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Abstract Biological control of phytopathogen is a

promising approach when compared to the use of chemical

agents. In the present study, seven Streptomyces cultures

showing promising anti biofilm activity against Ralstonia

solanacearum was mixed individually with farmyard

manure. All the Streptomyces fortified farmyard manure

(SFYM) were screened for plant growth promotion and

control of bacterial wilt caused by R. solanacearum on

tomato. Further, the ability of SFYM on stimulating the

production of defense-related enzymes in R. solana-

cearum-inoculated tomato plants was investigated. When

compared to the control tomato plants, the SFYM-treated

plants had longer shoot and root length along with higher

fresh and dry weight. The maximum level of chlorophyll

was observed in the plants treated with strain UP1A-1

(2.21 ± 0.18 mg g-1). Strain UP1A-1 also showed maxi-

mum of 96.8 ± 1.4% biocontrol efficacy in tomato plants

challenged with R. solanacearum. In addition, the UP1A-1

treated tomato plants showed maximum accumulation of

total phenolics (3.02 ± 0.09 mg g-1) after 6 days of

pathogen inoculation (DPI). Similarly, tomato plants trea-

ted with UP1A-1 showed highest level of peroxides,

polyphenol oxidase and phenylalanine ammonia lyase

during 1–9 DPI. Findings of present study revealed that the

Streptomyces culture UP1A-1 fortified farm yard manure

could be applied as an eco-friendly alternative to synthetic

agents for controlling bacterial wilt in tomato plants.
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Introduction

Tomato (Solanum lycopersicon L.) is one of the most

important vegetable crops in the solanaceae family, with a

global production of 188 million tons in 2018. India, after

China, is the world’s second-largest tomato producer [1].

The overall area for tomato cultivation and level of pro-

duction are rising every year due to its potential health

advantages and economic relevance. Tomato may readily

be integrated into a balanced diet as a source of nutrients

since they contain numerous health-promoting components

such as carotenoids, vitamins A, C and E, antioxidants and

phenolic compounds [2]. However, the wilt disease in

tomato plants is a challenging problem. Among the various

plant diseases, bacterial wilt caused by Ralstonia solana-

cearum has one of the most devastating symptoms resulting

in massive production losses across the world. Tomato crop

losses owing to bacterial wilt disease were estimated to be

between 10 and 90% in India [3].

Ralstonia solanacearum is a debilitating plant vascular

pathogen with a broad host variety [4]. Because of exces-

sive extracellular polysaccharides (EPS) development

within the vascular system, this pathogen causes typical

wilting symptoms by colonizing xylem tissue and modi-

fying water fluxes in the plant. N-octanoyl homoserine

lactone (C8-HSL) is a major quorum sensing (QS)
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molecule generated by R. solanacearum, which promotes

cell growth and biofilm formation [5, 6]. Potential bacteria

such as Bacillus, Pseudomonas and Streptomyces inhibit

QS through inactivation of C8-HSL signals by producing

enzymes like AHL-lactonases and acylases [7–11]. Many

microbicidal synthetic products, such as copper deriva-

tives, have traditionally been used to combat bacterial wilt

in tomato. However, conventional agrochemicals have not

been very successful in controlling bacterial wilt, and

antibiotic usage may result in the development of antibi-

otic-resistant strains. Alternative approaches such as

applying biological control agents (BCAs) have proven to

be successful and are now being used more often in the

field. Pseudomonas, Bacillus, Streptomyces and Tricho-

derma are some of the potential BCAs widely used to

control bacterial wilt disease [1, 12].

Streptomyces, the well investigated genus under the

phylum Actinobacteria, is being explored in agriculture

sector as plant growth promoters (PGP) and BCA. Due to

their remarkable antagonistic behavior by producing dif-

ferent bioactive agents, certain Streptomyces have been

used to manage soil-borne diseases [13]. Biocontrol prod-

ucts such as Mycostop, Actinovate, and Rhizovit by S.

griseoviridis K61, S. lidicus WYEC 108, and Streptomyces

sp. DSMZ 12,424, respectively are already developed to

tackle fungal diseases in plants [14, 15]. Hence, members

of the genus Streptomyces remain as promising microbial

resources for the development of biocontrol agents and/or

biofertilizers in agriculture. Nevertheless, the genus

Streptomyces has not been investigated in detail as bio-

control agents for the management of bacterial wilt in

tomato plants.

Induced systemic resistance (ISR) enzymes such as

phenylalanine ammonia lyase (PAL), peroxidase (POX)

and polyphenol oxidase (PPO) are involved in redirecting

the flow of carbon from primary to secondary metabolism

in plants. In addition, they act as key enzymes in the

synthesis of phenolic compounds with antimicrobial

activity [16]. When a pathogen is expressed, the ISR

activates several defense mechanisms including the

enhanced activity of POX, PPO, and PAL. POX is a broad-

spectrum resistance enzyme that plays a role in plant-

pathogen interactions. POX is believed to be one of the

significant enzymes of the plant’s biochemical protection

against pathogens, and it contributes in self-regulation of

plant metabolism following infection [17]. PPO is an

oxidative enzyme that catalyzes the conversion of phenolic

compounds into extremely poisonous quinones, which are

essential for disease tolerance in plants [18]. The PAL

enzyme, which converts l-phenylalanine to trans-cinnamic

acid, a key product of phenylpropanoid metabolism and a

critical step in the production of salicylic acid, protects

against pathogen invasion [19]. Unfortunately, the kinetic

modifications in defense-related enzymes produced by

Streptomyces cultures on tomato are very less understood.

Hence, this work is undertaken to study the anti-biofilm

and biocontrol potential of Streptomyces cultures against

Ralstonia solanacearum on tomato plants.

Materials and Methods

Antagonists and Plant Pathogen

Antagonistic Streptomyces cultures were obtained from

Division of Bioprospecting, Centre for Drug Discovery and

Development, Sathyabama Institute of Science and Tech-

nology, Chennai, Tamil Nadu and India. The bacterial wilt

causing pathogenic strain Ralstonia solanacearum

(BRs_Gr) was used for in-vitro anti-biofilm study and pot

culture study [20]. The antagonistic cultures were sub-

cultured using YEME (Yeast Extract and Malt Extract)

agar media at 28 �C. Similarly, the R. solanacearum was

sub-cultured and maintained on Pseudomonas solana-

cearum medium amended with 1% TTC (2, 3, 5 triphenyl

tetrazolium chloride) solution at 28 �C for further studies.

Anti-Biofilm Assay

Streptomyces cultures were grown in 20 ml of YEME broth

in 100 ml conical flask at 28 �C in rotary shaker with

150 rpm for 7 days. After incubation, the supernatant was

collected by centrifugation at 10,000 rpm for 15 min at

4 �C and used for biofilm inhibition study. Approximately

40 ll culture filtrate of biofilm-forming test pathogenic

strain R. solanacearum (108 CFU/ml) was inoculated into

sterile 96-well polystyrene microtiter plate containing

60 ll LB broth supplemented with 100 ll of Streptomyces
culture supernatant. In case of control treatment, 160 ll of
LB broth with 40 ll culture filtrate of R. solanacearum was

used and the plate was incubated at 37 �C for 16 h. After

incubation, media was discarded from the 96 well plate and

biofilm inhibition was observed by staining the wells with

crystal violet, further dissolving with 95% ethanol. Quan-

tification was done by UV–Vis spectrophotometer absor-

bed at 530 nm and the biofilm inhibition percentage was

calculated using the formula:

% biofilm inhibition

¼ A530of biofilm in control� A530of biofilm in treatmentð Þð
A530of biofilm in control= Þ

� 100

For microscopic imaging, anti-biofilm assay performed

in 12-well polystyrene microtiter plate amended with

1 9 1 cm cover slip. The biofilm inhibition was observed
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by staining the cover slip with crystal violet method

described above and visualized by inverted bright-field

microscope at magnifications of 40 X [21].

Pot Culture Study

Preparation of Streptomyces Enriched Farm Yard Manure

(SFYM)

Streptomyces enriched farm yard manure (SFYM) was

prepared with sterile talc powder, carboxy methyl cellulose

(CMC) and well decomposed farm yard manure (FYM) in

a standard ratio. A loopful of each Streptomyces culture

(UP1A-1, UP1A-4, UP2A-9, UT2A-30, UT3A-39, UT4A-

49 and UT6A-57) was inoculated into 200 ml of YEME

broth and incubated in rotary shaker at 150 rpm for 7 days

at 28 �C. To prepare SFYM, 200 ml of 7 days old Strep-

tomyces suspension (108 CFU/ml or absorbance at

600 nm = 0.5–0.9) was mixed with one kg of sterilized

talcum powder amended with 10 g of carboxy methyl

cellulose (CMC) in sterile container. The freshly prepared

talc formulation was then mixed with 50 kg of well

decomposed FYM and the mixture was maintained under

shaded conditions for 15 days with intermittent manual

turn over once a day to enrich Streptomyces population in

the FYM substrate.

Evaluation of SFYM for Plant Growth Promoting

Properties

A fine red soil having the following characteristics:

sand 14%; silt 39.5%; clay 24.2%; pH 7.03; EC (elec-

trical conductivity) 1.39 dSm-1; OM (organic matter)

12.52%; total organic C 2.98%; total N 3.51%; P 0.94%;

total K 1.64%, was taken. Twenty one days old tomato

seedlings (cv. Meghdoot 2048, Syngenta, Pvt. Ltd) were

transplanted into sterilized pots (15 9 15 cm) contain-

ing sterile mixture of red soil, coco peat powder and

FYM (control treatment) or SFYM (Streptomyces

treatment) at 2:1:1 ratio. Each pot contained approxi-

mately 300 g of soil mixture. Three tomato plants were

maintained in each pot, and the experiment was repe-

ated five times to examine the plant growth. Plants were

irrigated 2 days once. After 30 days of treatment, plant

growth parameters including shoot length, root length,

fresh weight (FW), and dry weight (DW) were

measured.

Measurement of Total Chlorophyll

The total chlorophyll from fresh tomato leaf samples was

extracted using 80% acetone and quantified using spec-

trophotometric assay [22].

Biocontrol Study

Twenty one days old tomato seedlings (cv. Meghdoot

2048, Syngenta, Pvt. Ltd) were transplanted into steril-

ized pots (15 9 15 cm) containing mixture of sterile red

soil, coco peat powder and FYM (control treatment) or

SFYM (Streptomyces treatment) at 2:1:1 ratio. After 7

days, 20 ml of pathogenic suspension (1 9 108 CFU/ml

or absorbance at 600 nm = 0.6) was inoculated into each

pots by soil drench method [23] and incubated at 28–

32 �C under controlled conditions. Three tomato plants

were maintained in each pot, replicated five times in

order to achieve completely randomized design. The wilt

development on each tomato plant was calculated at

regular intervals. The wilt percentage and biocontrol

efficacy were calculated by the following formula,

Wilt percentage

¼ total no of plant wilted=total no of plants inoculated½ �
� 100

Biocontrol efficacy¼
total noof plant in treatment� total noof plant in controlð Þ=½

total noof plant in control��100

Sample Collection for Enzyme Estimation

Tomato leaves were collected at various time intervals

(1, 3, 6, and 9 days after pathogen inoculation) to esti-

mate the plant defense-related enzymes. One gram of

tomato leaves was homogenized using 1 ml of 0.1 M

sodium phosphate buffer (pH 7.0) at 4 �C and the

aqueous portion was collected by centrifugation at

12,000 rpm for 20 min at 4 �C. The supernatant was

collected in a fresh tube to determine plant defense-re-

lated enzymes such as peroxidase (POX) [24], polyphe-

nol oxidase (PPO) [25], and phenylalanine ammonia

lyase (PAL) [26]. Total phenolic content was estimated

according to the method of Zieslin and Ben-Zaken [27].

Data Analysis

The data were presented as the mean ± SE of several

independent replicates. Analysis of variance (ANOVA)

done by Duncan multiple post hoc comparison tests was

performed in SPSS software version of 16.0. The values

of P B 0.05 were considered as statistically significant.

34 Indian J Microbiol (Jan–Mar 2022) 62(1):32–39

123



Results and Discussion

Anti-Biofilm Activity of Streptomyces Cultures

In the present study, UP1A-1, UP1A-4, UP2A-9, UT2A-

30, UT3A-39, UT4A-49 and UT6A-57 were selected based

on their in-vitro plant growth promoting and antagonistic

activity against R. solanacearum (data not shown).

The synthesis of extracellular polymeric substances

(EPS) and various proteins by R. solanacearum was com-

monly believed to be responsible for biofilm formation. By

causing blockage in the plant xylem, biofilm formation is

one of the beneficial factors for pathogenic virulence [28].

In this present study, among seven Streptomyces cultures

used for biofilm inhibition against R. solanacearum,

UT2A-30 and UP1A-1 showed maximum anti-biofilm

activity followed by UT6A-57, UP1A-4 and UT3A-39

(Fig. 1a). The bright field microscopic observation showed

prominent anti-biofilm activity by all the seven Strepto-

myces against R. solanacearum (Fig. 1b).

Several studies reported anti-biofilm properties of bac-

teria and fungi against various pathogens [29–31]. Sabu

et al. [32] reported that Nocardiopsis sp. can inhibit more

than 90% biofilm formation by Staphylococcus capitis and

Staphylococcus haemolyticus. Similarly, bioactive

metabolites from Streptomyces californicus were found to

inhibit more than 90% of S. aureus and MRSA biofilms

[33]. In the current study, the culture supernatant of UT2A-

30, UP1A-1, UT6A-57 and UP1A-4 showed more than

80% biofilm inhibition against R. solanacearum (Fig. 1a).

This in-vitro study suggests that all seven Streptomyces

cultures can reduce the virulence of R. solanacearum by

suppressing biofilm formation.

Pot Culture Study

Promotion of Tomato Plant Growth

Plant growth promoting microbes are extensively resear-

ched because of their sustainable behavior in agriculture.

Members of the genus Streptomyces are well renowned

among Actinobacteria in terms of their biocontrol and PGP

properties. It exhibits such properties on various veg-

etable crops including tomato, either directly by the pro-

duction of phytohormones, or indirectly by antagonizing

plant pathogens [34]. In this study, the growth of tomato

plants evaluated by shoot length, root length, fresh weight,

and dry weight was substantially higher in the SFYM

treated plants than in the non-inoculated control plants. The

highest shoot length was recorded in the plant treated with

UP1A-1 (15.44 ± 0.21 cm plant-1) followed by UP1A-4

(12.72 ± 0.37 cm plant-1) and UP2A-9 (12.5 ± 0.32 cm

plant-1) (Fig. 2a). Similarly, the application of UP1A-1

and UP2A-9 showed significant increase in the root length

by 15.78 ± 0.58 and 11.72 ± 0.54 cm plant-1, respec-

tively relative to the non-inoculated control treatment

(Fig. 2b). The maximum fresh and dry weight of tomato

plants was recorded in the treatment of UP1A-1, which

showed 10.89 ± 0.77 and 0.62 ± 0.04 g plant-1, respec-

tively. Next to that, UP2A-9 showed second highest fresh

weight followed by UT4A-49, UT6A-57 and UP1A-4,

when compared to control treatment (Fig. 2c and d). The

highest level of chlorophyll was recorded on UP1A-1

(2.2 ± 0.18 mg g-1) followed by UP2A-9

(1.61 ± 0.19 mg g-1) (Fig. 2e). Our results are in agree-

ment with the observations of Djebaili et al. [35] who

reported that actinobacteria can be used for better plant

growth promotion of tomato plants. Similarly, others

findings also reported Streptomyces sp. used for pot culture

study showing increased plant growth of tomato plants

when compared to control plants [36]. These Streptomyces

cultures will be the potential candidates for the develop-

ment of soil nutrients and can be used as an alternate to

chemical pesticides [37].

Biocontrol Study

Streptomyces are ubiquitous in nature and can protect host

from disease causing phytopathogens by secreting various

antagonistic molecules. In this study, Streptomyces cultures

Fig. 1 Inhibition of biofilm formation by Streptomyces cultures against Ralstonia solanacearum (a). Percentage inhibition by spectrophotometer

analysis (b). Microscopic visualization a UP1A-1, b UP1A-4, c UP2A-9, d UT2A-30, e UT3A-39, f UT4A-49, g UT6A-57 and h control
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not only enhanced growth of tomato plants but also con-

trolled the wilt caused by R. solanacearum. The seven

Streptomyces cultures amended FYM exhibited varying

degrees of protection ranging from 60 to 97%. The maxi-

mum biocontrol efficacy was exhibited by UP1A-1

(96.85%) and UP2A-9 (83.1%) cultures when compared to

control (Table 1). Similar to this, Streptomyces culture

NEAU-HV9 isolated from soil sample was reported that

can control the tomato bacterial wilt up to 82% in pot

culture study [38]. Also, Streptomyces culture LD120T

showed 63.6% biocontrol efficacy in pot culture study on

tomato plants against R. solanacearum [12]. Our present

study showed that Streptomyces culture UP1A-1 was able

to control more than 90% biocontrol efficacy on tomato

against R. solanacearum. This observation revealed that

Streptomyces strain UP1A-1 is a potential candidate for the

Fig. 2 Effect of Streptomyces fortified farmyard manure (SFYM) on the growth of tomato plants under pot culture study a shoot length, b root

length, c fresh weight, d dry weight, e total chlorophyll

Table 1 Potential of Streptomyces cultures to induce resistance

against R. solanacearum in tomato plants under pot study

Cultures Disease incidence (%) Biocontrol efficacy (%)

UP1A-1 2.96 ± 1.31a 96.85 ± 1.40a

UP1A-4 21.48 ± 2.54b 77.75 ± 2.57b

UP2A-9 16.29 ± 2.84b 83.1 ± 2.99b

UT2A-30 28.14 ± 3.04c 62.84 ± 4.49c

UT3A-39 17.03 ± 1.48b 78.81 ± 2.22b

UT4A-49 31.85 ± 2.13c 59.71 ± 2.3c

UT6A-57 19.25 ± 2.02b 78.17 ± 2.85b

Control 96.29 ± 1.77d –

Values are mean ± SE (n = 5). Values with the same letter within a

column are not significant at p B 0.05 as per Duncan multiple post

hoc comparison test
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development of biocontrol agent against the wilt causing

pathogen R. sonalacearum on tomato crops.

Estimation of Total Phenolic and Defense Enzymes

Strains of Streptomyces were identified as intermediaries

for decreasing plant disease incidence and increasing pro-

duction in a variety of vegetable crops. The production of

defense-related enzymes during the initial phases is

important for plant disease control through cell-wall

membrane and bioactive metabolites [39]. In this present

study, Streptomyces-treated tomato plants showed impac-

ted changes in the activities of defense related enzymes and

total phenolic content. The maximal activity of these

enzymes and total phenol occurred at different stages.

Konappa et al. [40] have already demonstrated that treat-

ment of tomato plants with antagonistic microbes develops

systemic resistance through accumulation of total phenol

and various plant defense enzymes against bacterial wilt.

The estimation of phenol, POX, PPO, and PAL in toma-

to was also directly correlated with disease reduction

study.

Higher phenol accumulation was observed in different

Streptomyces-treated tomato plants when compared to

control plant. Also tomato plants treated with UP1A-1

accumulated the maximum level of phenolic content when

compared to the others at 6 DPI and 9 DPI. The accumu-

lation of phenolic content increased after the pathogen

inoculation and reached maximum level from 6 to 9 DPI in

Streptomyces inoculated tomato plants while in case of

control treatment, it started decreasing from 6 DPI onwards

(Fig. 3a). This finding correlates with previous report

where the Streptomyces and fungal pathogen inoculated

Eucalyptus globulus had increased phenolic content from 1

DPI-15 DPI whereas it showed decreasing strategy in

control treatment [41].

Peroxidase induction in plants can enhance the disease

resistance through oxidation of phenolic compounds by

utilizing H2O2 and lignin biosynthesis. Fortification of the

cell wall by lignin biosynthesis is crucial for mechanical

defense against pathogens [42]. After R. solanacearum

inoculation, the activity of POX increased in Streptomyces

inoculated tomato plants, whereas the POX activity

decreased in control plants. The tomato plants treated with

UP1A-1 induced maximum amount of POX enzyme at 3

DPI. Next to that, UT6A-57 and UT3A-39 treated tomato

plants showed maximum increasing POX activity at 6 DPI

(Fig. 3b). Similar studies show that Streptomyces has

induced POX in tomato [43], cucumber [44] and rice [45]

as well. The susceptibility of tomato plants to R. solana-

cearum is positively correlated with low POX activity.

POX, on the other hand, plays a significant role in plant

resistance to R. solanacearum when activated early [40]. In

present study, at 3 DPI, tomato plants treated with UP1A-1

showed this systemic response.

Polyphenol oxidase was used to oxidize different phe-

nolic compounds without H2O2 and employed for plant

disease control. During microbial invasion, they are

essential in the oxidation of polyphenols into different

antimicrobial metabolites such as quinones, as well as the

lignification of plant cells [46]. The activity of PPO in

Streptomyces treated tomato plants were found to be higher

than the control plants and it reached maximum on early

stage of pathogen invention at 1 DPI (Fig. 3c). Among the

Fig. 3 Estimation of plant defense-related enzymes of tomato plants under pot culture study a total phenolic content, b peroxidase, c polyphenol
oxidase, d phenylalanine lyase activity
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Streptomyces treatments on tomato, the PPO activity was

found to be higher in the plants treated with UP1A-3. The

enzymes POX and PPO are involved in the activation of

hypersensitive reactions in plant cells, as well as the

modification of adjacent cell to prevent pathogen entry

[43]. The findings of previous investigations also concur

that tomato plants treated with beneficial microbes

increased POX and PPO levels against the disease causing

R. solanacearum pathogen [47].

The estimation of PAL enzyme was comparatively

higher in control treatment than Streptomyces treated plants

at 1 DPI. However, all Streptomyces treated tomato plants

depicted increased PAL enzyme from 3 DPI onwards but in

control treatment it showed a significantly decreasing

strategy. It was observed that maximum PAL activity was

induced in UP1A-1 treated tomato plants at 6 DPI followed

by UT4A-49. The present study clearly observed that the

PAL enzyme activity significantly increased in all Strep-

tomyces inoculated tomato plants, whereas in control

treatment it showed reduced PAL activity at the end of

experiment (Fig. 3d). Induction of PAL activity by antag-

onistic microbes improved their biocontrol effect, accord-

ing to several earlier findings [43, 47]. Such observations

were also seen in this study in agreement with previous

research findings showing that beneficial microbes can

increase PAL enzyme in tomato infected with R. solana-

cearum [40, 47].

In conclusion, Streptomyces culture UP1A-1 fortified

farmyard manure has the potential properties to control

bacterial wilt and promote growth in tomato. Evaluation in

field conditions is needed to be done to prove its further

potentials.
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