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A B S T R A C T   

Wastewater surveillance has emerged as a useful tool in the public health response to the COVID-19 pandemic. 
While wastewater surveillance has been applied at various scales to monitor population-level COVID-19 dy
namics, there is a need for quantitative metrics to interpret wastewater data in the context of public health 
trends. 24-hour composite wastewater samples were collected from March 2020 through May 2021 from a 
Massachusetts wastewater treatment plant and SARS-CoV-2 RNA concentrations were measured using RT-qPCR. 
The relationship between wastewater copy numbers of SARS-CoV-2 gene fragments and COVID-19 clinical cases 
and deaths varies over time. We demonstrate the utility of three new metrics to monitor changes in COVID-19 
epidemiology: (1) the ratio between wastewater copy numbers of SARS-CoV-2 gene fragments and clinical 
cases (WC ratio), (2) the time lag between wastewater and clinical reporting, and (3) a transfer function between 
the wastewater and clinical case curves. The WC ratio increases after key events, providing insight into the 
balance between disease spread and public health response. Time lag and transfer function analysis showed that 
wastewater data preceded clinically reported cases in the first wave of the pandemic but did not serve as a 
leading indicator in the second wave, likely due to increased testing capacity, which allows for more timely case 
detection and reporting. These three metrics could help further integrate wastewater surveillance into the public 
health response to the COVID-19 pandemic and future pandemics.   

* Corresponding author. 
E-mail address: ejalm@mit.edu (E.J. Alm).   

1 These authors contributed equally. 

Contents lists available at ScienceDirect 

Water Research 

journal homepage: www.elsevier.com/locate/watres 

https://doi.org/10.1016/j.watres.2022.118070 
Received 19 June 2021; Received in revised form 29 November 2021; Accepted 11 January 2022   

mailto:ejalm@mit.edu
www.sciencedirect.com/science/journal/00431354
https://www.elsevier.com/locate/watres
https://doi.org/10.1016/j.watres.2022.118070
https://doi.org/10.1016/j.watres.2022.118070
https://doi.org/10.1016/j.watres.2022.118070
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2022.118070&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Water Research 212 (2022) 118070

2

1. Introduction 

The coronavirus disease 2019 (COVID-19) pandemic, caused by se
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues 
to affect all aspects of global life since its emergence in late 2019. Efforts 
to contain its spread have relied on public health measures like social 
distancing, stay-at-home orders, mandatory wearing of face coverings in 
public, and community-based SARS-CoV-2 testing (Nussbaumer-Streit 
et al., 2020). In the face of this public health emergency, multiple 
methods have been designed to assess the impact of SARS-CoV-2 on 
critical health infrastructure, implement rapid and robust individual 
testing, and predict potential surges to inform hospital preparedness and 
health policy makers. 

Clinical surveillance data is the gold standard for evaluating the state 
of the pandemic. However, clinical data can be limited by clinical testing 
capacity and availability, human behavior, and the presence of asymp
tomatic infections. In contrast, wastewater surveillance, also known as 
wastewater-based epidemiology (WBE), is a potentially powerful strat
egy for near real-time monitoring of viral burden in the population, as it 
captures viral shedding from infected individuals, irrespective of clinical 
presentation. Such surveillance has been shown to detect SARS-CoV-2 in 
wastewater before widespread clinical reporting (Bar-Or et al., 2020; 
Kocamemi et al., 2020; Medema et al., 2020; Randazzo et al., 2020; 
Wurtzer et al., 2020). It has been previously demonstrated that viral 
copy numbers in wastewater were higher than expected from confirmed 
clinical cases (Peccia et al., 2020a; Randazzo et al., 2020; Wu et al., 
2020b; F. 2020a) and that they preceded clinical reporting of new cases 
and hospital admissions (Peccia et al., 2020a; Randazzo et al., 2020; F. 
Wu et al., 2020a), suggesting that wastewater surveillance could be used 
as an early warning system. Wastewater surveillance has also been used 
in combination with clinical data to infer average population-level viral 
shedding dynamics (Schmitz et al., 2021; F. Wu et al., 2020a). Waste
water surveillance has been mostly implemented at municipal waste
water treatment plants, but as colleges and universities reopened, it has 
also been applied in dormitories as an early warning system to prevent 
large-scale outbreaks of COVID-19 (Betancourt et al., 2020; Gibas et al., 
2021; Harris-Lovett et al., 2021; P. Liu et al., 2020). 

To interpret wastewater surveillance results in terms of population 
health, it is critical to understand the relationship between wastewater 
SARS-CoV-2 concentrations and infections in the population. Early work 
focused on evaluating the correlation between wastewater SARS-CoV-2 
concentrations and clinically reported cases and characterizing the lead 
time of wastewater surveillance data. Various groups used correlation 
methods to estimate this lead time, with reports of wastewater leading 
clinical cases by 0–16 days (Medema et al., 2020; Nemudryi et al., 2020; 
Peccia et al., 2020b; Randazzo et al., 2020; F. Wu et al., 2020a; Wurtzer 
et al., 2020). While the correlation between the wastewater and clinical 
curves is relatively easy to compute, it does not take into account 
autocorrelation in the datasets, so further work has employed more 
sophisticated statistical models to estimate the time lag (Galani et al., 
2021; Peccia et al., 2020a). Some groups have used wastewater data to 
infer the number of infected cases in the catchment (Ahmed et al., 2020; 
Chavarria-Miró et al., 2021; Galani et al., 2021; Gerrity et al., 2021; 
Krivoňáková et al., 2021), while others have used wastewater data to 
model average population shedding rates (Cavany et al., 2021; Wu et al., 
2022). 

These modeling studies shed important light on the relationship 
between wastewater viral concentrations and clinical cases. However, 
municipalities often rely on qualitative trends when using wastewater 
SARS-CoV-2 concentrations to inform decisions (Cambridge Public 
Schools, 2021; Centers for Disease Control, 2021; Ohio Coronavirus 
Wastewater Monitoring Network, 2021), whereas wastewater data can 
be a richer source of public health information when integrated with 
other datasets. There remains a need for quantitative metrics to help 
municipalities interpret wastewater data in the context of clinical trends 
and public health interventions and evaluate their pandemic response. 

Such metrics would help municipalities more effectively incorporate 
wastewater data into the public health decision making toolkit, beyond 
observing the qualitative trends in wastewater SARS-CoV-2 copy 
numbers. Here, we developed three new metrics and applied them to a 
14-month-long time series of SARS-CoV-2 wastewater SARS-CoV-2 copy 
numbers in Massachusetts. These three metrics – (1) the ratio between 
wastewater SARS-CoV-2 copy numbers and clinical cases (WC ratio), (2) 
the time lag between wastewater and clinical reporting, and (3) a 
transfer function between the wastewater and clinical case curves – 
aptly describe dynamic changes in the relationship between wastewater 
data and clinical data as the pandemic evolves and management stra
tegies adapt. Our results show that wastewater data preceded clinically 
reported cases in the first wave of the pandemic but did not serve as a 
leading indicator in the second wave, likely due to increased testing 
capacity, which allows for more timely case detection and reporting. 
Thus, these metrics can be useful tools for officials to evaluate the public 
health response over time. 

2. Materials and methods 

2.1. Sample collection and viral inactivation 

700 24-hour composite samples of raw sewage were collected from 
the Deer Island Wastewater Treatment Plant (comprised of northern and 
southern influents) in Massachusetts from March 4, 2020 to May 13, 
2021. The Deer Island Wastewater Treatment Plant serves approxi
mately 2.3 million individuals in the greater Boston area, comprising 
primarily Norfolk, Suffolk, and Middlesex counties. The average flow 
rate is 178 million gallons per day (MGD) for the northern influent and 
93 MGD for the southern influent. Historical samples from March 4 to 
March 17, 2020 were stored at 4 ◦C at the WWTP and delivered to the 
lab. Starting on March 18, the sewage samples were transported to the 
lab on the same day of sample collection with ice. If the samples were 
collected on weekends or holidays, they were stored at 4 ◦C and trans
ported to the lab the next business day with ice. Upon receipt, samples 
were brought to 60 ◦C and pasteurized for 1 h to inactivate the virus due 
to biosafety regulations at MIT. Several studies have found that heat 
treatment at 60 ◦C did not negatively impact quantification of SARS- 
CoV-2 (Y. Liu et al., 2020; Pastorino et al., 2020) or PMMoV (Shir
asaki et al., 2020). 

2.2. Lab analysis 

Samples were analyzed using previously described methods 
(Duvallet et al., 2021; F. Wu et al., 2020a). Briefly, samples were filtered 
to remove large particulate matter using a 0.2uM vacuum-driven filter 
(EMD-Millipore SCGP00525 or Corning 430,320, depending on sample 
turbidity). We used Amicon Ultra-15 centrifugal ultrafiltration units 
(Millipore UFC903096) to concentrate 15 ml of wastewater approxi
mately 100x. Viral particles in this concentrate were immediately lysed 
by adding AVL Buffer containing carrier RNA (Qiagen 19,073) to the 
Amicon unit before transfer and >10 min incubation in a 96-well 2 mL 
block. 100% ethanol was added to the lysate, and samples were applied 
to RNeasy Mini columns or RNeasy 96 cassettes (Qiagen 74,106 or 74, 
181). RNA samples were subjected to one-step RT-qPCR (ThermoFisher 
4,444,436) analysis in triplicate for N1, N2, and PMMoV amplicons on 
CFX96 and/or CFX-Connect instruments based on the following proto
col: 50 ◦C 10 min for reverse transcription, 95 ◦C 20 s for RT inactivation 
and initial denaturation, and 48 cycles of denature (95 ◦C 1 s) and 
anneal/extend (55 ◦C 30 s). Cts were called from raw fluorescence data 
using the Cy0 algorithm from the qpcR package (v1.4–1) in R (Guescini 
et al., 2008), and manually inspected for agreement with the raw traces 
in the native BioRad Maestro software. Previous work with murine 
hepatitis virus (MHV) spike-ins have shown the recovery efficiency of 
our process to be 31.42 ± 2.59% (Wu et al., 2021). 

An extraction blank was processed in parallel to samples to detect 
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contamination of extraction reagents. If the extraction blank had 
detection of SARS-CoV-2 by the N1 or N2 primers with Ct < 40, or 
PMMV with Ct < 35, the data were discarded, and the samples in the 
batch were re-extracted starting from filtered wastewater. 

Each RT-qPCR plate has a specified number of controls. Two no- 
template controls were assayed to detect contamination of the RT- 
qPCR reagents. If either of the no-template controls had detection of 
SARS-CoV-2 by the N1 or N2 primers with Ct < 40, or PMMV with Ct <
35, the data were discarded, and RNA samples were re-assayed with a 
fresh mix of RT-qPCR reagent. Four replicates of synthetic SARS-CoV-2 
RNA were assayed as positive controls. If the average Ct values from 
these controls was not within range (+/- 1 Ct from expected, lot-specific 
Ct-value), the data were discarded, and RNA samples were re-assayed 
with a fresh mix of RT-qPCR reagent. Matrix inhibition was assessed 
by manually reviewing the raw qPCR curves. 

In addition to these laboratory controls, a thorough data review 
process was implemented for quality control. Firstly, we used PMMoV as 
a proxy measure for per-extraction-batch recovery and flagged any plate 
with unusually low PMMoV values for further review and potential 
repeat processing. Furthermore, each sample would be manually 
reviewed if they met any of the following criteria: -PMMoV above 99th 
or below 1st percentile of all previously processed sample values; -SARS- 
CoV-2 concentrations changing more than 5-fold since prior sample at 
the same location; -suspected inhibition based on manual inspection of 
raw fluorescence curves; -discordant virus concentrations obtained from 
N1 and N2 primers; -pigmentation present in extracted RNA. During 
manual review, individual RT-qPCR replicates and timelines of SARS- 
CoV-2 and PMMoV concentrations were inspected. A small fraction of 
samples manually inspected in this manner were flagged for rerun. If 
sufficient filtered wastewater remained in the initially-processed tube, a 
second 15 mL aliquot was processed. An aliquot from one of the back-up 
tubes was always processed. If the rerun results were significantly 
different from the initial results, the initial results were discarded. If the 
rerun results recapitulated the initial results, the average of all results 
was reported and used in this work. 

2.3. Data processing 

A standard curve was generated using serial dilutions of Twist 
Bioscience synthetic SARS-CoV-2 RNA control 2 (MN908947.3) and 
used to convert Ct values into copies per well. We used pepper mild 
mottle virus (PMMoV) as a fecal indicator and quantified it relative to 
SARS-CoV-2 in each sample using the standard curve for N1, as synthetic 
RNA for PMMoV was not available and our PMMoV normalization 
method is dependent on ratios of PMMoV values rather than absolute 
values. Ct values above 40 were considered as non-detect. The copies per 
well were multiplied by a dilution factor accounting for the volume 
changes described above (RNA extraction, concentration, etc.) and then 
divided by the original sewage volume (15 ml) to convert to a sewage 
concentration (copies per liter). Concentrations of N1 and N2 replicates 
were averaged first within each primer set and then across primers to get 
the final SARS-CoV-2 concentration; replicates of the PMMoV amplicon 
were averaged. Samples were required to have at least two quantified 
replicates between N1 or N2, and at least one detected PMMoV replicate 
to be considered a detection. For median normalization using PMMoV, 
SARS-CoV-2 concentrations were divided by the PMMoV levels and 
multiplied by a reference PMMoV value derived as the median of our 
dataset. For example, samples that are more diluted will have lower 
PMMoV concentration and will be normalized up, while samples that are 
less diluted will have higher PMMoV concentration and will be 
normalized down. Normalization using PMMoV has previously been 
shown to account for variability in wastewater flow (Wu et al., 2020b), 
and allows us to correct for dilution and laboratory variation simulta
neously. Data on the concentration of SARS-CoV-2 viral RNA in Mas
sachusetts wastewater are publicly available at https://www.mwra.com 
/biobot/biobotdata.htm. 

2.4. Clinical case analysis 

Clinical case data from March 1, 2020 to May 16, 2021 from Norfolk, 
Suffolk, and Middlesex Counties was downloaded from Mass.gov (C.D. 
Massachusetts Department of Public Health, 2020a; C.D. 2020b, 2021a). 
Clinical cases are counted based on positive PCR tests. Clinical cases 
from each county were summed to represent the cases in the catchment 
of the wastewater treatment plant. The difference between adjacent 
days was taken to calculate the new cases per day. Positive test rates by 
age and state level death data were downloaded from Mass.gov (Mas
sachusetts Department of Public Health, 2021a; C.D. 2021b). 

2.5. Approximate Bayesian computation for estimating delay distribution 

Approximate Bayesian computation (ABC) was used to find the delay 
distribution between when an infected individual’s viral shedding ap
pears in wastewater and when they are counted as a clinical case before 
and after August 15, 2020. ABC was chosen because it is extremely 
flexible and relatively easy to implement, allowing the inference to be 
carried out for complex models without need for evaluating the likeli
hood function, which could be computationally intractable (Csilléry 
et al., 2010; Fearnhead and Prangle, 2011; Toni et al., 2009). Instead, 
ABC uses the computational efficiency of modern simulation techniques 
by comparing the observed and simulated data (Csilléry et al., 2010; 
Fearnhead and Prangle, 2011; Toni et al., 2009). First, wastewater viral 
copy numbers were normalized by their sum for each portion of the data. 
The delay δ was assumed to be normally distributed with mean μ and 
standard deviation σ. Prior distributions for μ and σ were chosen as 
follows: μ ~ Norm(0,10) and σ ~ Exp(0.1). 10,000 values of μ and σ 
were sampled from the priors. For each iteration, a delay for each 
clinically reported case was sampled. Simulated wastewater data was 
generated by adding the delay for each case to the date they were 
actually reported. The number of delayed cases per day was normalized 
by the sum. The average per day sum of squared errors (SSE) between 
the simulated wastewater data and the actual wastewater data was 
calculated. The values of μ and σ were accepted if the average SSE was 
less than some cutoff value ε. ε was tuned so approximately 10–20% of 
the iterations were accepted. 

2.6. Convolution to estimate the transfer function 

A similar approach as we previously reported was used to find the 
transfer function that describes the relationship between the shape of 
the wastewater data and clinical data (F. Wu et al., 2020a). This concept 
was borrowed from the field of signal processing, where a transfer 
function represents the mathematical relationship between the numer
ical input to a dynamic system and the resulting output Pollock (2011). 
Because the shapes rather than the magnitudes of the curves are of 
greatest relevance, the wastewater data was divided by the median ratio 
between wastewater and clinical data. Clinically reported cases C(t) 
were modeled as the convolution between the scaled wastewater data W 
(t) and the unknown transfer function T(t) before and after August 15, 
2020: log10(C(t)) = log10([T * W](t)). It was hypothesized that the 
transfer function could be fit by a beta distribution with parameters α, β, 
and scaling factor c because beta distributions harbor a rich variety of 
shapes with only two parameters. The score function was defined as the 
sum of squared errors (SSE) between log10(clinically reported cases) 
and log10([T * W](t)). The L-BFGS method (Liu and Nocedal, 1989) in 
the scipy.optimize.minimize function was used to find parameters α, β, c 
of the beta distribution that minimized the SSE. L-BFGS was chosen 
because of its computational speed and memory requirements (Liu and 
Nocedal, 1989). For initial parameter guesses, a combination of α = [2, 
20, 50, 100, 200], β = [2, 20, 50, 100, 200], and c = [0.01, 0.1] was 
used, which gives a wide variety of starting shapes for the transfer 
function. 
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2.7. Markov chain Monte Carlo (MCMC) simulation to quantify 
uncertainty in transfer function 

Under the assumption of normally distributed errors, minimizing the 
SSE is equivalent to maximizing the likelihood Berkson (1956). MCMC 
simulation was used to investigate the uncertainty landscape around the 
maximum likelihood estimation of the parameters for the inferred 
transfer function. MCMC methods have previously been used to quantify 
uncertainty in various fields (Bardsley and Fox, 2012; Hassan et al., 
2009; Maybank et al., 2020). The Metropolis-Hastings algorithm, a 
ubiquitous and versatile MCMC algorithm Hastings (1970), was 
employed. Briefly, the algorithm started at the maximum likelihood 
estimate for each parameter α, β, and c. The transition function was 
defined as a normal distribution centered around the previous param
eters, with standard deviation (1, 1, 0.001) for α, β, and c, respectively. 
At each iteration, a new set of parameters was selected using the tran
sition function and the log likelihood was computed. The new parame
ters were accepted based on the Metropolis-Hastings algorithm 
acceptance rules. New parameters were always accepted if the log 

likelihood was higher. If the log likelihood was lower for the new pa
rameters, they were accepted with probability exp(-delta(SSE)). 100 
random accepted parameter sets were selected and plotted in Fig. 4B and 
4D to illustrate the uncertainty around the maximum likelihood esti
mate of the transfer function. MCMC simulation was done with python 
3.6.5, numpy 1.14.3, pandas 0.23.0, and scipy 1.1.0. 

3. Results 

3.1. Wastewater viral copy numbers mirror disease incidence and can 
depict the impact of social activities more sensitively than clinical cases 

Analysis of our 14-month-long time series for wastewater copy 
numbers of SARS-CoV-2 viral gene fragments spanning March 4, 2020 to 
May 13, 2021 showed two distinct waves of SARS-CoV-2 in the Boston 
Area. Similar trends appeared in wastewater viral copy numbers and 
clinical cases: exponential rise from March to mid-April, a decline 
through July, a slow increase over the summer, followed by a sharper 
increase in the fall and second peak in the winter (Fig. 1), indicating that 

Fig. 1. SARS-CoV-2 RNA copy numbers in Massachusetts wastewater and new clinical cases. Seven-day averages of wastewater viral copy numbers (blue) and 
new clinical cases reported for the three counties in the catchment (orange). We marked major holidays (top), major social events (middle), and state reopening 
phases (bottom) in the three panels, respectively (Baker, 2021a, p. 2, C.D. 2021b, C.D. 2020a, C.D. 2020b, 2020c, 2020d, 2020e, 2020f, n.d.). Black arrows indicate 
peaks in wastewater SARS-CoV-2 RNA copy numbers that were not reflected in clinical case counts. 

A. Xiao et al.                                                                                                                                                                                                                                    



Water Research 212 (2022) 118070

5

wastewater viral copy numbers generally mirrored trends in disease 
incidence. Previous reports have shown that SARS-CoV-2 concentrations 
in wastewater may be affected by flow rate and other physicochemical 
properties, such as total suspended solids, to varying degrees across 
different wastewater treatment plants (Amoah et al., 2022; Paul et al., 
2021). In both the northern and southern influents of Deer Island 
Treatment Plant, SARS-CoV-2 concentrations did not have high corre
lation with flow or physicochemical properties (Table S2, Table S3). The 
robustness of the SARS-CoV-2 measurements to variation in flow and 
total solids is likely due to the normalization with PMMoV which cor
rects for dilution of human fecal material. 

Wastewater and clinical data were compared with dates of known 
policy changes and social gatherings in the Boston Area and key trends 
were noted. For example, wastewater viral copy numbers and clinical 
cases continued to decline overall after Memorial Day (May 25, 2020), 
despite the potential for large gatherings to celebrate the holiday 
(Fig. 1). Similarly, the social justice protests during late May and June 
did not immediately spark an increase in clinical cases or wastewater 
viral copy numbers (Fig. 1). The start of Phase 2 Step 2 (Table S1) 
marked the start of a steady increase in wastewater viral copy numbers 
and clinical cases during the summer (Fig. 1). There was also a steeper 
increase in wastewater viral copy numbers and clinical cases after the 
Indigenous Peoples’ Day holiday (October 12, 2020). This increase 
continued through reopening Phase 3 Step 2 and peaked in late 
November to January around the time of Thanksgiving, Christmas, and 
New Year holidays, perhaps due to increased indoor gatherings (Fig. 1). 

However, trends in wastewater data differed from clinical data after 
some key events, suggesting a decoupling of wastewater and clinical 
trends which we hypothesize provides insight into dynamics of COVID- 
19 in the community. There was a short peak in wastewater viral copy 
numbers at the start of August, which was only slightly reflected in the 
clinical data (Fig. 1). Similarly, after colleges and universities welcomed 
students back in late August/early September, there was another peak in 
wastewater viral copy numbers, but not in clinical cases (Fig. 1). After 
the start of Phase 3 Step 2 reopening, wastewater viral copy numbers 
increased steeply, while clinical cases had a shallower slope (Fig. 1). 
These differences could be due to the inherent difference between 
wastewater and clinical data. For example, wastewater measurements of 
SARS-CoV-2 may vary based on viral shedding differences between 
asymptomatic, symptomatic, mild, or severe cases, whereas clinical 
cases are either reported or not. However, we hypothesized that the 
observation of distinct trends in wastewater copy numbers over clinical 
data may suggest that wastewater viral copy numbers could indicate the 
impact of social activities more sensitively than clinical cases. This 
observation prompted us to derive a metric for detecting discordance 
between wastewater and clinical trends. 

3.2. Ratio between wastewater viral titer and clinical cases (WC ratio) 
may indicate changes in testing capacity or demographics of clinical cases 

Wastewater surveillance captures all individuals who are shedding 
the virus regardless of disease manifestation, their access to testing, or 
representation in clinical case data. As such, wastewater trends are 
commonly used for benchmarking against clinical cases. However, there 
is a lack of a quantitative measure for comparing wastewater and clinical 
trends. Here, we propose using the ratio of wastewater viral copy 
numbers to clinical cases (WC ratio) as a metric for detecting differences 
between wastewater and clinical trends. 

Changes in the WC ratio can serve as an indicator of potential under- 
or over-estimation of disease incidence. Under-counting of clinical cases 
could occur when clinical tests are limited, when people are not seeking 
testing or cannot access convenient testing locations, or when the pro
portion of asymptomatic infections is high. Over-estimation of disease 
incidence could occur when rapid expansion of testing infrastructure 
allows many people who were infected in the prior weeks to get tested, 
so their results show up as new cases even though they were actually 

infected weeks prior. This situation could occur especially because 
throat and nasal swab PCR tests for SARS-CoV-2 can remain positive for 
up to 20 days after symptom onset (Wölfel et al., 2020). 

Because viral copy numbers will vary based on the number of people 
in the catchment, the magnitude and range of the WC ratio must be 
established for each catchment considered. When this ratio is high, it 
implies that the existing testing capacity has not kept pace with expo
nentially rising new cases, which nevertheless are detected in waste
water surveillance. A high WC ratio can occur in situations where 
wastewater viral copy numbers are increasing but clinical cases are not 
rising equivalently, or conversely when wastewater viral copy numbers 
are stable but clinical testing is decreasing. Conversely, a low WC ratio 
indicates that clinical tests are capturing the majority of infections re
flected in wastewater viral copy numbers. When this ratio is stable and 
low, it implies that the existing testing capacity is sufficient to assess the 
extent of new infections. Importantly, changes in the WC ratio relative to 
a stable baseline may provide early indications of changing epidemic 
dynamics. Positive changes may highlight new bursts of infections 
before they are captured in clinical data or identify periods where 
clinical tests are not capturing the full extent of new infections, while 
negative changes may highlight periods where clinical testing is over- 
estimating disease incidence when counting previously infected cases 
as new cases. Notably, this ratio has changed by approximately two 
orders of magnitude over the course of the pandemic, demonstrating its 
utility as a metric to assess the public health response. 

At the beginning of the pandemic (March 2020), the ratio between 
wastewater viral copy numbers (viral genome copies (GC) per L) and 
reported clinical cases was very high (>10^3 for the Boston Area), 
indicating that cases were likely undercounted due to extremely limited 
testing (Fig. 2A). In fact, during March 2020, the seven-day average of 
new molecular tests administered per day in the state did not exceed 
5000 tests per day (Fig. 2B). As testing ramped up throughout April and 
May, the WC ratio dipped by approximately two orders of magnitude 
(Fig. 2A). In this phase, delayed clinical test results may have been 
“catching up” to the more instantaneous wastewater viral copy numbers, 
which infected individuals had contributed to many days prior to getting 
their test results. Thus, these individuals were no longer contributing to 
wastewater viral copy numbers (numerator of the WC ratio) but were 
now being counted as reported cases (denominator of the WC ratio), 
leading to a much lower ratio. 

As the public health response in Massachusetts began to ramp up 
over the summer and individual clinical testing became more available, 
the ratio between wastewater and clinical cases remained fairly 
consistent between July 2020 and November 2020 (Fig. 2A). During this 
time, Massachusetts’ clinical testing capacity became fully established, 
and percent positivity remained stable below 2% (C.D. Massachusetts 
Department of Public Health, 2021b). Such periods could be used to 
determine baseline WC ratios that indicate sufficient public health ca
pacity for testing. Interestingly, even during the pronounced peak of the 
second wave (November 2020 - March 2021), the WC ratio did not spike, 
indicating that testing capacity was sufficient to capture the scope of 
exponentially rising new infections. 

However, there were a few increases in the ratio even with fully 
established testing capacity, notably in early September and early 
October (Fig. 2A). These increases in the WC ratio could be related to 
community events, such as reopening of businesses and universities, or 
to changes in testing availability. These increases could also be due to a 
combination of factors including shifts in population demographics. For 
example, college students returning for classes in late August/early 
September may have been more likely to be asymptomatic due to their 
younger age, and thus less likely to be reflected in clinical case counts 
(Leidman et al., 2021; Leidner et al., 2021). Similarly, after Phase 3 Step 
2 reopening allowed bars and entertainment venues to open (Baker, 
2021a), young adults may have had higher degrees of social contacts. In 
these instances, wastewater surveillance may have detected a silent and 
short-lived peak in community transmission that was missed by clinical 
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surveillance. Importantly, these short increases became more apparent 
when analyzing the ratio between the two datasets. 

3.3. Wastewater lead time is affected by increased clinical testing 

While the WC ratio could identify whether trends in clinical cases are 
concordant with trends in wastewater copy numbers, it does not provide 
information on the timeliness of clinical reporting, which would be an 
important measure of the public health response. To address this gap, we 
introduce two methods to characterize this time lag between wastewater 
and clinical trends: (1) a model of the distribution of time lags for each 
new case, and (2) a transfer function to describe the relationship be
tween the wastewater and clinical curves. 

In our first metric to assess the time-varying relationship between 
wastewater data and clinical cases (Fig. 3A), approximate Bayesian 

computation (ABC) was used to model the distribution of the time lag 
between when an infected person’s viral shedding is detectable in 
wastewater and when they receive a clinical test (Methods). In this 
model, it is assumed that the viral shedding detected in wastewater 
occurs on a single day. The assumption that wastewater reflects viral 
shedding early in infection is supported by animal models, meta-analysis 
of clinical data, and wastewater surveillance in dormitories (Bao et al., 
2020; Hoffmann and Alsing, 2021; Schmitz et al., 2021). The date of 
clinical cases in this analysis corresponds to the date of specimen 
collection. Negative time lags indicate that wastewater signal precedes 
clinical testing and vice versa. To compare the relationship between 
wastewater data and clinical data during the first and second waves of 
the pandemic, time series was split on August 15, the approximate 
midpoint between the end of the first wave and the start of the second 
wave. 

Fig. 2. Ratio between wastewater viral copy numbers and clinically reported new cases changes with testing availability. (A) Ratio between seven-day 
averages of wastewater viral concentration (genome copies/L) and clinically reported new cases changes over the course of the pandemic, with some spikes after 
key holidays, important events, and reopening phases. (B) PCR tests conducted each day in Massachusetts throughout the pandemic (Massachusetts Department of 
Public Health, 2021a). 
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Fig. 3. Modeling reveals that time delay between clinical case reporting and wastewater data changes over the course of the pandemic. We use 
approximate Bayesian computation to determine the distribution of the time lag between when a case shows up in the wastewater surveillance data and when they 
are clinically reported. (A) Seven-day averages of wastewater data and new clinical case data from Mass.gov shown on a linear scale (Massachusetts Department of 
Public Health, 2021a; C.D. 2020a; C.D. 2020b). (B, C, D) Modeling results on data before August 15, 2020. (B) Simulated vs observed wastewater viral copy numbers 
for data before 8/15. (C) Accepted values for the mean time lag (− 6.2 days, 95% CI: − 10.1, − 2.7) and (D) standard deviation (2.7 days, 95% CI: 0.1, 6.7) of the time 
lag for data before 8/15. We used 10,000 iterations with a distance threshold of 1.3e-5 and 11.1% of parameter sets were accepted. (E, F, G) Modeling results on data 
from August 15, 2020 and after. (E) Simulated vs observed wastewater viral copy numbers for data after 8/15. (F) Accepted values for the mean time lag (1.0 days, 
95% CI: − 2.4, 4.2) and (G) standard deviation (3.5 days, 95% CI: 0.2, 8.4) of the time lag for data after 8/15. We used 10,000 iterations with a distance threshold of 
9.5e-7 and 15.3% of parameter sets were accepted. Negative time lags indicate that wastewater signal precedes clinical case reporting and vice versa. 
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Before August 15, 2020, the wastewater signal preceded clinical 
cases by approximately 6.2 days (95% CI: − 10.1, − 2.7) with a standard 
deviation of 2.7 days (95% CI: 0.1, 6.7) (Fig. 3B-D). This finding is 
consistent with our previous report that wastewater data preceded 
clinical data by 4–10 days (F. Wu et al., 2020a). After August 15, 2020, 
the wastewater signal was more in phase with clinical cases (mean time 
lag 1.0 days, 95% CI: − 2.4, 4.2; standard deviation 3.5 days, 95% CI: 
0.2, 8.4) (Fig. 3E-G). We repeated the modeling while varying the date of 
the split and found similar results (Figure S1–4). 

To confirm these modeling results, we next investigated the transfer 
function T(t) that transforms wastewater viral copy numbers to clinical 
cases. This concept was borrowed from the field of signal processing, 
where a transfer function represents the mathematical relationship be
tween the numerical input to a dynamic system and the resulting output 
Pollock (2011). While the previous ABC analysis modeled the delay for 
each individual case to find the distribution of delays, the transfer 
function analysis focuses on relating the shapes of the wastewater signal 
and clinical case signal. The shape of T(t) can provide insight on the time 
delay between the two signals and can reflect factors such as how long it 
takes someone to request testing and the probability that someone gets a 
positive test result over the course of their infection (Fig. 4A and C). 

The shape of the transfer function changed between the first and 
second waves, reflecting changing relationships between infections and 
clinical testing. Using data before August 15, the inferred transfer 
function had a broad peak and long tail, with the peak at approximately 
3 days and an average of 10 days, which is within the confidence interval 
of the ABC model (Fig. 4B). The broad shape implies that the process of 
infected individuals getting counted as cases has a broad distribution, 
with some individuals getting reported very quickly but others taking up 
to weeks. In this situation, wastewater viral copy numbers could be an 

early indicator of disease dynamics before clinical test results come back 
positive. As the pandemic progressed, the inferred transfer function 
became more sharply peaked around a 1-day time lag, which is consis
tent with the results of the ABC model. This sharp distribution indicates 
that wastewater and reported cases track each other closely (Fig. 4D). In 
this case, wastewater viral copy numbers have less utility as an early 
warning system because increased clinical testing capacity effectively 
captures new infections in a timely manner. 

Taken together, these results suggest that the relationship and time 
lag between wastewater viral copy numbers and positive clinical tests 
changed over the course of the pandemic. Wastewater was more effec
tive as a leading indicator in the first wave of the pandemic, and this 
early warning effect diminished drastically in the second wave, perhaps 
as clinical testing availability increased. Thus, parameters such as the 
time lag between wastewater signal and clinical signal and the transfer 
function describing their relationship could also be used to evaluate 
clinical test availability or capacity. 

3.4. Relationship between wastewater data, new cases, and deaths is 
different in the first and second waves 

Given that wastewater SARS-CoV-2 copy numbers correlated with 
new clinical cases, we next investigated whether we could use waste
water copy numbers to predict COVID-19 deaths. The relationships be
tween wastewater copy numbers, new cases, and deaths were different 
in the first and second waves, suggesting that wastewater may have a 
direct, mechanistic relationship with new cases, but an indirect rela
tionship with deaths, indicating that wastewater data must be used in 
conjunction with other public health datasets for making policy 
decisions. 

Fig. 4. Transfer function between wastewater and clinical cases becomes more peaked in the second wave of the pandemic. We modeled clinically reported 
new cases as the convolution between wastewater viral copy numbers and an unknown transfer function. (A, C) Our model finds parameters of a beta function that 
minimizes the sum of squared error (SSE) between the model prediction (orange) and the observed (blue) clinical new cases. (B, D) The maximum likelihood estimate 
of the transfer function (black) with 100 accepted Markov Chain Monte Carlo (MCMC) parameter sets in blue. Before 8/15, the transfer function has a broad peak and 
long tail. After 8/15, the transfer function becomes more sharply peaked. 
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In the first surge (Mar-May 2020), both new cases and deaths peaked 
shortly after wastewater peaked (Fig. 5A). In this situation, wastewater 
copy numbers could be a predictive indicator of COVID-19 deaths. 
However, in the second surge (Nov 2020-Mar 2021), wastewater viral 
copy numbers and new cases increased to levels higher than in the first 
surge, while deaths remained lower than the first wave (Fig. 5A). In this 
situation, wastewater copy numbers were an indicator of new cases but 
not deaths. This difference could be due to a combination of several 
factors. First, the first wave strongly affected people in the 80+ year 
bracket, while the second wave has seen an increase in positivity in the 
0–29 year bracket (Wikle et al., 2020). Older adults with comorbidities 
have higher mortality rates from COVID-19 (Centers for Disease Control 
and Prevention, n.d.). Second, medical professionals have gained 
experience in treating and managing the disease since the first wave, 
thus leading to reduced deaths in the second wave (Q. Liu et al., 2020). 
Third, changes in human practices, such as improved hygiene and social 
distancing, could reduce the viral inoculum, resulting in less severe 
disease (Spinelli et al., 2021). Fourth, the increase in testing means a 
higher proportion of cases are being diagnosed, possibly including those 
who are asymptomatic or only mildly ill, so the proportion of deaths to 
new cases would be lower. This explanation is consistent with the 
decrease in WC ratio (Fig. 2) seen in the second wave. We explored the 
possibility that variants of concern with increased transmissibility like 
B.1.1.7 (Frampton et al., 2021; Graham et al., 2021), could have 

influenced the ratio of deaths to new cases. However, the proportion of 
B.1.1.7 in the last week of January 2021, during the peak of the second 
wave, was estimated to make up only an average of ~2.1% COVID-19 
cases in the U.S (Washington et al., 2021). Furthermore, B.1.1.7 did 
not make up a large proportion of wastewater viral copy numbers in the 
Boston Area until Feb-March 2021, towards the end of the second wave 
(Lee et al., 2021). 

Notably, wastewater viral copy numbers reflect the number of new 
cases regardless of the demographics or symptoms of cases. With the 
changing demographics of the disease, changes in clinical practice, and 
increased testing capacity, the power of wastewater to predict new cases 
and COVID-related deaths also changes. Therefore, wastewater should 
not be used alone to predict public health outcomes, but rather should be 
used in combination with other data sources to understand the 
pandemic and inform decision making. 

4. Discussion 

Many groups have demonstrated that wastewater SARS-CoV-2 copy 
numbers reflect trends in new COVID-19 cases, and wastewater viral 
copy numbers have been observed to precede trends from clinical sur
veillance (Bar-Or et al., 2020; Kocamemi et al., 2020; Medema et al., 
2020; Randazzo et al., 2020; Wurtzer et al., 2020). Here, we developed 
three new metrics to integrate wastewater and clinical data to 

Fig. 5. Wastewater is an early warning of new cases 
but not deaths, perhaps due to a changing de
mographic of the pandemic. (A) Seven-day averages 
of wastewater viral copy numbers, new clinical cases in 
the three counties served by the WWTP (Massachusetts 
Department of Public Health, 2021a; C.D. 2020a; C.D. 
2020b), and new reported deaths in the state of Mas
sachusetts (C.D. Massachusetts Department of Public 
Health, 2021b). All three datasets are normalized by 
their sums for comparison. (B) Fraction of positive tests 
in Massachusetts by age bracket (Massachusetts 
Department of Public Health, 2021c). Positivity peaked 
among 80+ year-olds in the first wave of the pandemic, 
whereas the second wave saw an increase in positivity 
in 0–29 year-olds.   
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quantitatively understand their relationship and the public health 
response. We introduced the ratio of wastewater viral copy numbers to 
clinical cases (WC ratio) as a simple metric which may reflect testing 
capacity. We also applied two independent types of modeling to quantify 
the lead time between wastewater data and clinical data. These models 
show that wastewater’s lead time changes over the course of the 
pandemic as public health responses adapt. Finally, we showed that a 
third public health data stream, COVID-19 deaths, also has changing 
relationships with cases and wastewater over the pandemic, suggesting 
that wastewater data cannot be used alone and should be integrated 
with public health data to make policy decisions. Together, this work 
demonstrates the utility of combining wastewater surveillance with 
multiple public health data streams to provide a more nuanced view of 
the changing public health response to the COVID-19 pandemic. 

The ratio between wastewater viral copy numbers and clinical cases 
(WC ratio) is a useful indicator of the public health response and testing 
coverage and could be used to gauge the intensity of public health in
terventions in the face of changing disease incidence. In addition, short- 
lived trends in increased transmission may be more easily detected when 
analyzing the WC ratio compared to analyzing wastewater and clinical 
data independently. For example, the WC ratio showed a small spike in 
early September and early October. These short-lived spikes could be 
due to community events, such as university reopening and economic 
reopening phases. These spikes could also be due to changing de
mographics of disease. As younger people are more likely to have mild 
or asymptomatic infections, they are less likely to be captured by clinical 
testing infrastructure, even when tests are readily available. Therefore, 
the WC ratio should be considered when interpreting wastewater sur
veillance data because it may help detect asymptomatic disease trans
mission among the population. 

We also introduced two models that showed that the delay between 
wastewater data and clinical reporting shrank from an average of 6.2 
days to no significant difference between the wastewater and clinical 
trend after August 15, 2020. In addition, the inferred transfer function 
between wastewater viral copy numbers and reported cases shifted from 
a broad to a sharp peak, suggesting quicker access to clinical testing. 
These results suggest that wastewater surveillance can be useful as an 
early warning indicator of disease incidence when clinical testing is 
limited and also as a method to understand ramp up and scale down of 
community based testing capacity in different phases of the pandemic 
(Olesen et al., 2021). Importantly, modeling the time lag and transfer 
function between the wastewater viral copy numbers and clinical cases 
provides a more quantitative method to understand their relationship 
and assess the pandemic response. 

There could be many factors contributing to the decreasing delay 
between trends in wastewater and trends in clinical cases. Changing 
criteria to qualify for clinical testing, individual behavior in requesting 
tests, availability of convenient testing locations, and lab turnaround 
time can all affect the time lag between when a patient is infected and 
when their positive result is reported. In the beginning of the first wave, 
clinical testing was largely limited to those who met a restrictive com
bination of symptoms and exposure, gradually expanding to those who 
had exposure history (Becker, 2020; Brown et al., 2020). However, the 
initiation of the Massachusetts #StopTheSpread program on July 8, 
2020 and its expansion on August 7, 2020 made walkup, on-demand 
testing available to the public, aiding in the identification of asymp
tomatic and pre-symptomatic cases (Murphy, 2020; Office of Governor 
Charlie Baker and Lt. Governor Karyn Polito et al., 2020). Widespread 
testing by local colleges further expanded this segment of identified 
cases through fall and winter (Broad Institute, 2020). Reported case 
counts thus depended heavily on public health resources and policy. 
Wastewater surveillance is not subject to these social and logistical 
limitations and can therefore serve as a more instantaneous and unbi
ased readout of new cases during the pandemic. We and others have 
shown that wastewater likely detects a short period of high viral shed
ding early in infection (Hoffmann and Alsing, 2021; F. Wu et al., 2020a), 

whereas patients can test positive during PCR testing of respiratory 
samples for longer periods of time (Wölfel et al., 2020; Zheng et al., 
2020), suggesting that wastewater could be more specific to newly 
infected patients. However, wastewater surveillance does not neces
sarily provide a readout of hospitalizations or deaths because these 
numbers also depend on who is infected and their access to healthcare, 
which cannot be distinguished via wastewater monitoring (Olesen et al., 
2021). Therefore, wastewater should be used in conjunction with 
additional clinical data streams when making public health decisions 
related to hospitalizations and mortality. 

This study has several limitations. First, the interpretation of the WC 
ratio relies on the assumption that the viral shedding rate did not 
drastically change over the course of the pandemic. While some variants 
of SARS-CoV-2 have been reported to have higher shedding rates or 
longer shedding duration (Frampton et al., 2021; Kissler et al., 2021), 
the B.1.1.7 variant did not make up a large proportion of wastewater 
viral copy numbers in the Boston Area until March 2021, well past the 
periods in the summer where we described the notable peaks in the WC 
ratio (Lee et al., 2021). There have been mixed reports of the difference 
in shedding rate between symptomatic and asymptomatic people (Han 
et al., 2020; Van Vinh Chau et al., 2020; Zhou et al., 2020), but in any 
case, it is unlikely that the ratio of asymptomatic to symptomatic cases 
would swiftly change in a catchment of 2.25 million people. Second, 
there are some fluctuations in the WC ratio throughout summer 2020 
and spring 2021 that we were not able to tie back to community events 
that potentially increased social contacts and disease transmission. 
These fluctuations could arise from the noise in both datasets and from 
community behaviors that were not considered. Private gatherings 
would be hard to monitor, but perhaps more detailed analysis of 
mobility data could enhance our interpretations of these fluctuations. 
Third, in practice, the WC ratio is particularly useful when considering 
deviations from a stable baseline value. However, assessing such de
viations in real time could be difficult, especially in the beginning stages 
of a pandemic before a baseline is reached. Additionally, it could be 
difficult to distinguish a shifting baseline from true long-term trends. It 
is also difficult to use clinical data to verify the silent community spread 
detected by the WC ratio in the early summer, particularly if those 
affected were asymptomatic and did not seek hospitalization. In any 
case, increases in the WC ratio could prompt officials to increase their 
public health messaging to quell these silent peaks and to remain on 
alert for further trends. 

Application of these metrics to other municipalities requires several 
considerations. Differences in sewer system residence time, wastewater 
sample matrix, and sample processing methods could change the rela
tionship between measured wastewater SARS-CoV-2 genome copies and 
clinical new cases. For example, longer sewer residence times may 
stretch out the wastewater curve, as the positive signals in wastewater 
would take longer to reach the sampling point at the WWTP. Viral 
degradation in wastewater during transport would also affect the 
measured wastewater concentrations, particularly if there were hot 
spots of infection in the sewershed. Quantifying SARS-CoV-2 genome 
copies from sludge rather than primary influent could also lead to a 
delayed and extended wastewater signal, as it takes some time for solids 
to settle into sludge and the persistence of SARS-CoV-2 in sludge is 
longer than in the aqueous fraction (Balboa et al., 2021). Either of these 
situations may lead to a smaller time lag between wastewater and 
clinical data. The persistence of SARS-CoV-2 viral particles is affected by 
environmental factors in different water matrices, such as temperature, 
UV, exposure, organic matter, disinfectants, and adversarial microor
ganisms (Amoah et al., 2022; Paul et al., 2021), which affects the 
baseline magnitude of the WC ratio. Finally, laboratory methods for 
sample processing, such as pasteurization and choice of quantification 
method, could affect the measured wastewater SARS-CoV-2 concentra
tions based on viral degradation or different limits of detection. Thus, 
while these metrics could still be informative for decision makers, it will 
be important for municipalities to establish baseline values for the 
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metrics in their specific catchments before using them to make public 
health decisions. 

There are many extensions to this work that will make wastewater 
surveillance data more integrated and useful for the public health 
response. For example, wastewater viral copy numbers and clinically 
reported cases are inherently linked to the number of true infections in 
the population. More mechanistic modeling is necessary to infer the 
underlying trend of true infections from the observable wastewater and 
clinical data (Fernandez-Cassi et al., 2021). Similarly, wastewater viral 
copy numbers are linked to true infections by a transfer function that 
describes population-level shedding, while clinical cases are linked to 
true infections by a transfer function that describes population-level 
testing availability and turnaround time (Olesen et al., 2021). Infer
ring these two transfer functions will allow us to understand these pa
rameters separately. Combining wastewater data with clinical and 
demographic data may also allow us to infer these transfer functions per 
demographic group, giving us finer resolution understanding of viral 
shedding parameters and access to testing. As the pandemic has pro
gressed and public health measures have changed, the utility of waste
water surveillance has also changed. In this time-varying context, 
integrative models can make wastewater data more flexible, useful, and 
predictive. 

5. Conclusions 

We introduced three new metrics to assess the time-varying rela
tionship between wastewater data and clinical data. Applying these 
metrics to a 14-month time series of wastewater surveillance data in 
Massachusetts, we conclude: 

• The relationship between wastewater viral copy numbers and clini
cally reported cases changed over the course of the COVID-19 
pandemic.  

• Wastewater surveillance data served as a leading indicator in the first 
wave (~6 days) but not the second wave, likely due to substantially 
increased testing capacity.  

• Evaluating the relationships between wastewater and various public 
health data streams using these new metrics can provide a real-time 
evaluation of public health responses.  

• More integrative models can help increase the utility and application 
of wastewater surveillance for managing the ongoing COVID-19 
pandemic as well as future pandemics. 
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