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BACKGROUND: Higher body mass index (BMI) and metabolic consequences of excess weight are associated with increased risk of
severe COVID-19, though their mediating pathway is unclear.
METHODS: A prospective cohort study included 435,504 UK Biobank participants. A two-sample Mendelian randomisation (MR)
study used the COVID-19 Host Genetics Initiative in 1.6 million participants. We examined associations of total adiposity, body
composition, fat distribution and metabolic consequences of excess weight, particularly type 2 diabetes, with incidence and
severity of COVID-19, assessed by test positivity, hospital admission, intensive care unit (ICU) admission and death.
RESULTS: BMI and body fat were associated with COVID-19 in the observational and MR analyses but muscle mass was not. The
observational study suggested the association with central fat distribution was stronger than for BMI, but there was little evidence
from the MR analyses than this was causal. There was evidence that strong associations of metabolic consequences with COVID-19
outcomes in observational but not MR analyses. Type 2 diabetes was strongly associated with COVID-19 in observational but not
MR analyses. In adjusted models, the observational analysis showed that the association of BMI with COVID-19 diminished, while
central fat distribution and metabolic consequences of excess weight remained strongly associated. In contrast, MR showed the
reverse, with only BMI retaining a direct effect on COVID-19.
CONCLUSIONS: Excess total adiposity is probably casually associated with severe COVID-19. Mendelian randomisation data do not
support causality for the observed associations of central fat distribution or metabolic consequences of excess adiposity with
COVID-19.
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BACKGROUND
Higher body mass index (BMI) is associated with severe outcomes
from COVID-19, after adjusting for common diseases caused by
excess weight [1]. There is also evidence that higher BMI may have
a bigger impact in younger people and people of non-White
ethnic groups [2–4]. It is possible that the effects of higher body
mass are compounded by differences in body composition (such
as the ratio of muscle to fat) or the distribution of adiposity, where
central distribution is associated with a higher likelihood of
metabolic disturbance at any given BMI. A more detailed
understanding of the relationship between body size and
composition may provide insights to the mechanisms linking
obesity and severe COVID-19 outcomes.
SARS-CoV-2 viral entry via angiotensin converting enzyme-2

receptors on alveolar type 2 pneumocytes is followed by viral
proliferation and cytotoxicity, marked local complement

deposition, severe inflammation in the alveoli and frequent and
widespread microthromboses in the pulmonary capillaries [5].
Obesity may exacerbate these processes. Obesity is associated
with increased circulating pro-inflammatory cytokines and key
complement components, dysfunction of both endothelium and
platelets, reduced serum adiponectin, and reduced fibrinolytic
capacity, all of which could exacerbate the pulmonary pathology
of COVID-19 [6, 7]. These are consequences of the metabolic
dysfunction that frequently accompanies obesity. Metabolic
dysfunction in obesity relates both to excess intracellular lipid in
cells other than adipocytes and insulin resistance leading to
compensatory hyperinsulinemia [8].
It is also possible that the association between excess weight

and severe outcomes of COVID-19 arises due to residual
confounding. Obesity is associated with an increased risk of
cardiometabolic diseases, which themselves have also been
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associated with severe COVID-19 [9], however it is unclear whether
obesity is an independent determinant of COVID-19 severity.
Incomplete measurement of comorbidity and failure to capture all
comorbidity may leave an apparent independent association [10].
Mendelian randomisation (MR) can overcome this using uncon-
founded genetic variation as a natural experiment to investigate
the causal relations between risk factors and outcomes in
observational data [11]. The aim here is to use observational
and MR analyses to examine associations between total adiposity,
body composition, fat distribution, metabolic consequences of
excess adiposity, particularly type 2 diabetes, with incidence and
severity of COVID-19.

METHODS
Study design and data sources
For the observational study, we used the UK Biobank (UKBB) prospective
cohort that recruited 502,664 participants aged 40–69 years between 2006
and 2010 [12, 13], and ethical approval was obtained from the North West
Multicentre Research Ethics Committee (11/NW/03820). Participants
reported on sociodemographic, physical, behavioural, and health-related
factors at baseline. Trained staff measured weight, body composition using
a Tanita BC418MA bioimpedance (BIA) analyser, height, and waist and hip
circumference, and took samples for biological and genetic analyses
[14, 15].
Data from UKBB were linked to COVID-19 test results (Public Health England)

between March 16 and November 10, 2020, in England only; and linked data
on hospital records up to June 30, 2020 and death records up to September
19, 2020. More information on COVID-19 in UKBB can be found here: http://
biobank.ndph.ox.ac.uk/ukb/exinfo.cgi?src=COVID19_tests. The cohort was
followed up until the earliest occurrence of a COVID-19 outcome of interest,
death from other causes, or the study end date (November 10 2020).
Two sample MR analyses were used to assess the causal effects of

adiposity on the risk of COVID-19 outcomes. Data on adiposity, lean mass, fat
distribution and metabolic biomarkers are publicly available (Supplementary,
Table S1). Data on COVID-19 endpoints were obtained from GWAS summary
statistics reported by the COVID-19 Host Genetics Initiative, release 5, Jan
2021 (https://www.covid19hg.org) (Supplementary Table S1) [16].

Outcomes
The observational study included the following outcomes: (1) COVID-19 test
positivity, defined as positivity with COVID-19 by polymerase chain reaction;
(2) COVID-19 hospital admission, defined as having ICD-10 code in hospital
record for either confirmed (U07.1) or suspected COVID-19 (U07.2); (3) COVID-
19 intensive care unit (ICU) admission, defined as critical care admissions to
COVID-19; (4) COVID-19 death, defined as individuals who had died with
COVID-19. In the MR analysis, outcomes included: (1) COVID-19 test; (2)
COVID-19 hospital admission; (3) Very severe confirmed COVID-19 defined as
hospitalised COVID-19 cases with respiratory support or death.

Exposures
The exposures related to total adiposity, body composition, fat distribution
and metabolic consequences of excess adiposity but measured differently
in the observational and MR studies because of the constraints of the
source data. Fat in the peripheral adipose tissue is metabolically inert [17],
but truncal fat is associated with metabolic consequences of excess
adiposity leading to organ dysfunction, metabolic disturbance, dysregu-
lated secretion of cytokines and adipokines, and insulin resistance [18].
In the UKBB observational study, the exposures were:

1. Total adiposity assessed by body mass index (BMI) and whole-body
fat mass index (FMI, calculated as fat mass divided by height
squared) assessed by bioelectrical impedance analysis (BIA).

2. Lean mass index assessed by BIA via appendicular skeletal muscle
mass index (SMMI), calculated as the sum of the predicted muscle
mass from the four limbs divided by height squared.

3. Fat distribution assessed by waist-hip circumference ratio (WHR).
4. Metabolic disturbance was defined as the metabolic consequences

of excess adiposity, marked by the presence of non-diabetic
hyperglycaemia, type 2 diabetes, or non-alcoholic fatty liver disease
(NAFLD) [19, 20]. These were reported doctor diagnoses, or from
medication, or HbA1c > 6%, or coded in the hospital in-patient data

according to the International Classification of Diseases 10th revision
(ICD-10) E11.0-E11.9. NAFLD was defined as ICD-10 code K76.0.

5. Type 2 diabetes, a condition typically due to insulin resistance and
beta-cell failure [21].

In the MR analyses, we developed genetic instruments using public GWAS
summary data via clumping [22]. The clumping method is described on the
homepage of PLINK (https://zzz.bwh.harvard.edu/plink/). For each exposure,
clumps were formed around ‘index variants’ that had p values less than 1x5e-
8. Index variants were chosen starting with the lowest p value. Secondary hits
were identified if they were within the clumping window (10Mb) of an index
SNP, reached GWAS significance (p< 5e-8) and had a low LD with the index
SNP (r2 < 0.001 based on 1000 Genomes phase 3 data from European
descendants). Genetic instruments were developed for:

1. Total adiposity assessed by BMI, and body fat percentage.
2. Lean mass assessed by whole-body fat-free mass, and arm and leg

lean mass.
3. Fat mass distribution assessed by peripheral fat mass (arm and leg

fat mass, hip circumference), and abdominal adiposity (trunk fat,
waist circumference, hip circumference, WHR and waist-to-hip ratio
adjusted for BMI [WHRadj]).

4. Metabolic consequences of excess adiposity assessed by genetic
markers for insulin resistance, insulin-like growth factor (IGF-1) [23],
glucose [24], glycated haemoglobin [24], and adiponectin [25]. We
also assessed lipid parameters that relate to metabolic disturbance,
including apolipoprotein A, high-density lipoproteins (HDL), apoli-
poprotein B, low-density lipoprotein (LDL), triglycerides [26].

5. Type 2 diabetes.

In the observational analyses, where exposures were continuous e.g.
BMI, we calculated sex-specific z-scores. This created a standard unit of
exposure for continuous variables. For quantitative traits in MR analyses,
rank-based inverse normal transformation (RINT) is generally applied to
achieve a normal distribution, during which the residuals of the raw values
(after adjusting for the covariates) were mapped to the quantiles of a
normal distribution. The values after RINT are in a standard unit and are
used in the GWAS analyses.

Covariates for observational study
Covariates were binary unless otherwise specified. Ethnicity was classified
as white, black, Asian, other or missing. Other covariates included
Townsend index of deprivation (quintiles); education group (four
categories); smoking status (never, previous, current, missing); physical
activity derived from metabolic equivalent of task scores per week (low,
moderate, high); alcohol intake (none, occasional, moderate, heavy,
missing); fruit and vegetables intake (servings/day); non-obesity-related
morbidity (namely, COPD, asthma, autoimmune condition, colitis, Crohn
disease) and obesity-related morbidity (namely, hypertension, CVD, Reflux,
sleep apnoea), with each disease treated as a binary variable. For details
and distributions on these covariates, see Supplementary Table S2.

Statistical analyses
Participants in the observational UKBB study were excluded if they were
living outside England and so without data on COVID-19 data (n= 56,649,
11.3%), died before the COVID-19 pandemic (set as February 1, 2020, n=
29,477, 5.9%), or with missing data for the main exposures (n= 10,352,
2.1%). We used directed acyclic graph to identify potential confounders,
colliders, and biasing relationships (Supplementary Fig. S1). Confounding
would be maximally reduced by controlling for demographic factors
(age, gender, Townsend index, education) as well as behavioural risk
factors (smoking, alcohol consumption, diet, and physical activity). Since
behavioural risk factors were incompletely measured, we further adjusted
for downstream morbidity which would increase the severity of COVID-19,
that is, non-obesity-related morbidity and obesity-related morbidity.
In the observational study, we examined the association of each exposure

separately with COVID-19 outcomes. To do so, we used Cox proportional
hazards models with follow up time (days) as timescale variable to obtain
hazard ratios with 95% confidence intervals (CIs) with sequential adjustment.
The adjustments were for age and gender (Model 1), other demographic
factors (Model 2), behavioural risk factors (Model 3), non-obesity-related
morbidity (Model 4), and obesity-related morbidity (Model 5, final model).
Since fat mass and muscle mass are strongly correlated, we used mutually
adjusted models for these exposures. The proportional hazards assumption
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was based on Schoenfeld residuals and was not violated. We corrected for
regression dilution bias using the MacMahon-Peto method, using data for
each exposure collected in three subsequent re-surveys in 2012–2013; 2014,
and 2019 [27, 28]. In sensitivity analysis, we assessed the impact of potential
selection bias by weighting for demographic factors that predicted
participation in UK Biobank [29]. Restricted cubic spline models with the
same covariate specification were computed with five knots to examine
whether the association was non-linear, testing departures from linearity with
likelihood ratio tests [30]. Multiplicative interaction terms were fitted in final
models to examine heterogeneity in the associations by age, gender, ethnic
group, hypertension and CVD.
The MR analyses were conducted via inverse-variance weighted MR

analysis and sensitivity analyses included weighted median, MR-Egger, and
weighted mode [31]. Different methods have different assumptions and
limitations, thus when all the methods give consistent estimates, we have
more confidence in the causal estimates. The MR estimates are reported as
log(OR) in COVID-19 per SD higher in quantitative exposure traits, or
equivalently log(OR) in COVID-19 per log(OR) in binary exposure traits. For
each exposure, genetic instruments were identified by clumping (as stated in
the method section). Then, same set of SNPs were identified in the outcome
GWAS. If the SNPs were missing in the outcome GWAS, proxies (R2 > 0.8) were
used. The harmonisation of SNP-exposure and SNP-outcome associations
were run by TwoSampleMR:harmonise_data function, to ensure both
associations were flipped to the same allele. The MR results across all the
methods (including number of SNPs used) are provided in Supplementary
material 2 and Supplementary material 3. We also conducted multivariate
modelling to assess the comparative causal role of exposure traits for the risk
of COVID-19 guided by conditional F-statistics [32, 33].
To assess whether the association between adiposity and COVID-19 is

related principally to total adiposity, its distribution, or metabolic
disturbance, we added the WHR and metabolic disturbance to the model
including BMI in both observational study and multivariate MR models.

RESULTS
Of 435,504 participants in the observational study during the study
period (1st Feb 2020–10th November 2020), 5,566 tested positive for
COVID-19 prior to 10th November 2020, of whom 567 were admitted
to hospital with COVID-19, 107 were admitted to ICU, and 366 died of
COVID-19 (accounting for 26% of hospital and 43% of ICU admission).
Forty-three percent of deaths occurred in people who had been in
ICU, and 26% occurred in people who had been in hospital but not
ICU, meaning these outcomes were not independent. The mean age
was 68 years, mean BMI was 27.4 kg/m2 (standard deviation (SD) 4.8),
with 12.7% having conditions related to the metabolic disturbances
of excess adiposity and 9.2% having type 2 diabetes (Supplementary
Table S2).
In the MR analyses, genetic associations with the outcomes

were obtained from release 5 (January 2021) of the COVID-19 host
genetics initiative analysed for people of European descent.

38,984 tested positive for COVID-19 among 1,683,768 people,
9986 were hospitalised with COVD-19 among 1,887,658, and 5101
received ventilator support or died with COVID-19 among
1,388,342 (Supplementary material 1).

Association between total adiposity and COVID-19 outcomes
In the observational study, each SD higher BMI was associated
with 22% increased risk in COVID-19 test positivity adjusted for
non-obesity-related comorbidity, and 14% increase when adjusted
for obesity-related comorbidity (Supplementary Table S3a). The
association between BMI and severe COVID-19 was stronger, with
the main attenuation of risk occurring from adjustment for
obesity-related comorbidity. The strength of associations between
FMI and COVID-19 outcomes was similar to that of BMI (Table 1).
Consistent estimates from final models were obtained with
inverse probability weighting (Supplementary Table S4).
The spline analyses and likelihood ratio tests produced

evidence that the associations of BMI, FMI with COVID-19 test
positivity and death were linear (P > 0.05), while the splines for the
associations with hospital admission were non-linear (P < 0.05)
(Supplementary Fig. S2a,b).
In the MR analyses, each SD higher BMI was associated with

20% increased odds of COVID-19 test positivity and more than
50% increased odds of severe COVID-19 (Fig. 1). The associations
with the proportion of body fat were similar. The results were
consistent across different MR methods (Supplementary Fig. S3).

Association between lean mass and COVID-19 outcomes
There was no evidence in the observational study that SMMI was
associated with any COVID-19 outcomes (Table 1 and Supple-
mentary, Table S3c). However, in the MR analyses, arm and leg fat-
free mass and whole-body fat-free mass were associated with
increased odds of COVID-19 test positivity and severe COVID-19,
with the odds being between 17% and 37% higher per SD (Fig. 1).

Association between fat distribution and COVID-19 outcomes
The observational associations between WHR and COVID-19
outcomes were stronger than for measures of total adiposity
(Table 1). As with total adiposity measures, the associations of
WHR with COVID-19 test positivity, hospitalisation and death were
linear (P > 0.05, Supplementary Fig. S2).
However, in MR analyses, there was weak evidence that WHR

was associated with COVID-19 outcomes (Fig. 1) but stronger
associations for trunk fat and waist circumference were observed.
Trunk fat and waist circumference were associated with around
20% increased odds of COVID-19 test positivity and 50-70%
increased odds of severe COVID-19.

Table 1. Associations of adiposity markers with COVID-19 outcomes in the UK Biobank study (n= 435,504).

COVID-19 positive test
(N= 5566)

COVID-19 hospital admission
(N= 567)

COVID-19 ICU admission
(N= 107)

COVID-19 death
(N= 366)

Exposures HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

BMI 1.14(1.09–1.20) 1.21(1.11–1.31) 1.38(1.16–1.65) 1.23(1.11–1.37)

FMI 1.11(1.01–1.21) 1.21(1.05–1.40) 1.04(0.76–1.43) 1.21(1.02–1.45)

SMMI 1.05(0.96–1.13) 1.01(0.89–1.15) 1.32(0.99–1.76) 1.03(0.88–1.22)

WHR 1.21(1.12–1.31) 1.36(1.20–1.55) 1.43(1.07–1.92) 1.37(1.17–1.61)

Metabolic disturbance 1.50(1.32–1.69) 1.69(1.39–2.04) 1.54(0.99–2.41) 1.77(1.41–2.22)

Type 2 diabetes 1.51(1.33–1.72) 1.51(1.23–1.85) 1.24(0.76–2.02) 1.80(1.42–2.28)

Estimates are hazard ratios (HR) with 95% CI per one increase in z score of the exposure except for metabolic disturbance and type 2 diabetes which was
binary exposures.
Adjusted for demographic factors (age, gender, Townsend index, education), behavioural risk factors (smoking, alcohol consumption, diet and physical
activity), non-obesity-related morbidity (COPD, asthma, autoimmune rheumatological conditions, ulcerative colitis and Crohn’s disease) and obesity-related
morbidity (hypertension, CVD, GORD and sleep apnoea).
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Association between metabolic consequences of excess
adiposity and COVID-19 outcomes
The metabolic consequences of excess adiposity were strongly
associated with COVID-19 test positivity and severe COVID-19,

with risks around 50% higher (Table 1). However, the MR analyses
provided no evidence to support the causal role of the metabolic
disturbance arising from excess adiposity. There was no evidence
of association between biomarkers typically indicating insulin

Fig. 1 The MR association between adiposity traits and COVID-19 outcomes. Note: definitions of cases and controls for COVID-19 GWAS
data are in Supplementary material 1.
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resistance and COVID-19 test positivity or severe disease (Fig. 1).
There was a positive association for triglycerides with COVID-19
but no other lipid measures.

Association between type 2 diabetes and COVID-19 outcomes
In the observational study, type 2 diabetes was associated with a
51% increased risk of COVID-19 positivity and a 50-80% increased
risk of severe disease (Table 1). In the MR analysis, there was no
evidence that type 2 diabetes increased the risk of any COVID-19
outcome (Fig. 1).

Modification of the associations between adiposity markers and
COVID-19 outcomes by age, gender, ethnicity and CVD. In the
observational analyses, there was little evidence that age or
gender modified the association between BMI and COVID-19, but
some evidence that ethnicity did so (Supplementary Fig. S4a–e).

Assessing the risks from total adiposity mutually adjusting for fat
distribution, metabolic consequences of excess adiposity and type 2
diabetes. In the observational analyses adjusted for all covariates
(final models), the coefficients for BMI reduced by over 30% when
further adjusting for fat distribution or metabolic disturbance, while
those for metabolic consequences of excess adiposity reduced by
less than 20% when mutually adjusting for BMI (Table 2).
However, the multivariable MR analysis produced contrasting

findings from the observational study (Fig. 2). Adjusting for waist-hip
ratio, type 2 diabetes, or metabolic disturbance did not meaningfully
alter the relationship between BMI and COVID-19 outcomes (Fig. 2
and Supplementary Fig. S5). As in the univariable MR analyses, there
was no evidence that WHR or type 2 diabetes were themselves
associated with COVID-19 test positivity or severe COVID–19. This
same pattern was seen when in multivariable MR with all the traits
related to central fat distribution, or metabolic disturbance
(Supplementary Fig. S6).

DISCUSSION
In the observational study, total adiposity measured by BMI and FMI
was significantly associated with COVID-19 positivity, hospitalisation,

ICU admission (BMI only) and death, driven by stronger associations
for people with a BMI above the mean. MR analyses showed
consistent associations with similar effect estimates for total
adiposity. However, the observational study and MR analyses
produced discordant findings on fat distribution. The observational
study suggested that the association between central fat distribution
and COVID-19 outcomes was stronger than for total adiposity. Also,
the observational study showed the strongest associations with
metabolic consequences of excess adiposity, namely insulin
resistance and type 2 diabetes. The MR analyses however found
less compelling evidence that central fat distribution, insulin
resistance or other markers of metabolic disturbance from excess
adiposity were casually associated with COVID-19 outcomes.
In our study, some cases of COVID-19 derived from a time when

testing for COVID-19 was occurring mainly in people ill enough to
be medically evaluated, clouding data on incidence. As such, the
study mainly examines associations in people with more severe
COVID-19. The UK Biobank employed extensive and rigorous
assessment of its participants, allowing adjustment for multiple
confounders, but the key exposures were assessed 10–14 years
ago. We corrected for regression dilution bias, but this could still
bias estimates of association towards the null. MR analyses are not
influenced by regression dilution bias and showed comparable
risk from BMI. Also, MR analyses used genetic variants to proxy the
exposures, which through meiosis are generally free of residual
confounding. The strong F-statistics (F > 10, Supplementary Fig.
S6) in the univariable MR analyses suggests that weak instrument
bias should be minimal [34]. In addition, similar results were
observed across the four MR methods, where each has different
assumptions and limitations, suggesting that MR findings were
not affected by unbalanced horizontal pleiotropy [35]. The non-
randomness of study participation and COVID-19 testing may lead
to collider bias [36], however, the use of genetic data meta-
analysed across multiple populations and cohorts with different
study designs and sampling strategies lowers this risk.
Our observational study and MR analyses suggest that excess total

adiposity increases susceptibility to infection and severe COVID-19,
which is supported by a recent review from large studies [37]. There
was no evidence of association between SMMI and admission to

Table 2. Observational associations of BMI and metabolic consequences of excess adiposity (mutually adjusted), BMI and type 2 diabetes (mutually
adjusted), and BMI and WHR (mutually adjusted) with COVID-19 outcomes.

COVID-19 positive test
(N= 5566)

COVID-19 hospital
admission (N= 567)

COVID-19 ICU
admission (N= 107)

COVID-19 death
(N= 366)

Exposures HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

BMI (unadjusted for WHR/metabolic
disturbance/type 2 diabetes)

1.14(1.09–1.20) 1.21(1.11–1.31) 1.38(1.16–1.65) 1.23(1.11–1.37)

BMI (adjusted for WHR) 1.10(1.04–1.16) 1.13(1.03–1.24) 1.02(0.62–1.69) 1.16(1.03–1.30)

BMI (adjusted for metabolic
disturbance)

1.11(1.05–1.17) 1.16(1.06–1.26) 1.35(1.13–1.62) 1.17(1.05–1.30)

BMI (adjusted for type 2 diabetes) 1.11(1.05–1.17) 1.17(1.08–1.28) 1.38(1.15–1.65) 1.17(1.05–1.31)

Waist to hip ratio (unadjusted
for BMI)

1.21(1.12–1.31) 1.36(1.20–1.55) 1.43(1.07–1.92) 1.37(1.17–1.61)

Waist to hip ratio (adjusted for BMI) 1.14(1.04–1.24) 1.25(1.09–1.45) 1.17(0.84–1.63) 1.24(1.04–1.49)

Metabolic disturbance (unadjusted
for BMI)

1.50(1.32–1.69) 1.69(1.39–2.04) 1.54(0.99–2.41) 1.77(1.41–2.22)

Metabolic disturbance (adjusted
for BMI)

1.42(1.25–1.61) 1.56(1.29–1.90) 1.31(0.83–2.07) 1.64(1.29–2.07)

Type 2 diabetes (unadjusted for BMI) 1.51(1.33–1.72) 1.51(1.23–1.85) 1.24(0.76–2.02) 1.80(1.42–2.28)

Type 2 diabetes (adjusted for BMI) 1.42(1.24–1.63) 1.38(1.11–1.70) 1.31(0.83–2.07) 1.65(1.29–2.11)

Estimates are unweighted hazard ratios (HR) with 95% CI per one unit increase in z score of the exposure; except for conditions arising from the metabolic
consequences of excess adiposity and type 2 diabetes, which are binary exposures and adjusted for social and demographic factors, behavioural risk factors
and comorbidity.
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hospital or death, suggesting that the links to BMI are driven by
excess adiposity. Some evidence has suggested that abdominal fat
could confer additional risks for COVID-19 [37–39] and a few studies
have reported that visceral obesity measured by computed
tomography could be an important independent risk factor, superior
to BMI in predicting the severe COVID-19 [37, 38, 40]. Our
observational analyses found that the association between WHR
and COVID-19 outcomes was stronger than for BMI in individuals
with or without obesity, supporting previous research. However, our
MR study and other MR studies did not support this and indicated
that the impact of WHR on COVID-19 was weaker and disappeared
after adjustment for BMI [41]. Prospective associations of visceral fat
distribution with COVID-19 outcomes may be partly due to the
clinical clustering of metabolic risk factors with obesity. As such, the
impact of visceral fat accumulation observed may not be causal, but
may have arisen because of other concomitant factors that predict
likelihood of receiving specialist care for COVID-19.
The clearest finding from our observational study was that

conditions strongly associated with insulin resistance, a metabolic
consequence of excess adiposity, were strongly associated with risk
of severe COVID-19 and adjusting for total adiposity did not greatly
diminish the strength of this relationship. The MR analyses, however,

showed strong evidence that genetic markers of type 2 diabetes and
glucose dysregulation were at most weakly associated with COVID-19
outcomes. These null associations were not due to weak instrument
bias, with F-statistics > 10 for all these traits. It could be explained if
glucose dysregulation in type 2 diabetes is not the factor that
explains higher risk for severe COVID-19 in people with type 2
diabetes. One mechanism might be inflammation, with recent
findings from Mendelian randomisation studies and two randomised
controlled trials converging on IL6R inhibition as an effective
therapeutic approach for COVID-19 [42–45]. The hypothesis that this
is and inflammatory and not a glucose effect is not supported by
findings from cohort studies showing that type 1 diabetes is also a
risk factor for severe outcomes adjusted for cardiovascular disease
and that risk is proportional to HbA1c [46]. It is possible that part of
the risk in type 1 diabetes arises from vascular dysfunction. A meta-
analysis documented consistent evidence type 1 diabetes was
strongly associated with endothelial and vascular smooth muscle
dysfunction [47], appearing early, well before manifest cardiovascular
disease. COVID-19 is marked by endothelial dysfunction [48], with the
presence of a hypercoagulable state being strongly associated with
adverse outcomes in COVID-19 [49]. However, there is now direct
evidence implicating blood glucose as a causal mechanism in severe

Fig. 2 Univariable and multivariable MR associations of BMI, WHR, type 2 diabetes with COVID-19 outcomes. MR associations of A BMI
and WHR (univariable and multivariable) and B BMI and type 2 diabetes (univariable and multivariable) with COVID-19 test (1) and hospital
admission (2) in multivariable MR. Note: For quantitative traits, the units are OR per SD; for binary traits, the units are OR per log(OR).
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COVID-19. A study found that elevated glucose levels directly induce
viral replication and proinflammatory cytokine expression in SARS-
CoV-2-infected monocytes, which subsequently promotes T cell
dysfunction and lung epithelial cell death [50]. MR data appear out of
kilter with other evidence.
Previous MR studies have estimated the associations of genetic

proxies of adiposity, cardiometabolic traits and metabolic
biomarkers with COVID-19-related outcomes. In the UK Biobank
and the HUNT study, genetically proxied higher BMI was
associated with a higher risk of developing sepsis and severe
COVID-19, while there was no strong evidence supporting an
association of genetically proxied low-density lipoprotein choles-
terol, systolic blood pressure or type 2 diabetes liability with risk of
sepsis or severe COVID-19 [51]. A recent MR study using UK
Biobank to evaluate the associations of 17 obesity-related
cardiometabolic traits with COVID-19 susceptibility and severity,
supported only BMI as a causal risk factor for COVID-19
hospitalisation independently or through its cardiometabolic
consequences [52]. Future research is required to understand
the mechanisms through which obesity is associated with a risk of
poor health outcomes or mortality, and whether obesity-related
conditions are along the causal pathway.
These results have implications for policy and practice. Excess

total adiposity is probably causal for severe COVID-19. Ectopic fat
accumulation is correlated with excess weight and appears to be
crucial in causing metabolic disease [21], but the MR analyses
suggest that metabolic disturbance of obesity may not itself cause
severe COVID-19. In England, the Government issued a call to
action to reduce risk of COVID-19 through weight loss. Ectopic fat
is lost quickly during weight loss, rapidly normalising metabolic
state [53, 54], while prolonged efforts are needed to reduce overall
adiposity. However, the biggest risk to people with excess fat is
non-communicable disease [55], which is particularly associated
with ectopic fat and weight loss should reduce these complica-
tions [56]. The MR data contradict other evidence that suggests
that glucose regulation may have a causal role on severe COVID-
19. Thus, it remains uncertain whether tightening glycaemic
control in diabetes reduces the risk from COVID-19, but there is
clear evidence it prevents macro and microvascular disease for
people with type 2 diabetes [57].

CONCLUSION
Excess total adiposity measured by BMI and the proportion of
body fat is strongly and probably casually associated with severe
COVID-19. Mendelian randomisation data found no evidence that
the strong observational associations of central fat distribution,
insulin resistance and metabolic consequences of excess adipos-
ity, or type 2 diabetes with COVID-19 were causal.

DATA AVAILABILITY
Data to replicate the study can be applied through access at https://www.ukbiobank.
ac.uk/enable-your-research/apply-for-access and at https://www.covid19hg.org/.
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