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SUMMARY
Genetic association studies for blood cell traits, which are key indicators of health and immune function, have
identified several hundred associations and defined a complex polygenic architecture. Polygenic scores
(PGSs) for blood cell traits have potential clinical utility in disease risk prediction and prevention, but
designing PGS remains challenging and the optimal methods are unclear. To address this, we evaluated
the relative performance of 6 methods to develop PGS for 26 blood cell traits, including a standard method
of pruning and thresholding (P + T) and 5 learning methods: LDpred2, elastic net (EN), Bayesian ridge (BR),
multilayer perceptron (MLP) and convolutional neural network (CNN). We evaluated these optimized PGSs on
blood cell trait data from UK Biobank and INTERVAL. We find that PGSs designed using common machine
learningmethods EN and BR show improved prediction of blood cell traits and consistently outperform other
methods. Our analyses suggest EN/BR as the top choices for PGS construction, showing improved perfor-
mance for 25 blood cell traits in the external validation, with correlations with the directly measured traits
increasing by 10%–23%. Ten PGSs showed significant statistical interaction with sex, and sex-specific
PGS stratification showed that all of them had substantial variation in the trajectories of blood cell traits
with age. Genetic correlations between the PGSs for blood cell traits and common human diseases identified
well-known as well as new associations. We develop machine learning-optimized PGS for blood cell traits,
demonstrate their relationships with sex, age, and disease, and make these publicly available as a resource.
INTRODUCTION

Blood cells play essential roles in a variety of biological pro-

cesses, such as oxygen transport, iron homeostasis, and path-

ogen clearance.1–3 Abnormalities in blood cell traits, such as

the number of cells, the proportions of different types, sizes,
C
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and morphology, and thus their likely functions, have been asso-

ciated with a range of human diseases, such as reticulocyte

indices with coronary heart disease4 or eosinophil counts with

asthma.5 As such, blood cell counts and associated traits are

also widely used in clinical practice, where they are among the

most common clinical tests worldwide.
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Blood cell traits are heritable, and their genetic architecture

has been found to be polygenic. Analyses of the UK Biobank

(UKB)6,7 and INTERVAL8 cohorts have suggested that between

18% and 30% of the variance in erythrocyte counts and

morphology can be explained by hundreds of common auto-

somal variants.4 It is expected, therefore, that levels of these

traits can, to some extent, be predicted by genetic variation

through the use of polygenic scores (PGSs)9.

PGSs for blood cell traits show the potential for utility in clinical

practice. A recent study examining the effects of known patho-

genic variants and blood cell trait PGSs on patients with rare

blood disorders showed that a 1-standard deviation (SD) in-

crease in PGS was comparable in risk to carrying a rare coding

variant in heterozygosity.10 These results indicate that PGSs

for blood cell traits could play important roles in disease risk pre-

diction and prevention, or help in better understanding disease

etiology and identifying novel therapeutic targets.11,12

A PGS is most commonly constructed as a weighted sum of

genetic variants, typically single-nucleotide polymorphisms

(SNPs), carried by an individual, in which the genetic variants

are selected and their weights are set via the per-SNP univariate

analysis in a genome-wide association study (GWAS).9,13 Uni-

variate analysis largely relies on hard cutoff thresholds to identify

associated variants—for example, linkage disequilibrium (LD)

pruning for selection of independent variants14 and p value

thresholding for selection of significant variants (the P + T

method). However, standard methods such as P + T have limita-

tions, including that they do not capture interactions between

variants. Machine learning and deep learning methods may pro-

vide significantly improved polygenic scores for blood cell traits,

as has been demonstrated in applications for celiac disease and

type 1 diabetes,15–19 thus facilitating analyses into the genetic

architecture of blood cell traits and their relationships with sex-

and age-specific effects and the genetics of common diseases.

In this study, we evaluate 6 PGSmethods to develop optimized

PGS for 26 blood cell traits across 3 blood cell types—platelets,

red blood cells, and white blood cells—using data from UK Bio-

bank and INTERVAL (see Figure 1 for study workflow). The 6

PGS methods evaluated in this study include the pruning and

thresholding (P + T) method and 5 learning methods: LDpred2,

elastic net (EN), Bayesian ridge (BR), multilayer preceptron

(MLP), andconvolutional neural network (CNN).Our analysis finds

that common machine learning methods EN and BR show

improvedpolygenic predictionof bloodcell traits andconsistently

outperform other methods. We assess the compositions of these

blood cell trait PGSs and discover that the benefits of EN and BR

are in jointlymodeling theeffectof correlation, interaction, and low

minor allele frequency (MAF) variants. Our analyses suggest that

the EN andBRmethods are the top choices for PGS construction

of blood cell traits when sufficient individual-level data are avail-

able. When there is no sufficient individual-level data available,

LDpred2 is also a good option. We investigate the interactions

of PGS with sex as well as stratification of measured blood cell

traits across ages. Finally, we perform a genetic correlation

scan of blood cell trait PGSs across diverse common diseases.

We make the machine learning-optimized PGS models publicly

available via the PGS Catalog20 to facilitate genetic and clinical

studies on blood cell traits and associated diseases.
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RESULTS

Development of blood cell trait PGSs
Using the optimal variant set (i.e., conditional analysis variants,

see STAR Methods) identified by the P + T method, we

compared the performance of the 5 learning methods with that

of P + T for constructing PGSs for 26 blood cell traits (Figure 2).

Four of the 5 methods, EN, BR, LDpred2, and MLP, consistently

outperform the P + T method in terms of Pearson r for nearly

every blood cell trait. Notably, the performance of EN and BR

were nearly indistinguishable and were the most stable as well

as the top-performing methods overall. Although LDpred2 out-

performed other learning methods in the internal validation

across the majority of the traits, its outperformance largely

declined in the external validation with similar or slightly better

performance for most traits and notable underperformance for

a few traits when compared with EN and BR (e.g., basophil per-

centage of white cells [BASO%]). With any of these 4 learning

methods, PGSs for 11 blood cell traits achieved a nearly

R0.02 increase in Pearson r score in internal validation. The

following 5 blood cell traits each achieved R0.02 improvement

in both internal and external validation using EN or BR, in com-

parison with the P + T method (monocyte percentage [MONO

%], white blood cell count [WBC#], mean platelet volume

[MPV], monocyte count [MONO#] and plateletcrit [PCT) (Fig-

ure 2). We found that the incorporation of nonlinear factors, as

in MLP and CNN, did not improve genomic prediction of blood

cell traits, compared with linear models. For nearly half of the

blood cell traits we studied, the CNN resulted in PGS with

approximately the same or lower Pearson r as the P + T

approach.

Comparing estimated SNP effect sizes between
univariate analysis and machine learning
BR and EN outperformed P + T due largely to differences in

variant effect size estimation; thus, we compared the variant

effect sizes estimated by univariate analysis (used in the P +

T method) and the EN/BR methods (Figure S1). We found

that almost no effect sizes were set to zero by BR and EN,

and effect sizes of most variants using BR or EN are the

same or similar to those from the univariate analysis in

GWAS. This is consistent with a genetic model in which most

common genetic variants are independently and additively

contributing to each blood cell trait. In addition, we also found

that both EN and BR tended to shrink the effects (sometimes

greatly) of variants with low MAF compared with that estimated

in univariate analysis; however, this did not necessarily

contribute to substantially improved PGSs. For example, we

observed the effects of numerous low-MAF variants for traits

such as mean corpuscular volume (MCV) and mean corpus-

cular hemoglobin concentration (MCHC) were substantially

shrunk by BR and EN; PGS construction of MCV achieved sig-

nificant improvement (�0.03 increase in Pearson r score), while

PGS for MCHC saw little improvement in internal validation

(Figure 2). In spite of that, the effect of shrinkage of low-MAF

variants can result in better model generalization, which means

they can offer more stable predictions when applied across da-

tasets. This is likely due to the substantial noise in univariate



Figure 1. PGS construction of blood cell traits using 6 different methods

Six PGSmethods were evaluated in this study: pruning and thresholding (P + T) and 5 learningmethods: LDpred2, elastic net (EN), Bayesian ridge (BR), multilayer

preceptron (MLP), and convolutional neural network (CNN).
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estimates for effect sizes of low-MAF variants in existing

training samples.

Univariate analysis does not consider LD among variants,

which is a well-known cause for reduced PGS accuracy. The
P + Tmethod relies on LD pruning to remove correlations among

variants; however, it must make trade-offs between removing

correlated variants and keeping predictive variants by using

hard cutoff thresholds. The selected conditional analysis (CA)
Cell Genomics 2, 100086, January 12, 2022 3



Figure 2. Performance comparison of 5 learning methods with the P + T method

Pearson r score performance of the P + T method for PGS construction of 26 blood cell traits are presented in testing on UKB or INTERVAL. Relative to the P + T

method, performance of the 5 learning methods: EN, BR, LDpred2, MLP, and CNN, are presented for each blood cell trait in descending order, left to right,

according to EN (largest Pearson r increases on left). Given a particular method, a trait and a cohort, the averaged r performance of the 5 trained models,

corresponding to the 5 different training-testing data partitions, is shown.

Detailed comparison between variant effect sizes estimated using EN/BR and P + T are presented in Figure S1.
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variants for each trait included many correlated variants, with

those with r2 > 0.1. As expected, for variants in moderate to

high LD, EN and BR tended to assign weights that were more

different from univariate analysis than for variants not in LD,

with some variant effects even changing direction (Figure S1).

In addition, univariate analysis does notmodel SNP-SNP inter-

action effects on the trait; however, modeling interactions can

improve PGS construction.21 For all CA variants, we performed

a SNP-SNP interaction analysis on each trait using a Bonfer-
4 Cell Genomics 2, 100086, January 12, 2022
roni-adjusted threshold to determine significant interactions

(STAR Methods). We found that significant SNP-SNP interac-

tions tended to include SNPs that had different weights when

comparing EN/BR to univariate analysis (Figure S1)—for

example, in MCV and mean corpuscular hemoglobin (MCH).

The increased performance of EN and BR relative to univariate

analysis appeared to be due to the weights assigned for the 3

groups of variants above (low MAF, moderate to high LD, or

SNP-SNP interactions).
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EN and LDPred2 improve blood cell trait PGSs on larger
variant sets
The above analysis has shown that EN, BR, and LDpred2 are the

most promising methods for PGS construction of blood cell

traits. We further explored potential improvements by incorpo-

rating larger variant sets for LDpred2 and EN (because EN and

BR performed nearly identically, we only present results for

EN). Our results showed that EN further improved PGS for almost

every trait with the expanded variant sets, when compared with

EN using conditional analysis variants only (Figures 3 and S2).

For example, when incorporating all variants genome-wide

(i.e., no p value threshold), 25 of the 26 traits had a further

improvement of at least 0.02 in terms of r score in the external

validation, in which 6 traits achieved >0.05 additional improve-

ment. When compared with the P + T method, EN achieved

greater improvements for PGSs of most blood cell traits by using

the largest expanded variant set. For example, 25 of the 26 traits

had R10% improvement over their r scores achieved using P +

T, in which 2 traits had >20% improvement (i.e., hematocrit

[HCT; from 0.24 to 0.30] and WBC# [from 0.32 to 0.39]).

By applying different p value thresholds on all the LD-thinned

variants, we also obtained smaller variant sets for each trait. Our

results suggested that it is possible that by using a smaller

variant set with p value thresholding, EN can achieve perfor-

mance comparable to when using the largest expanded variant

set. For example, the performance differences in terms of r score

using EN are within 0.01 for all of the traits between the smaller

variant set with p value threshold = 10�4 and the largest variant

set (INTERVAL external validation). Using a more lenient p value

threshold (i.e., p value threshold = 10�2 in this study) can result in

overfitting problems. By incorporating the variant set with a p

value threshold of 10�2, EN significantly outperformed that of us-

ing other variant sets in the internal validation with UKB, while it

experienced a substantial performance decrease in the external

validation with INTERVAL (Figures 3 and S2), with some models

even underperforming the P + T method. However, the use of

overly stringent thresholds (e.g., p value threshold = 10�6 or

lower) could limit the predictive power of EN.

LDpred2 also showed improved performance for PGSs of 24

traits when using the expanded variant sets with more stringent

p value thresholds (i.e., p value thresholds = 10�6 and 10�4) as

compared with using CA variants only. However, LDpred2

models showed overfitting on variant sets with lenient or no p

value thresholding (i.e., p value thresholds = 10�2 and 1.0).

Nevertheless, EN consistently outperformed LDpred2 in the

external validation with INTERVAL data on almost every

expanded variant set for every trait (Figure 3). For example, EN

outperformed LDpred2 by >0.02 in terms of r score for 9 traits

on the top-performing variant set (p value threshold of 10�4) of

both methods. In addition, LDpred2 failed to construct a PGS

for the trait MPV on 2 expanded variant sets, indicating that EN

may be more robust when using large variant sets.

Sex-specific interactions and PGS-stratified
trajectories
Maximizing the accuracy and performance of PGS for blood cell

traits raises opportunities for insights into the underlying

biology, which is potentially of relevance to disease risk. We
next compared the extent to which EN-trained PGS would be

used to stratify the levels of blood cell traits in men and women

over the age ranges of individuals in INTERVAL (Figures 4 and

S3). There were a wide range of age-dependent dynamics in

the levels of many blood cell traits in INTERVAL, with the EN-

trained PGS (p value threshold = 1 in variant selection) offering

stratification that was largely consistent with Pearson r of the

trait (i.e., the larger the Pearson r PGS of the trait received,

the better the PGS stratified the population). Blood cell traits ex-

hibited well-known sex differences.22 Interestingly, PGS for

approximately half of blood cell traits resulted in different levels

of stratification between men and women, with 10 blood cell

traits passing the Bonferroni-adjusted significance threshold in

PGS-sex interaction analyses (Table 1). For example, WBC in-

dexes in women significantly decrease after menopause, while

the level of these traits in men were relatively stable.23 Impor-

tantly, in both men and women, the EN-trained PGS continued

to stratify the trait levels even after the trait levels themselves

changed. The average trait levels in the top versus the bottom

PGS quintiles were substantially different. The top quintile of

the PGS for WBC# had an additional �1.5 WBCs per nanoliter

(nL) on average in INTERVAL compared to the bottom quintile

(an increase of �25%); similarly, the difference between the

top versus the bottom 1% PGSs for WBC# was �2.2 WBCs

per nanoliter (a 40% increase). For MCV, individuals in the top

PGS quintile had red blood cells with �5 femtoliters (fL) greater

volume on average than those in the bottom PGS quintile, and

these differences were maintained over all age ranges for both

men and women.

Genetic correlations of blood cell traits and common
diseases
Finally, we examined the landscape of genetic correlations for

the EN-trained PGS of blood cell traits and PGS of several com-

mon human diseases (Figure 5). We found 67 genetic correla-

tions passing Bonferroni adjusted significance (p < 10�4), which

are consistent with well-known associations between the blood

cell traits themselves and the disease. For example, prior studies

have demonstrated a strong association of asthma with eosino-

phil indices,4 consistent with our analyses, which show that

PGSs for eosinophil counts (EO#) and eosinophil percentages

(EO%) were correlated with the asthma PGS. The strongest ge-

netic correlation was between schizophrenia andWBC#, consis-

tent with previous studies of the trait and schizophrenia risk.24

Our analyses also uncovered the genetic correlations for previ-

ous trait-level observations for EO# and allergic disease25 as

well as WBC# and Crohn’s disease.26 In addition to the well-

known associations between blood cell traits and common

diseases, the genetic association scan also identified new asso-

ciations. For example, PGS of the immature fraction of reticulo-

cytes (IRF) was significantly associated with the coronary artery

disease (CAD) PGS, which is related to a recent finding that retic-

ulocyte levels have an ambivalent association with hypertension

and atherosclerosis27; the PGS of MONO# was significantly

associated with the schizophrenia PGS, which can be supported

by the inflammation hypothesis in the pathogenesis of schizo-

phrenia.28 These demonstrated extensive genetic correlations

for blood cell traits and rheumatoid arthritis, CAD, schizophrenia
Cell Genomics 2, 100086, January 12, 2022 5



Figure 3. Performance of P + T, EN, and LDpred2 methods on different variant sets in INTERVAL

Using conditional analysis variants as a base set, we added in the selected variant sets with LD thinning and p value thresholding to form different sizes of

expanded variant sets for each trait. We used the CA variant set as the starting point and then observed the performance of P + T, EN, and LDpred2 on these

expanded variant sets. Note that in this figure, P + T refers to themethod that directly applies theweighted sum on a given variant set with effect sizes fromGWAS.

See Figure S2 for similar performance comparison in UKB.

6 Cell Genomics 2, 100086, January 12, 2022
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Figure 4. Trait levels by quintiles of EN-

trained trait PGS in men and women for traits

MCV, WBC#, and neutrophil count (NEUT#) in

INTERVAL

The y axis is the observed measurements adjusted

only for technical artifacts and season for each

blood cell trait. The generalized additive model

(GAM) was used to fit the data across INTERVAL

samples, and the shaded areas represent 95%

confidence intervals.

See Figure S3 for results of all other traits.
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and Crohn’s disease, and suggest that via shared genetics,

blood cell traits may be either indicators or mediators.

DISCUSSION

Improved polygenic models of blood cells traits aid our under-

standing of myriad biological processes and diseases. This

study demonstrated that common machine learning methods

such as EN andBR show improved polygenic prediction of blood

cell traits and consistently outperform other methods, likely due

to their implicit modeling of SNP-SNP correlations, interactions,

and controlling the effect of underrepresented low-MAF variants.

We showed that blood cell trait PGSs are able to stratify

age-dependent trait levels in both men and women in a popula-

tion-based setting, and that many blood cell trait PGSs have sex-

specific interactions. The landscape of genetic correlations

between blood cell traits and common diseases identified well-

known trait-level associations, such as eosinophils and asthma,

and intriguing associations such as IRF and CAD, MONO# and

schizophrenia.

Our analysis indicated that EN and BR can jointly model the ef-

fect of correlation, interaction, and low MAF variants, and result

in improved PGSs over P + T for blood cell traits. To overcome

the scalability problem in PGS methods such as MLP and CNN

and provide directly comparable results across these methods,
C

the comparative analysis was conducted

based on the optimal variant sets identified

by the P + Tmethod. Due to the use of hard

cut-off thresholds in P + T, this unified way

for variant selection may limit the potential

of the regularization-based methods EN

and BR, which are known for their strength

in feature selection. Our follow-up analysis

demonstrated including a larger set of

genome-wide variants in EN further

improved PGS for almost every blood cell

trait. These results suggest the EN/BR

method as the top choice for PGS devel-

opment of these (or similar) traits when suf-

ficient individual-level data are available.

However, the increased number of input

variants can cause increased require-

ments for the amount of training data,

computational resources when using

these methods, which could constrain
their utilization in PGS development. To address these issues,

we also demonstrate that tightening p value thresholds offers a

way to not only reduce the size of input variants but alsomaintain

its performance. However, we also find that overly stringent or

lenient p value thresholds could cause either deteriorated perfor-

mance or overfitting problems, so that these should be applied

with caution. Our analyses suggest that selecting an appropriate

p value threshold through an external validation step could be

the key to the better application of these methods in PGS

construction.

LDpred2 is specifically designed to consider LD correlation in

polygenic prediction, but it still relies on cutoff thresholds to re-

move the impact of other factors such as low-MAF variants.29

They can be potential causes for its underperformance or failures

in PGS construction, which were demonstrated by the results of

LDpred2 on the expanded variant sets. In spite of that, our results

did suggest that LDpred2 is still a competitive option for PGS

construction (comparedwith P + T) when appropriate pre-variant

selection steps were taken (e.g., applying stringent low-MAF

variant filtering and p value thresholding). It is particularly the

case when there are only summary-level data available and/or

there is a lack of sufficient individual-level data.

Deep learningmodelsMLPandCNNarebasedon loosermodel

assumptions than theothermethodsandare capable ofmodeling

more complex relationships among data. The increased model
ell Genomics 2, 100086, January 12, 2022 7



Table 1. Summary statistics of PGS-sex interaction tests for blood cell traits on INTERVAL

Trait abbreviation Trait name

Effect size P

Sex (male) PGS (per SD) Interaction Sex PGS Interaction

EO% eosinophil percentage

of white cells

0.41 1.30 0.32 <2.2E�16 <2.2E�16 9.60E�11

EO# eosinophil count 0.013 0.091 0.012 <2.2E�16 <2.2E�16 2.20E�4

HCT hematocrit 3.68 1.70 0.51 <2.2E�16 <2.2E�16 3.50E�9

HGB hemoglobin concentration 1.48 0.56 0.24 <2.2E�16 <2.2E�16 <2.2E�16

HLSR# high light scatter

reticulocyte count

0.00061 0.0019 0.00029 <2.2E�16 <2.2E�16 2.03E�5

MCHC mean corpuscular

hemaglobin concentration

0.70 0.74 0.14 <2.2E�16 <2.2E�16 2.63E�5

MONO% monocyte percentage

of white blood cells

0.90 1.73 0.19 <2.2E�16 <2.2E�16 1.37E�5

PCT plateletcrit �0.033 0.051 �0.0057 <2.2E�16 <2.2E�16 4.59E�7

PLT# platelet count �29.10 56.20 �7.53 <2.2E�16 <2.2E�16 1.71E�12

RET% reticulocyte fraction of

red blood cells

�0.0010 0.30 �0.024 7.34E�1 <2.2E�16 8.84E�4

Interactions between PGS and sex were tested for all of the traits on the INTERVAL cohort by using themultivariate linear regression: y = b0 + b1*PGS +

b2*Sex + b3*PGS*Sex, where y is the actual trait levels adjusted for technical artifacts, season, age, and the first 10 genetic principal components; PGSs

were constructed using EN (p value threshold = 1) on UKB samples and standardized in the model. There are 10 traits whose p values of interaction

term passed the Bonferroni significance threshold 10�3, which are listed in the table. SD, standard deviation.
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complexity of MLP and CNN did not result in improvements for

PGSconstruction of blood cell traits, indicating that explicit incor-

poration of non-linearity factors in the two models does not offer

an advantage in this setting. However, it is well known that the

designof customizednetworkstructuresplaysapivotal role in ad-

dressing a specific task in deep learning, which encourages us to

further design and optimize networks beyond these standard

structures for PGS construction. Meanwhile, it was noted that

the scalability problemof existing deep learning frameworks in ul-

trahigh-dimensional genotype data will be a major challenge for

the widespread application of neural network-based methods in

PGS development. Thus, deep learning frameworks based on

efficient genotype data format (e.g., bed format in Plink30), may

represent the future efforts of the area.

We demonstrated that population-based samples can be

stratified by the PGSs of these blood cell traits, even for traits ex-

hibiting substantial differences between ages and sexes. These

observations may offer therapeutic insights. For example, it is

known that some drugs, such as clozapine and dapsone,31

have neutropenia side effects. The difference between top and

bottom quintiles of the neutrophil count (NEUT#) PGS was

�1,000 NEUTs per microliter; therefore, there may be clinical

utility in a priori knowledge that an individual may have geneti-

cally lowered NEUT# so as to guide pharmacotherapy. It is

also well known that blood cell traits are associated with the

risk of some complex diseases (e.g., between eosinophil counts

and asthma5), which indicates that PGS may be useful in follow-

up studies on disease risk prediction.

LIMITATIONS OF THE STUDY

MLP and CNN are two of the most common and fundamental

deep learning models, and previous studies have demonstrated
8 Cell Genomics 2, 100086, January 12, 2022
their potential in genetic prediction.19,32,33 The present study is

limited to two specific but common deep learning models; thus,

we cannot make conclusive suggestions on the applications of

the whole line of deep learning methods for PGS development

of blood cell traits. Taking the optimized MLP/CNN structures

further and learning from the characteristics of EN/BR methods

may represent the future for designing customized deep learning

methods in the field. Also, there are theoretically infinite possibil-

ities for MLP or CNN structures, so we had to restrict the search-

ing within a fixed set of configurations when identifying the

optimal PGS model of blood cell traits. The selection for these

configurations was based on recommendations in deep learning

studies34 as well as previous findings on the application of neural

networks in genetic prediction.19,32While the adopted configura-

tions have wide coverage of common MLP/CNN structures, it is

still possible that there are other MLP/CNN structures that can

construct better PGSs but are not included in the study.

In addition, while the present study focused on PGS develop-

ment of blood cell traits, the method comparison analysis pro-

vides a potentially useful reference for PGS development of other

cellular and molecular traits. However, these methods may

perform differently for other phenotypes, such as complex dis-

easeswith very different genetic architectures. In this case, dedi-

cated studies will be needed to identify an appropriate method

for PGS construction of the phenotype.

The extensive sharing of the polygenic basis for blood cell

traits and several common diseases was consistent with known

trait-level associations and raised potentially fruitful avenues for

future translational research. For example, both EO# and

NEUT# are important risk factors for rheumatoid arthritis (RA),

and their respective PGSs reflected these associations. Knowl-

edge of their shared genetics and corresponding PGSs

may enable early stratification of individuals at increased risk



Figure 5. Correlation between PGS for blood cell traits and PGS for 6 common diseases in INTERVAL

PGSs for blood cell traits; diseases were adjusted for the first 10 genetic principal components before the correlation analysis. Pearson r correlation analysis was

performed between the blood cell trait PGSs and disease PGSs across INTERVAL samples, and the correlation tests with the p value passing the threshold of p =

10�4 (Bonferroni adjusted for all trait-disease tests) were deemed significant.
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of EO- or NEUT-related RA. Such insights represent new ave-

nues for using PGSs to interrogate disease biology. To facilitate

the use of this resource, we have made the blood cell trait PGSs

constructed using EN (on the expanded variant set with p value

threshold = 1 and trained on UK Biobank) publicly available at

the PGS Catalog.20

Overall, this study evaluated a variety of learning methods to

construct PGSs for blood cell traits using individual-level geno-

type data. We demonstrate how the learning methods outper-

form univariate analysis-based methods, including by adjusting

the effects of correlation, interaction, and low-MAF variants.

This work highlights the importance of moving beyond standard

summary statistics-based methods for PGS, particularly as the

biobank-scale cohorts are becoming more common. We have

made these PGSs available to the community, demonstrated

that they can stratify sex- and age-dependent trajectories, and

identify their shared polygenic basis with various common dis-

eases. Future studies leveraging the totality of genetic variation

(e.g., the full allelic spectrum and difficulty to genotype/

sequence loci) for blood cell traits, as identified in recent

studies10 may provide further improvements in the PGSs of

these traits andmay facilitate further studies evaluating their clin-

ical validity.
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Software and algorithms
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study cohorts
UK Biobank

The UK Biobank is a cohort including 500,000 individuals living in the UK who were recruited between 2006 and 2010, aged between

40 and 69 years at recruitment. The participants with themeasurements of the 26 blood cell trait andwhowere identified as European

ancestry based on their genetic component analysis were included in our study. The detailed simple sizes used for training and in-

ternal validation of PGS of each blood cell trait after quality control were given in Table S2.

INTERVAL Study

INTERVAL is a randomized trial of 50,000 healthy blood donors, aged 18 years or older at recruitment. The participants with mea-

surements of the 26 considered blood cell trait were included in our study. The detailed simple sizes used for external validation

of PGS of each blood cell trait after quality control were given in Table S2.

METHOD DETAILS

Data quality control
This study analyzed 26 different traits across three blood cell types: platelets, red blood cells, andwhite blood cells (Tables S1 andS2)

that were measured in UK Biobank6,7 and INTERVAL8 cohorts. As construction and evaluation of PGS are highly dependent on the

quality of both phenotype and genotype data used, we adopted the established protocols described in the previouswork,10 adjusting

measured values for blood cell trait values to help account for a variety of environmental and technical factors, as well as the first 10

genetic principal components. Technical variables include the time between venepuncture and full blood cell analysis, seasonal ef-

fects, center of sample collection, time dependent drift of equipment, systematic differences in equipment; environmental variables

include sex, age, and lifestyle factors, including diet, smoking and alcohol consumption. Approaches to quality control and imputation

of the genotype data of UKBiobank have been described previously,7 which filtered the samples to the European-ancestry only; simi-

larly, the quality control and imputation of the genotype data of INTERVAL has been described in the previous work.4 For algorithmic

purposes, any remaining missing genotypes were mean imputed.

Variant selection
To construct PGS for blood cell traits, a key step is to select genetic variants (e.g., SNPs), that are not only significantly associated

with the trait but also independently contribute to the trait. Our previous work10 investigated a range of different variant selection

criteria and validated their performance with the P+T method. It was discovered that the conditionally independent variants yield

the best predictive power across all the blood cell traits. Thus, this study first adopted the same variant selection strategy for

each blood cell trait and used the conditional analysis (CA) variants as inputs to compare the performance of six PGS methods.

Below, we describe the steps of the conditional analysis in brief.

A GWAS was first performed for each trait on the UKB cohort to select variants significantly associated with the trait, in which a

MAF threshold of 0.005% was applied and an genotype imputation INFO threshold of 0.4. For each variant tested, a genome-

wide significance threshold of p = 8.31 3 10�9 was applied as it is widely utilized for common, low frequency and rare variants.43,44

Details of GWAS for these blood cell traits onUKB have been previously published.10 Based on these significantly associated variants

of each trait, a conditional analysis with a r2 threshold of 0.9 was further performed to identify the variants that are independently

associated with a trait and can best represent the underlying genetic signals of that trait.

The conditional analysis was performed using a stepwisemultiple linear regression approach.4,45 For each blood cell trait, the set of

genome wide significant variants was first partitioned into the largest number of blocks such that no pair of blocks are separated by

fewer than 5Mb, and no block containsmore than 2,500 variants. For each block, variants within the block are tested separately using

the multiple-stepwise regression algorithm and independently associated variants are put forward into a larger chromosome wide

pool on which a second multiple-stepwise regression algorithm is executed. The multiple-stepwise regression algorithm starts by

adding in variants that pass the genome-wide significance threshold (p = 8.31 3 10�9) and have a LD r2 score lower than 0.9.

Then, it fits amultivariate linear regression to remove variants that have a p value larger than the genome-wide significance threshold,

which step is iterated until no more variants can be removed from the model. Note that we only keep those CA variants whose ge-

notype data are available on both UKB and INTERVAL studies for the convenience of external tests in this study.

There are PGSmethods that are scalable to much higher dimensional genetic data, such as EN and LDpred2, so we further inves-

tigated their performance on larger sets of genome-wide variants that were selected with more lenient thresholds. In details, we first

selected all the biallelic variants that are shared between UKB and INTERVAL, on which filters, MAF > 0.01, INFO score > 0.4 and

variant missing rate < 0.1, were applied to control the quality and total number of selected variants using UKB samples. Then, a

LD thinning step was performed on UKB to remove SNP-SNP LD correlations using the indep-pairwisemethod implemented in plink

version 2.0030 at the threshold of r2 = 0.5, which resulted in a total of 1,090,437 variants. Finally, several levels of p value thresholding

(i.e., 10�6, 10�4, 10�2, and 1) were applied on these selected variants to form different variant sets for each trait, each of which was

incorporated to the CA variant set of the trait for its PGS construction.
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SNP-SNP correlation and interaction detection
To investigate capability of learning methods in modeling correlations and interactions, we focused on the CA variant sets and per-

formed correlation and interaction tests between any pairs of CA variants for each trait on the UKB cohort. The coefficient of deter-

mination r2was used to evaluate the correlation between two variants. Themultivariate linear regression: y = b0 + b1SNP1 + b2SNP2 +

b3SNP1SNP2 was employed for interaction tests with the interaction terms passing the threshold of p = 2.3 3 10�7 (Bonferroni

adjusted for all tested SNP pairs across the 26 traits) were deemed significant. The term ‘‘interaction’’ used here refers to statistical

interactions and does not imply (biological) epistasis.

Polygenic scoring methods
We constructed PGS for 26 blood cell traits using a conventional P+T method, summary statistics based learning method LDpred as

well as a variety of widely used machine learning and deep learning methods. This subsection describes fundamental aspects of the

P+T method, elastic net (EN), Bayesian ridge (BR), LDpred method, multilayer precepton (MLP) and convolutional neural network

(CNN) methods.

Pruning and thresholding (P + T)

P+T method assumes that the genetic variants have linear additive effects on PGS of the trait and constructs polygenic scores of a

blood cell trait using the weighted sum of genotypes of the selected variants for that trait:46dPGSi =
X
j˛S

bj 3 xij (Equation 1)

where S is the set of SNPs that are identified in the variants selection step; bj is the effect size of the SNP j that is obtained through the

univariate statistical association tests in the GWAS using the UKB cohort; xij is the genotype dosage of SNP j of the individual i. As

discussed previously, P+T relies on LD pruning and p value thresholding, or maybe other thresholding strategies, for variants selec-

tion. The best set of thresholding parameters is usually identified by comparing their performance on a validation set.

Elastic net (EN)

EN also assumes that the variants have linear additive effects on the PGS of a trait, i.e., Equation 1, but the effect sizes of variants are

obtained using a different way. These effect sizes are estimated by minimizing the penalized squared loss function:

Loss =
X
i˛N

ðyi � dPGSiÞ2 + a 3 l 3
X
j˛S

��bj

�� +
að1� lÞ

2
3
X
j˛S

b2
j (Equation 2)

in which,N is the set of training samples for a given trait and yi is the trait level of the training sample i; the second term is L1 norm and

the third term is L2 norm; a and l are coefficients used to control the contribution of L1 and L2 norms in the model, which are usually

set via cross-validation. In EN, effect sizes of the variants selected for a trait are jointly estimated which provides an implicit way to

model the correlations among these variants, and the use of L1 and L2 norms helps to control model complexity to address the over-

fitting problem in which L1 controls the sparsity of themodel and L2 controls the contribution of each variable. It has been shown that

the application of these regularized multivariate models offers an effective way to improve PGS construction in practice.17,18

Bayesian ridge (BR)

Similarly, BR also has a linear assumption for the effects of the variants, i.e., Equation 1. Different from EN, BR assumes that PGS of a

trait follow a Gaussian distribution, and the prior for effect sizes of variants is also given by a spherical Gaussian:

pð dPGSjx;b;aÞ � N

 dPGS

�����X
j˛S

xjbj;a
�1

!
(Equation 3)
pðbjlÞ � N
�
b
��0; l�1

�
(Equation 4)

where a and l are coefficients of the model and subject to two Gamma distribution: Gamma(a1, a2) and Gamma(l1, l2). These two

prior Gamma distributions can be set via a validation step. The b, a, l are then estimated by maximizing the log of the corresponding

posterior distribution with respect to b by combining Equations 3 and 4 on the training data.47

LDpred

The LDpred method (both version 1 and version 2) also has a fundamental linear assumption as EN and BR. Differently, it considers

the prior for effect sizes of variants by a Gaussian mixture model:

bj�iid

8><>:N

�
0;

h2

Mp

�
with probability p;

0 otherwise

(Equation 5)

where p is the fraction of causal variants, M the number of variants and h2 refers to the heritability explained by the genotyped var-

iants. In the first version of LDpred method,48 the h2 is estimated by a constrained LD-score regression49,50 and a list of optional
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values for pwere recommended for testing on a validation set. With a pair of given h2 and p, effect sizes of variants are estimated via a

Markov chain Monte Carlo (MCMC) method using the summary statistics and a variants-variants correlation matrix (learned from a

reference panel). The latest LDpred229 extends the LDpred with a couple of new features to offer better software stability, efficiency

and model performance. For example, larger window size is introduced to allow for variants correlation modeling in long-range LD

regions; a sparse learning option is introduced to allow to fit variant effects to zeros and produce a sparse vector of effects.

Multilayer perceptron (MLP)

MLP is also named Deep Forward Neural Networks. Unlike other statistical learning methods, e.g., EN and BR, MLP makes no prior

assumptions on the data distribution and can be trained to approximate virtually any smooth, measurable functions including non-

linear functions.51 A MLP typically consists of many different functions (or neurons) which are composed through a directed acyclic

graph.34 Figure S4 shows an example of a three-layer MLP in which the first layer is known as input layer consisting of the input fea-

tures, i.e., SNPs in the context of this study; the last layer outputs the final result of the model and the layer(s) in between are called

hidden layer(s). A function node in hidden and output layers typically transforms the inputs from the previous layer with a weighted

linear sum followed by an activation function.19 For example, f1 in Figure S4 can be represented as:

f1ðSNP1;SNP2;SNP3Þ = factðSNP1 3 w11 + SNP2 3 w12 + SNP3 3 w13 + b10Þ (Equation 6)

where w11,w12 and w13, are weights of the three inputs of function f1 and b10 is the intercept (or bias); SNP1, SNP2 and SNP3 are the

genotype dosages of three SNPs in our context; fact is an activation function which typically plays the role of introducing non-linearity

into the model. Thus, the network architecture and its components of an MLP, e.g., activation function, determine a linear/non-linear

mapping space, fromwhich amodel, i.e., all the weights across the given network that can best represent the data, is supposed to be

learned. Details on the selection of network architectures for this study are given in the next subsection. This learning process is typi-

cally implemented by minimizing the difference, i.e., cost function, between the training data and the model distribution, through a

back-propagation algorithm.34

Convolutional neural networks (CNNs)

CNNs are a specialized neural network for processing data that have a grid-like topology,34 e.g., time-series data, image data,

genome sequence data.52 As regularized versions of MLPs, CNNs construct its hidden layers using convolutional and pooling op-

erations which are usually followed by fully connected layers and the output layer. The convolution operation limits the number of

input units for an output unit by using kernels, and leads to a sparse connectivity of the network, which allows us to store fewer pa-

rameters and largely improve statistical efficiency. A typical convolutional layer in CNNs performs multiple convolutions in parallel

which lead to multiple representations of the input units. To help generalize these representations and reduce the chance of over-

fitting, a pooling layer is usually followed to replace each representation at a certain location with a summary statistic of the nearby

output units.34 There are different pooling operations that can be applied based on different application context, e.g., max pooling

and average pooling. Figure S5 shows an example of a simple one-dimensional CNN with illustrations on convolution and pooling

operations.

Measurement and hyperparameter tuning
We used Pearson r to measure the performance of various polygenic scoring methods. For each trait and each learning method, we

randomly and equally partitioned the UKB samples into 5 portions, from which any 4 portions (80% of the samples) were used as

training data to learn a model, and test the respective model’s performance on the remaining 20% of UKB samples, as well as an

external validation using the whole INTERVAL cohort. For each learning method and each trait, we obtained 5 different models,

each with a performance measurement for both the internal UKB test and the external INTERVAL test. By doing so, the training

and internal testing covered the whole UKB cohort, affording an effective way to avoid evaluation bias. The P+T method was also

tested on the five different UKB testing sets, and the whole INTERVAL cohort.

Hyperparameter turning is a crucial step for machine learning and deep learning methods as the choice of hyperparameters can

greatly influence the model performance. In this study, we employed SNPNET42 to implement EN method, in which a was set to 0.5

and 10% of the training samples were used as a validation set to tune l for each trait and each variant set. To identify two appropriate

gamma distributions in BR i.e., the selection of a1, a2, l1 and l2, a grid search across the set [-1010, �105,-10, 0, 10, 105, 1010] was

conducted on the training set in which 10% of the samples were used as a validation set. BR was implemented using the scikit-learn

package.41 This study applied the commonly used and top performing grid search option in LDpred2 to learn PGS of these blood cell

traits. Summary statistics from GWAS in the variants selection step, and the 102 default options of hyper-parameters for h2, p, and

sparsitywere applied when running LDpred2. Randomly selected 10,000 samples from training datawere used to obtain the variants-

variants correlation matrix and all the training samples for each trait were used to validate the performance of different hyperpara-

meter combinations for the optimal model selection.

As this work is, to our knowledge, the first attempt to employ MLPs and CNNs for genomic prediction of blood cell traits, there was

no prior information that could be used for the design of network architecture for this task. Therefore, similar to the previous work,19

we used a genetic algorithm to search for the optimal MLP and CNN architectures as well as other hyperparameters, e.g., the number

of layers, the number of neurons at each layer, activation functions, optimizers, dropouts, etc., on the training set, in which 10%of the

samples were used as a validation set. MLPs and CNNs were implemented using Keras (keras.io).
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Derivation of PGS for disease on INTERVAL
The polygenic risk score used for coronary artery disease (CAD) was our previously published CAD meta-GRS;35 a polygenic score

comprising 1.75 million variants derived from a meta-analysis of three PGS for CAD in UK Biobank. Briefly, the three meta-analyzed

CAD PGS were: (1) an earlier PGS53 comprising 46,000 metabochip variants and their log odds for CAD in the 2013 CARDIoGRAM-

plusC4D consortium GWAS meta-analysis;54 (2) a PGS comprising 202 variants whose association with CAD in the 2015 CARDIo-

GRAMplusC4D consortium GWAS meta-analysis55 were significant at a false discovery rate (FDR) < 0.05; and (3) a genome-wide

PGS derived from the same summary statistics55 LD-thinned at r2 = 0.9 threshold in UK Biobank (version 2 genotype data, imputed

to the HRC panel only).

PGS for schizophrenia, Crohn’s disease, rheumatoid arthritis, allergic disease and asthma were derived from summary statistics

from their respective genome wide association studies (GWAS) by filtering to variants that overlapped with a set of 2.3 million linkage

disequilibrium (LD)-thinned (r2 < 0.9), high-confidence (imputation INFO score > 0.4), common (MAF > 1%), unambiguous SNPs (A/T

and G/C SNPs excluded) in the UK Biobank version 3 genotype data6,56 (imputed to the 1000 genomes, UK10K, and haplotype refer-

ence consortium (HRC) panels57). GWAS summary statistics used for schizophrenia, Crohn’s disease, rheumatoid arthritis, allergic

disease, asthma were those published in the previous works.36–40

Levels of each PGS in each INTERVAL participant were calculated using the scoremethod implemented in plink version 2.00.30 In

the case of missing genotypes, the frequency of the effect allele in INTERVAL was used in its place. For each PGS, these total sums

were subsequently standardized to have mean of 0 and standard deviation 1 across all INTERVAL participants. Variants with com-

plementary alleles (e.g., A/T andG/C variants) were excluded to avoid incorrect effect allele matching due to strand ambiguity. Where

there were duplicate variants the one with the highest INFO score was kept. In total, 54,069,889 variants passed QC for PGS calcu-

lation of these diseases.

QUANTIFICATION AND STATISTICAL ANALYSIS

The quantitative and statistical analyses are described in the relevant sections of theMethod details or in the table and figure legends.
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