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Chondropathies are increasing worldwide, but effective treatments are currently lacking. Mesenchymal stromal cell (MSCs)
transplantation represents a promising approach to counteract the degenerative and inflammatory environment characterizing
those pathologies, such as osteoarthritis (OA) and rheumatoid arthritis (RA). Umbilical cord- (UC-) MSCs gained increasing
interest due to their multilineage differentiation potential, immunomodulatory, and anti-inflammatory properties as well as
higher proliferation rates, abundant supply along with no risks for the donor compared to adult MSCs. In addition, UC-MSCs
are physiologically adapted to survive in an ischemic and nutrient-poor environment as well as to produce an extracellular
matrix (ECM) similar to that of the cartilage. All these characteristics make UC-MSCs a pivotal source for a stem cell-based
treatment of chondropathies. In this review, the regenerative potential of UC-MSCs for the treatment of cartilage diseases will

be discussed focusing on in vitro, in vivo, and clinical studies.

1. Introduction

Chondropathies are a group of cartilage diseases that deviate
from or interrupt the normal structure and function of carti-
lage, including osteoarthritis (OA), achondroplasia, spinal disc
herniation (SDH), relapsing polychondritis, cartilage tumor
(CT), and chondrocalcinosis [1]. There are over 100 types of
arthritis. The most common forms are OA (degenerative joint
disease) and rheumatoid arthritis (RA, autoimmune form of
arthritis). OA is the most well-known chondropathy in the
world, affecting the health of 343 million of people, while RA
affects 14 million of people [2]. OA is a multifactorial and
complex degenerative joint disease characterized by age-
related “wear and tear,” chondrocytes’ poor response to
growth factors, altered biomechanical properties of articular

cartilage, mitochondrial dysfunction, oxidative stress, and
inflammation [3]. The degenerative lesions in cartilage are sec-
ondary to inflammation associated with hyperplasia and chon-
drocyte apoptosis [4]. Increasing age is linked to a reduction in
subchondral blood vessels resulting in cartilage-related physio-
logical and biochemical anomalies [5]. This pathological pro-
cess results in secondary joint fibrosis, stiffness, pain, and
decreased function, leading to a poor quality of life. Risk factors
for chondropathies include trauma, genetics, age, sex, obesity,
and degenerative pathology. The biological mechanisms of
chondropathies remain largely unknown, and there is no effec-
tive way to treat the cartilage damage because of its nature.
Cartilage is a supportive connective tissue, and it has a
dense and highly organized extracellular matrix (ECM)
embedding chondrocytes [6]. Three types of cartilage tissue
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are present throughout the body at various sites: hyaline,
elastic, and fibrocartilaginous. Hyaline cartilage is the pre-
dominant form of cartilage and is present on the articular
surfaces of synovial joints. Type II collagen is the main com-
ponent in healthy articular cartilage. Other collagens of
cartilage ECM are types III, VI, IX, X, XI, XII, and XIV.
The main proteoglycan present in cartilage is aggrecan, but
other proteoglycans found in cartilage include the synde-
cans, glypican, decorin, biglycan, fibromodulin, lumican,
epiphycan, and perlecan. The chondrocytes are contained
in cavities called lacunae embedded in the network of colla-
gen fibrils and proteoglycans [6].

Cartilage has a decreased ability to self-repair because is
avascular, resulting in a poor replicative capacity of chon-
drocytes. The lack of vascularity, along with the dense pack-
ing of ECM components, hinders the transport of drugs in
the tissue, thus, challenging the treatments of cartilage dis-
eases. In addition, cartilage also lacks nerve cells or endings
and, therefore, cannot directly generate pain that is the main
symptom of a chondropathy [7]. Therefore, symptoms usu-
ally occur only after the significant structural destruction of
the cartilage ECM (with the damage affecting other tissues of
the whole joint that do contain nociceptors), thus, making
treatments difficult.

Current treatment of articular cartilage defects includes
pharmacological management of pain, weight reduction, and
exercises as well as intra-articular treatments with corticoste-
roid or hyaluronan and hylan derivatives injections [8]. Surgi-
cal options consist in bone marrow stimulation procedures
such as subchondral drilling, microfracture, and abrasion
arthroplasty, allowing endogenous mesenchymal stem cells
(MSCs) to migrate into the lesion [9]. However, no treatment
or procedure represents a cure for cartilaginous defects.

MSC-based therapy is beginning to show great potential in
cartilage regeneration through several mechanisms including
homing, angiogenesis, differentiation, and response to inflam-
matory condition. The most widely studied sources of MSCs
are bone marrow (BM) and adipose tissue (AT). However,
umbilical cord-derived MSCs (UC-MSCs) compared to AT-
and BM-MSCs have many advantages such as higher prolifer-
ation rates, greater expansion ability, higher purity, and abun-
dant supply along with no risks for the donor, since the UC is
usually discarded after birth [10]. In Table 1 are listed the
advantages and disadvantages of the different populations of
stem/stromal cells used so far for cartilage regeneration pur-
poses. UC-MSCs can be isolated from different regions of
the UC stromal tissue called Wharton’s Jelly (WJ), and three
different populations of UC-MSCs have been obtained:
perivascular (PV-MSCs), intermediate W] (WJ-MSCs), and
subamniotic stromal region or cord lining (CL-MSCs) [11].
Notably, ECM components in W] share several features with
cartilage ECM. To this regard, UC-MSCs express aggrecan,
type II collagen, and SOX-9 [12]. In addition, UC-MSCs
express growth factors, chemokines, and cytokines at similar
levels to those of cartilage [12]. Finally, since UC relies on only
two arteries and one vein to supply oxygen and nutrients,
without any capillary circulation, UC-MSCs are physiologi-
cally adapted to survive in a relatively hypoxic environment
leading to the potential advantage to survive in cartilage. These
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results reinforce the concept of UC-MSCs as one of the best
candidates for MSC-based therapy for cartilage regeneration.

2. Regeneration Mechanisms of UC-MSCs for
Cartilage Diseases

There are two main concepts for UC-MSCs’ contribution to
cartilage repair: preventing the degradation of cartilage,
through the secretion of bioactive factors, and/or the differen-
tiative potential of UC-MSCs to become chondrocytes. Several
in vitro and in vivo studies indicated that UC-MSCs can play
crucial roles in cartilage repair and regeneration by several
mechanisms including (i) migration and homing, (ii) adapta-
tion to cartilage hypoxic and nutrient-poor environment, (iii)
chondrogenesis differentiation potential and promotion of
survival, proliferation and differentiation of endogenous
MSCs, (iv) synthesis and prevention of cartilage ECM degra-
dation, and (v) anti-inflammatory and immunomodulatory
properties.

2.1. Homing and Migration. MSCs exhibit certain capabilities
of the homing of local mature leukocytes to inflammatory sites,
such as rolling and adhesion [13]. Migration and homing
ability into injured sites are considered as the primary steps
for tissue repair in regenerative medicine. Different molecules
mediate cell retention or mobilization such as adhesion mole-
cules (E and P-selectin), integrins (particularly «4f1),
stromal-derived factor 1 (SDF-1), and its receptor CXC chemo-
kine receptor 4 (CXCR4) [13]. In addition, other factors play a
key role in damaged joints homing such as CXCRI and
CXCR2, CC chemokine receptor 1 (CCR1), and monocyte che-
moattractant protein 1 (MCP-1) through its receptor CCR2,
vascular endothelial growth factor receptor 1 (Flt-1), platelet-
derived growth factor receptor a (PDGFR-a, CD140a),
PDGFR-f3 (CD140b), and their respective ligands IL-8, macro-
phage inflammatory protein la (MIP-1a), placenta growth
factor (PIGF), and PDGF [14]. In Table 2, we reported different
proteins involved in homing and migration of UC-MSCs in
comparison with those expressed by BM- and AT-MSCs. In
particular, BM- and AT-MSCs show similar expression pat-
tern. On the other hand, based on the quantitative data
reported in literature, UC-MSCs express higher levels of dif-
ferent proteins than BM- and AT-MSCs such as HGF, IL-8,
IL-1RA, IGF-1, ICAM-1, bFGF, MCP-1, MIP-1§5, PDGF-
AA, PDGF-AB, PDGF-R, CXCR4, CCR2, VEGF-A, and
VEGE-1. Interestingly, unlike cells from BM- and AT-MSCs,
UC-MSCs express integrin a4 and MIP-1f suggesting their
strong ability in homing and migration. In addition, UC-
MSCs show less hematopoietic effects than BM- and AT-
MSCs (low levels of SDF-1 and VCAM-1).

Increased levels of SDF-1, MCP-1, IL-8, MIP-1 a, PIGF,
and PDGF were found in synovial fluid of OA and RA
patients [14]. Shen et al. demonstrated that UC-MSCs
secrete growth factors and chemokines which may contrib-
ute to a chemoattractive environment such as SDF-1,
MCP-1, hepatocyte growth factor (HGF), vascular cell adhe-
sion protein-1 (VCAM-1), IL-8, insulin-like growth factor-1
(IGF-1), and vascular endothelial growth factor (VEGF)
[15]. In addition, UC-MSCs express CXCR4, CCR2, and c-
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TaBLE 2: Expression analysis of different markers involved in homing and migration.
Marker UC-MSCs BM-MSCs AT-MSCs Ref.
Secreted factors
COX-2 T l l [45]
bFGF (FGF-2) T l T [45]
HGF M 1 1l [45, 105]
IGF-1 T l l [54]
IL-1a N ! ND [54]
IL-12 i 1 1 [54, 105, 106]
Le 1 ! ! [105]
“ “ “ [45]
IL-8 1 ! 1 [105]
IL-1RA 1 ! 1 [105]
MCP-1 (CCL2) 1 l l (45, 105]
- o o [45]
MIP-1a (CCL3) l 7 + [107, 108]
MIP-1? (CCLA4) + - - [105]
OPN l T 1 [109]
PDGF-AA 1 1 1 [105, 107]
PDGF-AB 1 1 . [107, 110]
PDGE-BB - 1 - [105]
PGE2 1 l 1 [106]
PIGF l i T [105]
SDF-1 1 1 1 [111, 112]
SDF-1«a o o o [45]
TGF-?1 - P P [105]
TGE-22 7 1 L [105]
VEGF-A T l l [45]
VEGE-D 7 1 1 [105, 107]
MMPs and TIMPS
MMP-1 7 l I [105]
MMP-2 - ) D [113]
MMP-3 ! ! T [105]
MMP-7 1 T - [105]
MMP-8 - 7 [105]
MMP-13 - + [105]
TIMP-1 - P P [113]
TIMP-2 - o P [113]
Adhesion molecules and receptors
CCR2 T l l [54]
CXCR4 T l l [114]
Flt-1 (VEGFR1) 1 1 ND [54]
ICAM-1 N l 1 [45]
Integrin a4 N 1 - [54]
PDGF-Ra o o [107]
PDGE-Rb 7 l 1 [107]
VCAM-1 l T l [45]
Immunoregulatory molecules
B7-H3 (CD276) + + + [71]
CD200 1 1 1l [54, 115]
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TaBLE 2: Continued.

Marker UC-MSCs BM-MSCs AT-MSCs Ref.
Galectin 1 T T 1 [113]
HLA-ABC o o o [54, 116]
HLA-DR o o o (54, 116]
HLA-G 1 ! 1 [54, 116]
HLA-E 1 ! 1 [54, 117]
HLA-F 1 ! . [54, 117]

- - o [45]
IDO

M T ND [118]
IP-10 7 1 1 [105]
LIF 1 ! 1 [54, 113]
PD-L1 (B7-H1) 1 ! + [54, 119]
PD-L2 (B7-DC/CD273) 1 1 + [54, 119]
RANTES (CCL5) ) 1 1 [105]
TLR-1 o o — [106]
TLR-2 o o o [106]
TLR-3 o o o [106]
TLR-4 - — - [106]
TLR-5 o o o [106]
TLR-6 o o “ [106]
TLR-9 o o — [106]

Expression: T: higher; T7: significantly higher; |: lower; | |: significantly lower; <: similar; +: qualitatively expressed, but not quantified; -: not expressed; ND:

not detected.

met receptors. Therefore, UC-MSCs are able to migrate
in vitro and in vivo via the SDF-1/CXCR4 and MCP-1/
CCR2 axes, and the secreted factors may induce the recruit-
ment of cells from the surrounding tissues and promote
regeneration of injured tissue [15]. To this regard, the
SDF-1/CXCR4 axis has been shown to play a key role in
endogenous and transplanted stem cell homing in the
injured site promoting the regeneration of different tissues
including cartilage [16, 17].

Another key player in cell adhesion is integrin a4f1
(very late antigen-4, VLA-4). It has been demonstrated a
crucial link between the CXCR4/SDF-1 homing axis and
the VLA-4/VCAM-1 (vascular cell adhesion molecule-1,
CD106) adhesion axis [18]. In particular, SDF-1 (through
CXCR4) increases VLA-4 adhesion to VCAM-1. VLA-4 is
an integrin dimer composed of a4 (CD49d) and pl
(CD29) [19]. Although MSCs lack the expression of selec-
tins, they express integrin 1. Interestingly, in contrast to
BM-MSCs, UC-MSCs express integrin a4, VCAM-1, and
intercellular adhesion molecule-1 (ICAM-1; CD54) support-
ing their stronger potential in homing [20].

One more ligand of integrin 31 is osteopontin (OPN), an
osteogenic marker with several biological functions includ-
ing migration, adhesion, and survival of MSCs [21]. On
the other hand, OPN is also involved in regulation and prop-
agation of inflammatory responses of macrophages, T-cells,
and dendritic cells [22]. Notably, OPN is involved in differ-
ent inflammatory pathologies including RA and OA patho-
genesis [23, 24]. In a study of Schneider et al., UC-MSCs
showed similar osteogenic and migration abilities compared

to BM-MSCs with the lesser expression of OPN and the
major expression of matrix metalloproteinases (MMP)-1
and -2 [25].

Moreover, extensive evidence found that growth factors
play an important role in homing and migration of MSCs,
as seen for basic fibroblast growth factor (bFGF), VEGF,
HGF, IGF-1, PDGF, and transforming growth factor f1
(TGF-f1) [26]. In particular, UC-MSCs are able to migrate
in vitro and in vivo, in response to chemotactic factors such
as EGF, FGF-2, HGF, IGF-1, PDGEF-BB, TGF-f, and VEGF,
along with SDF-1, MCP-1, and VCAM-1 [15].

2.2. Capacity of Adaptation to Cartilage Hypoxic Environment.
Because of the lack of vascularization, the physiological oxy-
gen tension (physioxia) within human articular cartilage
ranges between 2 and 5% [27]. Therefore, any MSC candidate
for stem cell therapy of cartilage diseases should be able to
adapt to a hypoxic environment with limited nutrient supply
while maintaining its regenerative properties. Oxygen tension
ranges from 1%-7% in bone marrow and from 10%-15% in
adipose tissue [28, 29]. Regarding perinatal tissues such as
the UC, oxygen tension within the mammalian female repro-
ductive tract is low, between 1.5% and 8%, and lasts through-
out the fetal development with dissolved oxygen in the fetal
circulation rarely exceeding 5% [30]. Moreover, the UC is
supplied by only two arteries and one vein and lacking in cap-
illaries or lymphatics suggesting that UC-MSCs are physiolog-
ically adapted to survive in a hypoxic environment. It has been
shown that low oxygen tension increases UC-MSC prolifera-
tion potential and matrix production and enhanced



chondrogenic marker expression in UC-MSCs [31, 32]. This
increased chondrogenic differentiation can lead to hypoxia-
inducible factor-1 alpha (HIF-la) and HIF-2a increased
expression, NOTCH signaling activation, and the subsequent
Sox-9 induction [33]. In addition, the UC-MSCs cultured
under hypoxic conditions showed increased expression of
energy metabolism-associated genes including GLUT-1,
LDH, and PDKI suggesting a switching of cell metabolism
from oxidative phosphorylation to anaerobic glycolysis [32].
The vyield of lactate production from glucose, however, is
significantly lower in UC-MSCs than it has been reported in
BM- and AT-MSCs in both hypoxic and normoxic conditions
[32]. This finding could be explained by our recent study [34].
We demonstrated that all the three UC-MSC populations
(PV-, WJ-, and CL-MSCs) exhibit low levels of mitochondrial
and glycolytic activities. Moreover, PV-, WJ-, and CL-MSCs
showed comparable mitochondrial respiration parameters in
both normal and oxygen and glucose deprivation followed
by reperfusion (OGD/R) conditions maintaining their prolif-
eration capacity. Interestingly, PV-MSCs showed the highest
oxygen consumption rate and OGD/R affected their metabo-
lism but not their viability suggesting a superior mitochondrial
activity compared to the other UC-MSC populations. While
CL-MSCs were the cells least affected suggesting their robust
survival in ischemic environment. These evidences taken
together suggest that UC-MSCs may be a pivotal source for
stem cell-based therapy of ischemic pathologies including
chondropathies, brain, heart, and lung diseases [35-38].
Further investigations are needed to better understand
whether these slight but significant differences among the
three UC-MSCs are due to the specific region’s composition
of different number of healthy mitochondria or improved
adaptation of mitochondria to ischemic conditions.

2.3. Promotion of Survival, Proliferation, and Differentiation.
MSCs secrete growth factors that are involved in several bio-
logical processes such as homing and migration as well as
promotion of survival, proliferation, and differentiation.
Some of growth factors with a key role in cartilage repair
are bone morphogenetic proteins (BMPs), epidermal growth
factor (EGF), HGF, IGF, PDGF, VEGF, FGF, and TGF
families and UC-MSCs are a rich source of them [39].

EGF is one of the ligands of EGF receptor (EGFR) that
plays a key role in joint homeostasis. In particular, EGFR
stimulates chondrocyte proliferation and survival as well as
maintenance of cartilage in adulthood. On one hand, EGFR
signaling promotes the lubrication of the articular surface by
increasing the boundary lubricants Prg4 and HA from super-
ficial chondrocytes [40]. On the other hand, EGFR signaling
also can play a catabolic action by inhibiting the expression
of the chondrogenic master transcription factor Sox9, thereby
suppressing the synthesis of cartilage matrix proteins, such as
type II collagen (Col II) and aggrecan, as well as by stimulating
the expression of MMPs involved in cartilage degradation,
such as MMP-13 [41]. Interestingly, Zhang et al. recently
showed the UC-MSCs release EGFR ligands TGF-a and EGF
attenuating OA progression via EGFR signaling pathway of
cartilage superficial layer cells [42]. In addition, UC-MSCs
inhibited the apoptosis of chondrocytes, increased the expres-
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sion of chondrogenesis-related genes (Col-2, Sox9), and
reduced the expression of cartilage catabolism-related genes
(MMP-13, ADAMTS-5) in vitro and in vivo [42].

HGEF is a multifunctional growth factor that affects cell
survival and proliferation, matrix metabolism, inflammatory
response, and neurotrophic action playing an important role
in normal bone and cartilage turnover [43]. In particular,
HGF and VEGF can reduce tissue injury, inhibit fibrotic
remodeling and apoptosis, promote angiogenesis, stimulate
stem cell recruitment and proliferation, and reduce oxidative
stress [44]. A recent comparative study showed that the
secretion of HGF was three times higher in UC-MSCs com-
pared to AT-MSCs and around nine times higher than in
BM-MSCs [45]. In contrast, UC-MSCs secreted the lower
levels of VEGF-A. This is probably due to the fact that
VEGEF-A and HGF signaling pathways reciprocally modulate
each other [46].

IGF1 has been implicated in promotion of chondrogen-
esis and accumulation of cartilage-specific ECM molecules
[47]. In addition, the synergy between TGF-f3 and IGF-1
promotes intervertebral disc regeneration [48]. W] contains
large amounts of IGF-I and IGF-I-binding proteins BP-3
and BP-1 suggesting a key role in stimulation of UC-MSCs
to produce collagen and glycosaminoglycans (GAGs) in
UC matrix as well as influencing the chondrogenic differen-
tiation of these cells [49, 50].

TGF-f superfamily consists of about 30-35 different
proteins including TGF-f proteins (TGF-f31-2-/33), Bone
Morphogenetic Proteins (BMPs), and Growth Differentiation
Factors (GDFs) involved in chondrogenic differentiation and
production of cartilage extracellular matrix as well as stimula-
tion of cartilage repair [51]. TGF-1, -f32, and -f3 play key
roles in regulation of chondrocyte differentiation from early
to terminal stages, including condensation, proliferation, ter-
minal differentiation, and ECM synthesis as well as mainte-
nance of articular chondrocytes [52]. All the three isoforms
are expressed in mesenchymal condensations and secreted
by UC-MSCs [53-55]. BMPs play important roles in bone
and cartilage formation, including various aspects of embry-
onic development, such as skeletogenesis, and hematopoietic
and epithelial cell differentiation [56]. Moreover, BMPs can
induce protection against cartilage damage caused by inflam-
mation or trauma, as well as stimulation of regenerative
processes. BMPs are classified into subfamilies, including
BMP subfamily (from BMP1 to BMP15), the osteogenic pro-
tein (OP) subfamily (OP1, OP2, and OP3 also known as
BMP7, BMP8, and BMP8b, respectively), the GDF subfamily
(GDF1, GDF2/BMP9, GDF3, GDF5/BMP14, GDF6/BMP13,
GDF7/BMP12, GDF8, GDF9, GDF10, and GDF11/BMP11),
and the cartilage-derived morphogenetic proteins (CDMP1/
BMP14 and CDMP2/BMP13) [56]. BMP2, 4, 6, 7, and 9 have
been reported to induce in vitro chondrogenesis of human
MSCs [57]. UC-MSCs have been demonstrated to secrete
BMP2 in vitro and to induce the increase of endogenous
BMP4, 5, and 7 levels in vivo [58-60]. In addition, UC-
MSCs induce overexpression of GDF5/BMP14/CDMP]I, pro-
moting chondrogenic differentiation in cocultures with
fibroblast-like synoviocytes, thus, suggesting their potential
in cartilage repair [61]. Moreover, UC-MSCs respond to



Stem Cells International

BMP6 via decapentaplegic homolog (SMAD) signaling
(SMAD 1/4/5, BMPRIA, and BMPR2 receptors) enhancing
osteogenic differentiation [62]. In particular, BMP-2 stimulates
osteogenesis as well as matrix synthesis, promoting cartilage
repair (by upregulation of tissue inhibitors of metalloprotein-
ases-1, TIMP-1) and reversing chondrocyte dedifferentiation
[63]. BMP-7 promotes cartilage matrix synthesis by acting syn-
ergistically with other anabolic growth factors and also inhibits
catabolic factors, such as matrix metalloproteinase-1 (MMP-1),
MMP-13, IL-1, 11-6, and IL-8 [64].

2.4. Cartilage Extracellular Matrix Repair. UC-MSCs can
increase the ECM synthesis and inhibit the cartilage ECM
destruction supporting the tissue repair. UC stromal tissue
shares a number of features with cartilage ECM: UC-MSCs
are able to synthetize aggrecan, type II collagen, and express
SOX-9 transcription factor [12]. The deposition of ECM
molecules and regulation of MMPs and their inhibitors
(TIMPs) are the main mechanisms involved in cartilage
ECM synthesis. MSCs secrete high levels of TIMP-1 and
TIMP-2, which inhibit MMP-9 and MMP-2, respectively,
thus, suppressing cartilage ECM resorption [65]. UC-MSCs
secrete MMP-2, -8, -9, and -13 as well as TIMP-1 and
TIMP-2 suggesting a balance between protection of ECM
and antifibrotic activity (Table 2) [66-68]. In addition,
UC-MSCs secrete growth factors such as HGF, IGF-1, and
TGF-f superfamily members that stimulate cartilage ECM
synthesis. In particular, HGF has been involved in inhibition
of the fibrosis and apoptosis of chondrocytes and increase
ECM synthesis [65]. IGF-I and IGF-I-BP-3 and -BP-1 stim-
ulate UC-MSCs to produce collagen and glycosaminogly-
cans (GAGs) [49]. BMP-2 increases TIMP-1 expression
while BMP-7 inhibits MMP-1 and MMP-13 suppressing
the ECM degradation [63, 64].

2.5. Anti-Inflammatory and Immunomodulatory Properties.
The microenvironment of damaged articular cartilage is par-
ticularly challenging, due to hypoxia, insufficient blood supply,
and concurrent inflammation. The latter contributes to the
degeneration of the joints because it hampers the proliferation
of chondrocytes and the deposition of cartilage matrix, result-
ing in low efficiency of repair. Immunomodulatory and anti-
inflammatory properties of UC-MSCs have been widely
described (Table 2) [69]. In particular, UC-MSCs express
MHC class I (HLA-ABC) at low levels and lack MHC class
II (HLA-DR, -DP, and -DQ). Moreover, they express other
molecules belonging to noncanonical type I MHC such as
HLA-G, HLA-E, and HLA-F [70-72]. Interestingly, HLA-G
interacts with Ig-like transcript (ILT) receptors (ILT-2, ILT-
3, and ILT-4), which are expressed by T and B lymphocytes,
as well as natural killer (NK) cells and mononuclear phago-
cytes [69]. Through this interaction, HLA-G displays relevant
immune functions which physiologically contribute to
maternal-fetal immunotolerance. In addition, UC-MSCs lack
CD40/CD40L, CD80, CD86, and B7 costimulatory antigens
implicated in the activation of T and B cell responses and
express coinhibitory molecules including B7-H3/CD276,
CD73, Indolamine 2,3-dioxygenase-1 (IDO-1), Galectin-1
(Gal-1), and leukemia inhibitory factor (LIF) [73]. W]-MSCs

showed an immunosuppressive function by inhibiting the
proliferative response of T helper cells (Th/CD4+) Type 1
(Thl) and Th17 and increasing Th2 and regulatory T cells
(Tregs) [74]. UC-MSCs have been shown to be able to sup-
press the proliferation of both CD4 and CDS8 cytotoxic T lym-
phocytes (Tc) and to decrease proinflammatory IFN-y in
activated peripheral blood mononuclear cells (PBMCs) [54,
75]. Moreover, secreted factors such as HGF and TGF-f1
may function as mediators for T cell suppression [76, 77].
UC-MSCs are also able to inhibit B-cells and natural killer
(NK) cell proliferation as well as regulate monocyte/macro-
phage system by reducing the infiltration of macrophages in
injured tissues and shifting macrophages toward a M2 anti-
inflammatory phenotype [78, 79].

In the synovia of OA patients, various immune cells have
been identified including M1 macrophages, T cells Thl,
Th17 and Tc, and B cells, leading to chronic inflammation,
exacerbation of arthritis, and tissue damage [80]. UC-MSCs
have been shown to reduce synovial inflammatory cells infil-
tration, such as CD4+ T cells and macrophages, as well as
significantly decrease the expression of interleukin- (IL-) 1
and tumor necrosis factor-a (TNF-a), while increasing anti-
inflammatory factors TNF-a-induced protein 6 (TSG-6) and
IL-1 receptor antagonist (IL-1RA) in rat OA models induced
by monosodium iodoacetate (MIA) [81, 82]. In another study
of MIA-induced OA in rabbits, UC-MSCs showed a promi-
nent cartilage protective effect due to upregulation of growth
factors FGF-2, TGF-f1, and IGF-1, secretion of ECM mole-
cules (collagen type-I alpha-1 chain, collagen type-II alpha-1
chain, and aggrecan), reduction of the expression levels of pro-
inflammatory cytokines Tnf-a, IL-1f3, IL-6, and IL-17, and
increase of anti-inflammatory cytokines TGF-f1, IL-10, and
IL-1RA [83]. Interestingly, our group and others showed that
UC-MSCs keep their hypoimmunogenic and immunomodu-
latory properties even when they had undergone in vitro chon-
drocyte differentiation [50, 84].

RA is a chronic inflammatory autoimmune disease char-
acterized by chronic proliferation of synovial cells and pro-
gressive joint damage [85]. Fibroblast-like synoviocytes
(FLS) play an important role in thickening of the synovium
determining arthritis and cartilage degradation as well as
inflammation and degradation of the joints. UC-MSCs
inhibit Cadherin 11 expression in RA FLS by secreting IL-
10. This event precludes the ability of FLS from RA patients
to migrate and erode cartilage of other joints, thereby
improving arthritis [86].

3. Preclinical and Clinical Studies of UC-
MSC:s for the Treatment of
Cartilaginous Diseases

Thanks to their chondrogenic potential and immunomodu-
latory and anti-inflammatory properties, as well as their abil-
ity to promote endogenous repair mechanisms, UC-MSCs
have been regarded as potential therapeutic agents against
cartilage degradation. In particular, early evidences that
emerged from in vitro studies on cell cultures (summarized
in Table 3) have been confirmed in several in vivo animal
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models (listed in Table 4) and in recent clinical trials
(reported in Table 5).

Preliminary in vitro studies investigated the chondrogenic
potential of UC-MSCs, demonstrating their ability to achieve
both hyaline, fibrous, and elastic cartilage phenotypes as well
as nucleus pulposus-like cell differentiation capacity [87-90].
In addition, also the osteogenic, adipogenic, and myogenic
differentiation potential have been reported suggesting UC-
MSCs could be a pivotal stem cells source for tissue engineer-
ing applications in orthopaedics [91]. Comparative studies
reported slightly differences in chondrogenesis between the
UC-, BM-, and AT-MSCs. In particular, according to Dani$o-
vi¢ et al., BM-MSCs showed the best chondrogenic potential
while Hildner and coworkers showed that differentiated UC-
MSCs present a more fibrous than hyaline cartilage phenotype
compared to AT-MSCs suggesting their role in regeneration of
fibrocartilage-like meniscus [87, 92]. Moreover, the results of
Wu and coworkers indicate that, although nucleus pulposus
stem/progenitor cells (D-NP-MSCs) isolated from degener-
ated intervertebral disc (IVD) shared the MSCs characteristics
with UC-MSCs, the latter showed better proliferation capacity
and differentiation potential, suggesting that UC-MSCs as a
suitable source for regenerative therapy of IVD degeneration
[93]. Furthermore, UC-MSCs may be an attractive alternative
to condylar cartilage cells for temporomandibular joint tissue
engineering applications [94]. Interestingly, UC-MSCs
displayed superior anti-inflammatory, immunomodulatory,
and trophic effects compared to adult MSCs including articu-
lar cartilage (AC), Hoffa’s fat pad (HFP), synovial membrane
(SM), and maintain their immunomodulatory and anti-
inflammatory properties after differentiation [50, 84, 95].
Moreover, coculture experiments of UC-MSCs and articular
cartilage cells (ACs), fibroblast-like synoviocytes (FLSs), and
nucleus pulposus cells (NPCs) showed their suitability for
the treatment of arthritis, synovitis, and IVD degeneration
[61, 96-98]. Finally, there are several cartilage tissue engineer-
ing studies that demonstrated the osteochondral differentia-
tion capacity of UC-MSCs in different scaffold constituted
by acellular cartilage extracellular matrix (ACECM), alginate
enriched in hyaluronic acid (Alg/HA), polycaprolactone/colla-
gen (PCL/Coll), polyglycolic acid (PGA), poly L-lactide/D-lac-
tide/glycolide (PLGA), poly-L-lactic acid (PLLA), polyvinyl
alcohol-polycaprolactone (PVA-PCL), and silk fibroin/hyal-
uronic acid (SF/HA).

In vivo studies in different animal models from mice to
horses confirmed in vitro studies showing the feasibility of
using UC-MSCs for the treatment of IVD degeneration,
OA, RA, and cartilage defects repair. UC-MSC transplanta-
tion promotes chondrogenesis and improves the histology,
cellularity, and ECM proteins content along with reduction
of inflammation in a preclinical model of IVD degeneration.
In the same way, UC-MSCs induce regeneration and repair
of cartilage reducing its destruction, promote recovery from
movement impairment, and reduce joint effusion and
inflammation slowing down the progression of OA animal
models. In addition, preclinical studies on RA treatment
showed that UC-MSCs exerted the best therapeutic effect
in reducing bone resorption, joint destruction, and inflam-
matory factor expression compared to BM-MSCs. Interest-
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ingly, several evidences support the regenerative potential
of UC-MSCs in cartilage and osteochondral defects repair.

Following the promising in vitro and in vivo results, clini-
cal applications have been attempted using UC-MSCs for the
treatment of OA and RA (Table 5). In summary, clinical trials
for the treatment of OA showed significant amelioration of
pain and disability at 6 and 12 months of follow-up. No severe
adverse events were reported. The main outcomes for RA
patients treated with UC-MSCs were significant reduction of
RA serological markers and improvement of health index
and joint function index 1 year after treatment. No new or
unexpected safety issues in 1-year follow-up. Despite the
promising results of clinical trials, further basic and transla-
tional research investigations are needed to better understand
the best stem cell candidate, scaffold materials, and/or best cel-
lular derivatives which can be suitable for the different types of
cartilage regeneration. In parallel, there is the need to increase
the knowledge about underlying regenerative mechanisms.
Finally, more research is needed to convert preclinical evi-
dences obtained in animal models, to human-based clinical
applications for cartilage regeneration. Consensus is still lack-
ing in key points such as the methods to obtain the cell source,
the use of scaffolds as well as bioactive molecules in parallel to
the administration of stromal cells. As shown in the human
studies reviewed so far, the achievement of amelioration of
some parameters and confirmation of the safety of the overall
procedure still needs more data generated on the interaction of
the transplanted cells with the host tissue, their proper differ-
entiation in vivo, as well as the long-term achievements of this
cellular replacement strategy.

4. Conclusions

In conclusion, UC-MSCs represent a promising candidate for
the therapy of chondropathies, as highlighted by the encourag-
ing results emerged from in vitro and in vivo investigations
and from the available results from clinical trials. UC-MSCs
are characterized by several potential advantages such as a
frank multilineage differentiation potential, immunomodula-
tory, and anti-inflammatory properties, as well as MSCs the
ability to constitutively produce molecules that are involved
in cartilage matrix biogenesis and in the trophic and reparative
functions. In addition, UC-MSCs are able to migrate, home,
and survive in an ischemic and nutrient-poor environment
like cartilage as well as to produce an extracellular matrix
(ECM) similar to that and induce endogenous repair mecha-
nisms. We believe that these results warrant the need for fur-
ther researches that can better define the criteria leading to
the adoption of UC-MSCs in the stem cell-based therapy of
cartilage diseases, as well as characterizing the mechanism of
repair and increase the knowledge on the biomechanical prop-
erties of the regenerated cartilage tissue in vivo.
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