, then one of the eigenvalues will be non negative. Then,
|arg(λi )| = 0 < απ

2 for i=2 or, 3, and α ∈ (0, 1). Hence, by Lemma 3.3 and 3.4
[15], the EE is unstable.

(iii) If the conditions a21 < a2 and a1 > 0 hold, then both the eigenvalues will be

complex conjugates. λ2,3 = a1 ± i
√
a2 − a21 , where i = √−1. Therefore, the

EE point will be asymptotically stable if |arg(λ2,3)| = tan−1|
√
a2−a21
a1

| > απ
2 .

Hence, for the order of differentiation α ∈
(
0, 2

π
tan−1|

√
a2−a21
a1

|
)

the EE is

locally asymptotically stable.

(iv) If a21 < a2 and a21 < 0, then |arg(λ2,3)| = π − tan−1|
√
a2−a21
a1

|. Therefore, EE
will be asymptotically stable if π − tan−1|

√
a2−a21
a1

| > απ
2 . Hence, for the order

of differentiation α ∈
(
0, 2 − 2

π
tan−1|

√
a2−a21
a1

|
)

(v) If a21 < a2 and a1 < 0, then |arg(λ2,3)| = π
2 > απ

2 . Then EE is locally
asymptotically stable.

From the above discussions we may state the next theorem about the stability of
the EE point.

Theorem 3.8 The conditions for the local stability of EE of the system (2.4) are fol-
lowed by:

(i) The EE is locally asymptotically stable if a21 ≥ a2 and a1 < 0.
(ii) The EE is locally unstable if a21 ≥ a2 and a1 ≥ 0.
(iii) The EE is locally asymptotically stable if a21 < a2 and a1 > 0.
(iv) The EE is locally asymptotically stable if a21 < a2 and a1 < 0.
(v) The EE is locally asymptotically stable if a21 < a2 and a1 = 0.

3.5 Global stability of DFE

We now demonstrate the asymptotic global stability of the DFE point.

Theorem 3.9 The DFE point E0
( A
d , 0, 0

)
of the fractional system (2.4) is globally

asymptotically stable if R0 < min{1, R0
′}.

Proof We prove the theorem using the Lemma 4.3 of the article [15]. Consider a
function in the following way: V = I .
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Then the solution of the fractional system (2.4) and the constructed function V
together imply that

t0D
α
t V = t0D

α
t I (t) = βSI −

(
ε + γ v

1 + v I

)
I − (δ + d)I

≤
[
βA

d
− γ v − ε − (δ + d)

]
I

= (d + ε + δ + γ v)[R0 − 1]I ≤ 0 if R0 < 1.

The Lemma 4.3 [15] suggests that any solution of (2.1) starting in the regionR tends
to largest invariant set S = {(S, I , R) ∈ R : t0D

α
t V = 0}. Hence, lim

t→∞I (t) = 0, the

fractional system (2.4) changes to the equations

t0D
α
t S(t) = A − dS, t0D

α
t R(t) = −dR (3.6)

The solution of (3.6) is S(t) = (− A
d + S(0)

)
Eα[−dtα] + A

d and R(t) =
R(0)Eα[−dtα]

Then we have S(t) = A
d and R(t) = 0 as t → ∞. Further, we have already

established that the DFE is locally asymptotic stable if R0 < min{1, R0
′}. Combining

both results, we may conclude that the DFE point of the limit set (3.6) is globally
stable asymptotically for R0 < min{1, R0

′}. Hence the proof. ��

3.6 Analysis of Hopf bifurcation

The existence and analysis of Hopf bifurcation for a system ismodeled by ordinary dif-
ferential equations is studied by many researchers [17,18]. In this portion, we analyze
Hopf bifurcation of the fractional-order system (2.4) for different values of α ∈ (0, 1).
Here we assume the effectiveness of the saturated treatment control parameter γ and
the fractional-order α as bifurcation parameters.

It is known that Hopf bifurcation may take place in spite of stability of a system
at the critical value of bifurcation parameter for an integer order system. Therefore,
all the roots of the Eq. (3.3) are all real. Hence, a1(γ ) = 0 delivers us the necessary
critical value γ0 of the bifurcation parameter

γ0 = (β I ∗ + d)(1 + v I ∗)2

v2 I ∗ .

In this case, the Hopf bifurcation occurs at γ0 if the succeeding conditions are fitted
i.e.

d

dγ
Re[λ(γ0)] 
= 0, Im[λ(γ0)] 
= 0.

Now we state some necessary conditions for the existence of Hopf bifurcation in our
fractional system.
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Here we take α as the bifurcation parameter. Using the Lemma 3.4 [15], we can say
that stability of the fractional system (2.4) depends on sign of (απ

2 − |arg(λi )|) i =
1, 2, 3. Based on this observation, we define the function F(α) by

f2(α) = απ

2
− |arg(λi )|, i = 1, 2, 3.

The Lemma 3.4 [15] implies that the EE point will be stable asymptotically if f2(α) <

0 and it will be unstable if f2(α) > 0.

Theorem 3.10 [23] If the bifurcation parameter α crosses the critical value α = α∗ ∈
(0, 1), then the fractional system (2.4) passes through a Hopf bifurcation at EE point
(S∗, I ∗, R∗), if the given singularity conditions [(i), (ii)] and also the transversality
condition [(iii)] are satisfied.

(i) the Jacobian J at the EE point of the system (2.4) induces complex conjugate
eigenvalues λ2,3 = a(α) ± ib(α) with a(α) > 0.

(ii) f2(α∗) = 0 and
(iii) d

dα
f2(α) 
= 0 at α = α∗.

3.7 Incommensurate fractional-order model

Let us assume the incommensurate fractional system (2.4), αi ∈ (0, 1], i = 1, 2, 3
and ζ = 1

L where L = lcm(q1, q2, q3) and αi = pi
qi
, and pi , qi are relatively prime for

i = 1, 2, 3. Then by Lemma 3.5 [15], an equilibrium point E(S, I , R) is locally stable
asymptotically iff |arg(λ)| >

ζπ
2 for all the roots λ’s of the characteristic equation

det(M − J ) = 0 (3.7)

where M = diag(λLα1 , λLα2 , λLα3) and J , Jacobian matrix evaluated at the same
equilibrium point E(S, I , R).

4 Numerical experiments

In the numerical experiments, we apply predictor-corrector P(EC)mE (Predict, multi-
term(Evaluate, Correct), Evaluate) method which is the modified method of PECE
(Predict, Evaluate, Correct, Evaluate) and Adams-Moulton algorithm [8,9,11] in the
environment of MATLAB-16 software. For this purpose, we use the solver function as
implicit fractional linear multi-step methods (FLMMs) for fractional-order systems.
To perform numerical works, we choose the set of parameters as

A = 0.85, β = 0.1, d = 0.01, v = 1, ε = 0.01, δ = 0.5.

These parameters yield the EE E∗ of the fractional system (2.4) as E∗ = (5.2 +
10γ
1+I ∗ , I ∗, (1 + 5

1+I ∗ )I ∗) where I ∗ = 0.1(3 − 10γ + √
169 − 80γ + 100γ 2). E∗

exists if I ∗ > 0 which implies that the feasible region of γ is 0 < γ < 8. The

123



4064 S. Majee et al.

EE E∗ of the ordinary system will be stable if a1(γ ) = 0 and a1(γ ) = 0 gives
γ = 0.47 (say, γ0). For γ < γ0, the eigenvalues contain negative real parts and hence
|arg(λ2,3)| > απ

2 . Therefore the EE point is asymptotically stable and converges to
E∗ = (7.343, 1.056, 22.79) for all α ∈ (0, 1). If γ > γ0, for α = 1, the EE is
unstable as the eigenvalues contain positive real parts. Now, we depict some figures
for the solutions of the fractional system (2.4) in the presence of the initial conditions
S(0) = 0.045, I (0) = 0.04, R(0) = 0.037. If γ > γ0 and α ∈ (0, 1], then it
can be said that the EE point is stable by Theorem 3.8. If we choose γ = 0.49 then
the eigenvalues are λ2,3 = 0.004 ± 0.257i . When α < 2

π
|arg(λ2,3)| = 0.987, EE

point will be asymptotically stable and it will be unstable whenever α > 0.987. These
behaviors are shown in Fig. 3 for γ = 0.44, Fig. 4 for γ = 0.47, and Fig. 5 for
γ = 0.49.

Next we assume γ = 0.9, the eigenvalues are 0.068 ± 0.216i . When the value of
α < 2

π
|arg(λ2,3)| = 0.803, EE point will be asymptotically stable and for α > 0.803

the EE point will be unstable. Figure 6 depicts the behavior.
From the above discussion it can be said that with changing values of γ , we can

get different region of α for which the EE points remain asymptotically stable. The
fractional order system will be asymptotically stable if γ < f1(α) = α

2 − |arg(λ)|.
Here, f1(0) = 1.90, f1(1) = 0.45. So, f1(α) is a decreasing function. The stability
region in terms of α and γ are shown in Fig. 7.

Now we demonstrate Hopf bifurcation for the fractional system (2.4). To sat-
isfy the singularity condition (i) of Theorem 3.10, we must have a1(γ ) > 0 and√
a1(γ )2 − a2(γ ) < 0 of the equation (3.5). We see that Hopf bifurcation of the sys-

tem (2.4) occurs for α ∈ (0, 1) if the parameter γ representing the effectiveness of
treatment control lies in the interval (0, 1.5). We choose γ = 0.97 then the critical
value of α as α∗ is determined from condition (ii) of Theorem 3.10 and we get the
critical value α∗ = 0.802. The third condition holds good since, d

dα
f2(α) = π

2 at
α = α∗. Hence, we see that Hopf bifurcation undergoes at α∗ = 0.802 and with
increasing value of α from α∗ the orbits of the limit cycles also increase. Figure 8.
depicts such behavior. The eigenvalues at EE of the incommensurate fractional sys-
tem (2.3) can be determined by the help of the equation (3.7) which is, in general, a
higher-order polynomial based on the values of α1, α2, α3. Nowwe choose γ = 0.95.
Then we obtain the EE point (10.89, 0.703, 2.769). We set the fractional orders as
α1 = 0.9, α2 = 0.7, α3 = 0.8 and obtain the eigenvalues from equation (3.7).
We see that the absolute value of the minimum of arguments of the eigenvalues is
0.133 <

πζ
2 = 0.157. Hence, in this case, the eigenvalues are unstable. Again we

choose α1 = 0.7, α2 = 0.5, α3 = 0.6 and find the absolute value of the minimum of
argument of the eigenvalues of the equation (3.7) as 0.180 >

πζ
2 = 0.157. Hence, in

this case, the EE point is asymptotically stable. These behavior are presented in Fig. 9.
Now we state the theorem for existence criteria of Hopf Bifurcation due to the

parameter γ .
Here we define a function f3(γ ) by

f3(γ ) = απ

2
− |arg(λi (γ ))|, i = 1, 2, 3.
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Fig. 6 Time series plot for γ = 0.9 of system (2.4) corresponding to the order α = 0.8, 0.95 respectively

Fig. 7 Stability region of the commensurate system (2.4)

From Theorem 2 in [7], we can say that the EE point will be stable asymptotically
if f3(γ ) < 0 and it will be unstable if f3(γ ) > 0. Now we state the theorem for
existence criterion of Hopf bifurcation about the parameter γ .

Theorem 4.1 [23] If the bifurcation parameter γ crosses its critical value γ ∗ (say),
then the system (2.4) passes through a Hopf bifurcation at the EE point (S∗, I ∗, R∗),
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Fig. 8 Limit cycles for γ = 0.97 at α = 0.802, 0.89, 0.98
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Fig. 9 Time series plot for γ = 0.95 of system (2.3) corresponding to the order α1 = 0.9, α2 = 0.7, α3 =
0.8 and α1 = 0.7, α2 = 0.5, α3 = 0.6

if the following singularity conditions (i) and (ii) and the transversality condition (iii)
are satisfied.

(i) the Jacobian J computed at the EE point of the system (2.4) determines a pair
of complex conjugate eigenvalues λ2,3 = c(γ ) ± id(γ ) with c(γ ) > 0.

(ii) f3(γ ∗) = 0 and
(iii) d

dγ
f3(γ ) 
= 0 at γ = γ ∗.

4.1 Numerical simulation of Hopf bifurcation

We now choose γ as a bifurcation parameter. Here also we obtain the eigenvalues from
the equation (3.5). The first condition of Theorem 4.1 implies that the eigenvalues
obtained from equation (3.5) must contain positive real parts. Then we must have
a1 > 0 and a22 − a1 < 0. Hence, a Hopf bifurcation of the system (2.4) occurs if
γ ∈ (0, 1.5).
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Fig. 10 Limit cycles for α = 0.98 at γ = 0.587, 0.727, 0.969

The critical value γ ∗ of γ is obtained from f3(γ ) = 0 and which implies

απ

2
= tan−1

⎛
⎝

√
a22 − a1

a1

⎞
⎠

Let us choose the order of fractional derivative α = 0.98 then the equation f3(γ ) = 0
yields the critical value of the bifurcation parameter as γ ∗ = 0.587 and at this point
d
dγ

h(γ ) = 0.00919 
= 0. Therefore, the transversality criteria [(iii)] is also satisfied.
Thus, the existence of Hopf bifurcation confirms at γ ∗ = 0.587 and with increasing
value of γ from γ ∗ the orbits of the limit cycles also increase. Figure 10. depicts such
behavior.

4.2 Hopf bifurcation of the incommensurate system

Here we consider the incommensurate system (2.3) where the fractional orders
α1, α2, α3 ∈ (0, 1) are taken as bifurcation parameter. We study the stability criteria
of the fractional system (2.3) by using Theorem 2 in [7]. It shows that the stability
depends on the sign of (

αζ
2 − |arg(λi )|). Here we see that the number of eigenvalues,

i depends on the term ζ = 1
L which depends on the different fractional orders (gener-

ally, i is greater than the number of equations of the given system). Here we consider
the orders of fractional derivative α1, α2, α3 as the bifurcation parameters.

Now we define a function

w(ζ(α1, α2, α3)) = ζπ

2
− min

i
|arg(λi )|

From Theorem 2 in [7], we can see that EE point will be stable asymptotically if
w(ζ ) < 0 and it will be unstable if w(ζ ) > 0.

To examine the existence of the Hopf bifurcation for incommensurate fractional
system, we state the pursuing theorem.
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Fig. 11 Limit cycles for γ = 0.97 at α1 = 0.692, 0.88, 0.98 and α2 = 0.94 α3 = 0.96

Theorem 4.2 [7] If the bifurcation parameters (α1, α2, α3) meets its critical value
(α∗

1 , α∗
2 , α∗

3) ∈ (0, 1), then the system (2.3) passes through Hopf bifurcation at
the EE point E∗ = (S∗, I ∗, R∗), if the given singularity criteria [(i)] and also the
transversality criteria [(ii)] are satisfied.

(i) w((α∗
1 , α∗

2 , α∗
3)) = 0

(ii) 
w((α∗
1 , α∗

2 , α∗
3)).æ 
= 0, where æ is the directional derivative of the vector

curve w(ζ(α1, α2, α3)) = 0 at the critical value of bifurcation parameter
(α∗

1 , α∗
2 , α∗

3).

We calculate (α∗
1 , α

∗
2 , α

∗
3), the critical value of the parameter for fixed γ = 0.97.

Let us choose fixed α∗
2 = 0.94 andα∗

3 = 0.96. Then the equationw(ζ(α∗
1 , α

∗
2 , α

∗
3) = 0

determine (α∗
1 , α

∗
2 , α

∗
3) as (0.692, 0.94, 0.96). At the critical value α∗

1 , Fig. 11 estab-
lishes that the Hopf bifurcation occurs. Also if α1 increases beyond the critical value
α∗
1 , the limit cycles will be an attractor with larger radius.

5 Numerical application for some real world data

In this section, we apply the above system (2.1) to predict the COVID-19 situation of
India after the second wave. For this, we collect the data of daily (cumulative) active
infected of India from 1st March 2021 to 15th August 2021 from the official websites
of the Government of India [6] and taking the parameter set as A = 85620, β =
0.084, d = 0.001, ε = 0.00125, γ = 0.0825, v = 0.1, δ = 0.00157 and α = 0.90.
At this environment, to fit the above data with the above model, we use the MATLAB-
16 software to drow the prediction graph up to February 2022 which is shown in
Fig. 12 and we see that the number of daily active infected will be decreased and at
28th February 2022, the number of active infected will be approximately 19100. From
this graph, we can predict the daily active infected of any day between this period of
time.

6 Conclusions

In this research work, we have constructed and studied a new SIR epidemic model
with the help of fractional differential equations where the disease transmission and
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Fig. 12 Future prediction of daily active infected of COVID-19 cases in India

disease treatment control get saturated after a certain time. Both commensurate and
incommensurate fractional differential equations are used to investigate the complete
nature and dynamics of infectious diseases. The uniqueness, positiveness, and uniform
boundedness of the solutions of the system (2.4) have been established. The threshold
parameter to discuss the infectious disease dynamics is commonly known as basic
reproduction number (R0) is derived, and it has also been confirmed that the DFE is
locally and also globally stable when the threshold condition R0 < min{1, R0

′} holds.
On the other hand, the system also passes through a backward bifurcation at the EE
point for the threshold range R0

′ < R0 ≤ 1. Moreover, several computer simulations
works enrich our theoretical results. A stability region for the corresponding fractional
system is identified. Along with the Hopf bifurcation phenomenon considering the
fractional derivative i.e., α as bifurcation parameter is visualized graphically. We have
further observed that with the increasing value of α, the length of the cycle increases,
and this phenomenon established that by increasing the importance of α, the system
repels away from the equilibrium point. Moreover, the Hopf bifurcation scenario for
the incommensurate fractional system is also derived with bifurcation parameters α1,
α2, and α3.We also experienced the significance of α with the help of themodel fitting.

Also, we have drow a prediction curve of daily active infected of India from 1st
March 2021 to 28 February 2022, i.e., of one year with help of the existing data from
1st March 2021 to 15th August 2021. From this prediction curve, we can conclude

123



Complex dynamics of a fractional-order SIR system… 4073

that if the present situation (i.e., the value of the parameter that we have assumed here)
does not change, there will be no chance of a third wave before February 2022.
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